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We perform an extensive investigation on α decays in both even-A and odd-A nuclei within the new version of
the generalized density-dependent cluster model. The microscopic deformed potential is numerically constructed
in the double-folding model by the multipole expansion method. The coupled-channel effect resulting from
nuclear deformation is included by using the coupled-channel Schrödinger equation with outgoing wave boundary
conditions. The fine structure observed in α decay is well described by taking into account the angular momentum
of the emitted α particle and the Boltzmann distribution of excitation spectrum in daughter nuclei. A good
agreement between experiment and theory is achieved, and the results of our calculations are discussed in detail,
together with the sensitivity of the calculated half-lives and branching ratios to some physical quantities used in
the calculations.
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I. INTRODUCTION

α decay is one of the most important decay channels
of unstable nuclei. It has been extensively studied both
experimentally and theoretically. Experimentally, α decay has
long been a powerful and very precise tool to observe exotic
nuclei and investigate their detailed structure [1,2]. In some
cases measurements of α decay provide unique information
on masses (via the decay energy Qα) and excitation energies
of the closely spaced excited and ground states, for which
other common experimental methods are not yet possible.
α decay also presents a useful tool to study the spectroscopy
of unstable nuclei, which is essentially connected with the
phenomenon of α-cluster formation in decaying nuclei [3,4].
In recent experiments, observation of α-decay chains from
unknown parent nuclei to known nuclei has been used as a
reliable way to identify isomeric states and new synthesized
superheavy elements, which is one of the most exciting
subjects in contemporary nuclear physics [5–9].

As a large number of α-decay data have accumulated since
the very beginning of nuclear physics, a lot of theoretical
calculations have been performed to provide realistic inter-
pretation of these data. α decay was described in 1928 as
a quantum mechanical tunneling effect [10,11]. This was the
first successful application of quantum mechanics to a problem
of nuclear physics. More strikingly, it proved the validity
of quantum mechanics for nuclei in the late 1920s. Usually,
the decay process can be divided into two distinct parts: the
formation of an α particle at the nuclear surface, followed by its
tunneling through the α-daughter potential barrier. Computing
the α-formation amplitude is a difficult task because the actual
wave functions involved cannot be well defined. Despite this,
progress has been made in two ways: the shell model including
Bardeen-Cooper-Schriefer (BCS) pairing [12] and the hybrid
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model supplementing the shell-model wave function with an
α-cluster component [13]. In recent studies, considering that
the absolute α-decay width is mainly determined by the prod-
uct of the α-preformation factor and the barrier penetration
probability within the Gamow model, the preformation factor
is extracted by dividing the experimental α-decay width by the
barrier penetration probability, which can easily be obtained
from the Wentzel-Kramers-Brillouin (WKB) approximation
[14]. Whatever the formation mechanism, the decay mainly
proceeds by a quantum tunneling through the potential barrier.
If this barrier is assumed to be spherical, there will be no
mixing of orbital angular momentum during the tunneling,
and the α-decay width can be evaluated in many entirely
different approaches, based on various theoretical models such
as the shell model, the fissionlike model, and the cluster model
[15–23]. The simple empirical relations between α-decay half-
lives and decay energies are also discussed [24–26]. In these
calculations, α decay has traditionally been reduced to a one-
dimensional semiclassical problem, and all the calculations
show similarly good agreement with the experimental data.
In fact, a better description of α decay can be achieved
if one takes into account the deformed barrier. Indeed, the
observation of fine structure in α decay has often been
attributed to the tunneling of the α particle through a deformed
barrier. A complete explanation of the α-decay process should
be able to describe the effect of core deformation. Such
effects have been considered in the fusion of heavy nuclei
(i.e., the inverse of the quantum tunneling). In this case,
some semiclassical methods have been extended to deformed
α emitters for a quantitative description of α-decay half-lives,
such as the unified model for α decay and α capture [27] and the
density-dependent cluster model [28]. However, considering
that α decay is fundamentally a typical three-dimensional
quantum tunneling effect, these methods turn out to pose some
difficulty for a microscopic understanding of α decay. In view
of this fact, it is of the utmost importance to develop an exact
quantum mechanics approach and characterize the α decay
from deformed nuclei.
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Recently, we have proposed the generalized density-
dependent cluster model (GDDCM) to evaluate α-decay half-
lives and its validity has been tested for a wide range of nuclei
including the exotic nuclei around the N = 126 closed shell
[29,30]. As most α-decay studies, we started our microscopic
investigation by assuming spherical shapes of both parent and
daughter nuclei. Then we further develop the model by taking
into account nuclear deformation to fine-tune the theoretical
description of α decay. A very recent study on even-even nuclei
has already been reported as a Rapid Communication [31].
The purpose of this article is to present detailed formulas of
the deformed GDDCM and comprehensive calculations for
deformed α emitters including odd-A and odd-odd ones. To
our knowledge, this is the first coupled-channel calculation
of α decays occurring in odd-A and odd-odd nuclei. In our
deformed GDDCM, the parent nucleus is described by an
α particle moving in a microscopic deformed potential,
which is numerically constructed in the well-established
double-folding model by the multipole expansion method.
Instead of working in the framework of the semiclassical
WKB method along with the Bohr-Sommerfeld quantization
condition, the coupled-channel Schrödinger equation with
outgoing wave boundary conditions is employed to reproduce
the available experimental data concerning α-decay half-lives
and branching ratios. The eigencharacteristics of different
channels are defined by the Wildermuth condition [32], which
severs as a link to the shell model and accounts for the
Pauli exclusion principle. From the microscopic viewpoint,
our model gives not only a straightforward α-decay calculation
but also a quite realistic description of α decay.

This article is organized as follows. In Sec. II, we present
the detailed formulas of the calculation of α-decay half-
lives within the framework of the deformed GDDCM, and
the α-nucleus potential connected with the deformation and
orientation is discussed in detail. In Sec. III, the dependence
of our calculations on model parameters is discussed in
detail, and the theoretical results of our calculations are
compared with the experimental data. A summary is given in
Sec. IV.

II. GENERALIZED DENSITY-DEPENDENT
CLUSTER MODEL

The analysis of α decay can conveniently be made in
the framework of the cluster model, which has been shown
by the success of extreme cluster models representing the
parent state by a pure cluster configuration in describing
α decay [33]. The picture we consider here is that of a
deformed system, consisting of a spherical α cluster coupled
to an axial-symmetric core nucleus with quadrupole and
hexadecapole deformations. For such a system, the daughter
nucleus violating spherical symmetry generates deformed
nuclear and Coulomb potentials, leading to the coupled effect
of different channels. And thus a coupled-channel calculation
becomes necessary for α decay. The α-core Hamiltonian can
be written as

H = − h̄2

2µ
�2

r +Hd (�d ) + V (r,�d ), (1)

where µ is the reduced mass of the system, Hd (�d ) is the
intrinsic Hamiltonian of the daughter nucleus, describing the
rotation of the core with excitation energies EJd

, and V (r,�d )
represents the interaction between the center of mass of the
core and the α particle. The principal dynamical variables
in this model are, respectively, the α-core relative coordinate
vector r and the orientation �d of the daughter intrinsic axis
with respect to the laboratory reference system.

We proceed by expanding the wave function of the α cluster
in a quasibound state into a sum of partial waves with angular
and radial components [31,34,35],

�(r,�d ) = 1

r

∑
α

uα(r)�α(�,�d ), (2)

where α ≡ (n�j ) completely denotes the channel quantum
number, and uα(r) is the cluster radial function describing
the α-daughter relative motion. The angular part is written as

�α(�,�d ) = [Yα(�) ⊗ Yα(�d )]00, (3)

where Yα(�) is the orbital-spin wave function of the α cluster,
and Yα(�d ) is the wave function of the daughter nucleus,
satisfying the following expression:

HdYα(�d ) = EαYα(�d ). (4)

We then insert Eq. (2) into the Schrödinger equation
H�(r,�d ) = E�(r,�d ) and project this equation onto the
channel states. After integrating over all coordinates except the
radial variable r , we obtain a set of coupled-channel equations
for the radial components [31,34,35],[

− h̄2

2µ

(
d2

dr2
− �α(�α + 1)

r2

)
− QJd

]
uα(r)

+
∑

J

Vα,α′ (r)uα′(r) = 0. (5)

In this equation, QJd
, given by QJd

= Q0 − EJd
, is the emitted

energy of the channel �j leaving the daughter nucleus in the
state Jd , where Q0 is the Qα value for the decay to the ground
state. The interaction matrix that contains all of nuclear physics
is given by

Vα,α′ (r) = (�α(�,�d )||V (r,�d )||�α′(�,�d )), (6)

where the parentheses denote integration over all coordinates,
save the radial variable r .

To manipulate the dynamics of the coupled system, the
main focus lies on the interaction matrix elements consisting
of nuclear and Coulomb components. The interaction potential
between the center of mass of the core and the α cluster
is obtained using the double-folding integral of the realistic
nucleon-nucleon (NN ) interaction with the density distribu-
tions of the α particle and the core nucleus [36,37], that is,

V (r,�d ) = λ

∫
dr1dr2ρ1(r1)υ(s)ρ2(r2), (7)

where λ is the renormalized factor and υ(s = |r + r2 − r1) is
the effective NN interaction. The spherical density distribution
of the α particle ρ1(r1) is taken as a standard Gaussian form
[38]. The deformed density distribution of the core nucleus
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ρ2(r2) has the form

ρ2(r2, θ ) = ρ0

1 + e[r−R(θ)]/a
, (8)

where the half-density radius R(θ ) is parametrized as R(θ ) =
R0[1 + β2Y20(θ ) + β4Y40(θ )]. One of the most widely used
effective NN interactions is the popular M3Y interaction
based on the G-matrix elements of the Reid potential. Its
parameterized form, introduced by Satchler and Love, is given
as [38]

υ(s) = 7999
exp(−4s)

4s
− 2134

exp(−2.5s)

2.5s
+ J00(Eα)δ(s),

(9)

and the zero-range pseudopotential J00(Eα), representing the
single-nucleon exchange term, is given by

J00(Eα) = −276[1 − (0.005Eα/Aα)], (10)

where Eα and Aα are the kinetic energy and the mass number of
the α particle, respectively. For the case of α decay, the energy
dependence of the single-nucleon exchange term J00(Eα) is not
much in evidence because the α-particle energy Eα generally
ranges from 2 to 12 MeV.

In view of the deformed density distribution in the six-
dimensional integral, it is a difficult undertaking to derive
the microscopic α-nucleus potential. In this case, one usually
simplifies the double-folding model by expanding the density
distribution of the deformed nuclei using a multipole expan-
sion. In the multipole expansion, the density distribution of the
axial-symmetric daughter nucleus is expanded as [39]

ρ2(r2, θ ) =
∑

�=even

ρ�
2(r2)Y�0(θ ). (11)

Only even values of � appear in the summation owing to the
axial symmetry, and the sum is usually truncated at � = 4.
Then the double-folding potential can be evaluated as the sum
of different multipole components [39],

V (r,�d ) =
∑

�=0,2,4...

V �(r)��(�,�d ), (12)

and the multipole component can be written as

V �(r) = 2

π

∫ ∞

0
dkk2j�(kr)ρ̃1(k)ρ̃�

2(k)ṽ(k), (13)

where the quantity

ρ̃�
2(k) =

∫ ∞

0
drr2ρ�

2(r)j�(kr) (14)

is the intrinsic form factor associated with the expanded
density distribution ρ�

2(r) of the daughter nucleus, ρ̃1(k) is
the Fourier transformation of the density distribution ρ1(r)
of the α particle, and ṽ(k) is the Fourier transformation
of the effective M3Y NN interaction. As one can see, the
α-nucleus potential is intimately connected with nucleon
density distributions in the double-folding model. By relating
the density distribution of daughter nuclei to deformation
parameters β2, β4 and orientation angle θ , the microscopic
deformation- and orientation-dependent α-nucleus potential
is numerically constructed. As the interaction is expressed in

multipoles, the manipulation of the interaction matrix presents
no further problem. The matrix elements can then be written in
terms of the Clebsch-Gordan coefficient as follows [31,34,35]:

Vα,α′ (r) =
∑

�=0,2,4...

V �(r)

√
(2� + 1)(2α + 1)

4π (2α′ + 1)

× (〈α, 0, �, 0|α′, 0〉)2. (15)

The coupled Eq. (5) are solved with boundary conditions.
First, the channel wave functions are regular at the origin,
un�j (r → 0) = 0. Second, in the asymptotic region the nuclear
potential vanishes and the Coulomb potential is spherically
symmetric. At this point the coupled-channel equations de-
couple, and the channel wave functions behave as an outgoing
Coulomb wave,

un�j (r) = N�j [G�(kJd
r) + iF�(kJd

r)], (16)

where N�j are normalization constants, and G�(kJd
r) and

F�(kJd
r) are, respectively, the irregular and regular Coulomb

wave functions with kJd
= √

2µQJd
/h̄. By calculating the

decay probability flux through a spherical surface with the
asymptotical behavior of the radial wave function, one can
ultimately express the partial width of the channel �j in terms
of the normalization constant,

�j = h̄2kJd

µ
|N�j |2. (17)

The normalization constants N�j are obtained by matching
each channel wave function un�j (r) to the outgoing Coulomb
wave at a large distance R. Then, for a given channel �j , the
partial decay width corresponding to the decay into a core state
Jd is given by

�j (R) = h̄2kJd

µ

|un�j (R)|2
G�(kJd

R)2 + F�(kJd
R)2

. (18)

Note that the expression of Eq. (18) is valid only for distances
beyond the range of the nuclear potential and independent of
R. This provides a stringent test of the reliability of the exact
formalism presented here. If �j (R) has a clear dependence
on R, then the theory is incorrect. In addition, considering
that the α-decay width associated with the imaginary part is
usually extremely small, one could as well use the real wave
function G�(kJd

r) as an outgoing Coulomb wave, as shown in
Refs. [30,31], and [40].

Because the decay energy cannot be predicted with suffi-
cient accuracy for a given potential, as before, we adjust the
renormalized factor λ to make all channels simultaneously
reproduce the experimental QJd

values. This means that the
α-nucleus potential remains the same for all channels of a given
α emitter. Then the main requirements of the Pauli exclusion
principle are satisfied by choosing the quantum number n (i.e.,
the number of internal nodes in the radial wave function) to
follow the Wildermuth condition [32],

G = 2n + � =
4∑

i=1

gi. (19)

In this expression, gi are the corresponding oscillator quantum
numbers of the constituent nucleons in the α cluster, whose
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values are chosen to guarantee the α cluster entirely outside
of the shell occupied by the core nucleus. In the present study,
the global quantum number G is taken as follows:

G = 18 for 50 < N � 82,

G = 20 for 82 < N � 126,

G = 22 for N > 126,

where N is the neutron number of the parent nucleus. This
coincides with the previous α-decay studies adopting various
interaction potentials [16,19,20].

The total width representing the tunneling through the
deformed barrier is a sum of partial channel widths,

(R) =
∑
{�j}

�j (R), (20)

where �j (R) corresponding to the decay into a core state Jd

is given by Eq. (18). Meanwhile, it is convenient to perform a
straightforward calculation of branching ratios for α transitions
to a core state Jd , which are written as

bJd
= �j (R)/(R) × 100%. (21)

To gain a better insight into fine structure in α decay, following
Refs. [34] and [35], in the present analysis we define the
quantity

I�j = log10
00

�j

, (22)

which represents the relative intensity of different channels
with respect to the favored channel. In all of these derivations
it is assumed that the deformation of the daughter nucleus
remains the same as in the decaying nucleus.

The α-decay width can be fairly well reproduced when
we use the experimental Qα values. There are, however,
still differences between calculations and experiments. These
discrepancies should be improved by the evaluation of the
α-preformation factor Pα , which represents the degree of
the overlap between the α-cluster plus daughter state and the
parent α emitter. From the theoretical point of view, one
can in principle evaluate the Pα values from the overlap
between the actual wave function of the parent nucleus and
the decaying-state wave function describing one α cluster
coupled to the residual daughter nucleus. As mentioned in the
Introduction, various microscopic calculations of complexity
have been concentrated on this issue [12,13]. The nucleus
212Po, as a typical nucleus with two protons and two neutrons
outside the double closed shell, has been widely investigated.
The representative example is that of Varga et al., in which
the weight of α clustering is found to be as high as 0.3
[13]. However, it is extremely difficult to perform further
calculations for nuclei including more nucleons outside the
double-magic core. The reason is that even a very large
shell-model basis is often insufficient to describe the actual
situation of α-cluster formation because this process is strongly
potential dependent, with the additional complication of the
nuclear many-body problem. Experimentally, it is known
from the available cases that the preformation factor varies
smoothly in the open-shell region and has a value less
than unity [41]. With this in mind, a convenient way of

performing an analysis of the α-preformation factors is by
taking the same preformation factor for a certain kind of
nuclei (even-even, odd-A, and odd-odd), which keeps the
number of free parameters in the model to a minimum. This
is consistent with Buck’s model [16]. Nevertheless, there is
no doubt that the experimental half-lives should be better
reproduced if the preformation factor is considered to vary
with different parent nuclei instead of a constant, especially
for the closed-shell-region nuclei. This is worth further
investigation.

III. NUMERICAL RESULTS AND DISCUSSION

A. Model parameters used in calculations

Because α decay is understood as a two-body phenomenon
involving a core nucleus and an α particle, a reliable input
of the α-nucleus interaction potential is required for the
quantitative description of α decay. In our GDDCM, the
α-nucleus potential with a clear dependence on deformations
and orientations is numerically constructed in the double-
folding model using model parameters, such as the radius
and the diffuseness. In the spherical case, the radius and the
diffuseness of the density distribution of the core nucleus are
taken as R0 = 1.07 fm and a = 0.50 fm; this parametrization
turns out to work very well in the description of spherical
α emitters [29,30]. As a further extension toward deformed
systems, we assume that the α-nucleus potential should be the
same for the core nucleus in its ground or excited state so that
it is not necessary to introduce other new parameters, which
would reduce the predictive power of the calculation. Unfor-
tunately, it is found that the preceding parameter set has too
small a radius to give a quantitative description of the tunneling
rate. This is very similar to the situation of proton emission,
where the Becchetti-Greenlees Woods-Saxon parameter set
is excellent for spherical proton emitters but performs rather
poorly for deformed ones, for the same reason [42]. With this
in mind, as in the case of proton emission, a new parameter
set, which has slightly larger radii, is taken for deformed α

emitters as follows: R0 = 1.15 fm and a = 0.50 fm.
As already mentioned, it is indispensable to evaluate the

α-preformation factor for absolute α-decay half-lives, and
the analysis of the preformation factor Pα can conveniently
be made by taking the same preformation factor for one
certain kind of nuclei. In combination with the previous
spherical calculation, we obtain the preformation factors as
follows: Pα = 0.39 for even-even nuclei, Pα = 0.25 for odd-A
nuclei, and Pα = 0.15 for odd-odd nuclei. These values agree
well with both the microscopic calculations [13] and the
experimental results [41]. Furthermore, to well describe fine
structure in α decay, we introduce the Boltzmann distribution
for excitation spectrum in the daughter nuclei [43],

ρ(EJd
) = exp(−cEJd

), (23)

where EJd
(in MeV) is the excitation energy of the daughter

state Jd . This may be not so surprising because, as early as
1917, Einstein had proposed this fundamental hypothesis on
the quantum theory of radiation, that is, canonical distribution
of states [44]. This procedure is also equivalent to the
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FIG. 1. Sensitivity of the calculated half-life and branching ratio
to some physical quantities used in calculations for the α emitter
242Cm. (a) Calculated half-lives as a function of the decay Q0 value.
(b) Calculated branching ratios to the daughter 2+ state as a function
of the excitation energy E2+ . Experimental values of Q0 and E2+ are
indicated.

α-preformation factor with an exponential dependence on
the excitation energy of the daughter nucleus. In Ref. [26],
such a dependence is clearly evident for the reduced width to
excited states. In this way, we obtain a set of parameters for
the Boltzmann distribution as follows: c = 2.3 for even-even
nuclei, c = 26.3 for odd-A nuclei, and c = 28.1 for odd-odd
nuclei.

As we all know, the decay Q0 value has a crucial
effect on the α-decay half-life. To see this strong effect, we
have calculated the α-decay half-lives of 242Cm for various
Q0 values. Figure 1(a) illustrates the variation of the calculated
half-life as the function of the decay Q0 value. As the Q0

value changes from 5.0 to 7.5 MeV, the calculated half-life
decreases rapidly by about 13 orders of magnitude, from 1014

to 101 s. Also, a change in the Q0 value affects fine structure in
α decay, but this effect is much smaller. Very minor changes
in branching ratios are found as a function of the Q0 value.

On the contrary, the strong dependence of the branching
ratio on the excitation energy of daughter states is evident in
our calculations. For concreteness, in Fig. 1(b) we present the
calculated branching ratio to the 2+ state as the function of
the E2+ value for the α-decaying 0+ state in 242Cm. As the
E2+ value is changed from 5 to 95 keV, the branching ratio
decreases by about 50% from its original value of 39. Such a
change in the E2+ value also has an influence on the calculated
α-decay half-life, leading to an increase in the half-life by
about 30%. This variation of the half-life is very small because
the allowed deviation of calculated half-lives is 200% or 300%
in systematic calculations.

B. Systematic results of α decay for different kinds of nuclei

Extensive α emitters, ranging from Z = 52 to Z = 105,
have been systematically investigated within the new ver-
sion of the GDDCM. The main focus is on well-deformed
α emitters exhibiting collective rotational motion. In this
case, the different channels are strongly coupled, and the
exact solution of the coupled-channel equations, Eq. (5), is
indispensable. In contrast, the exact quantum mechanics study
of α decay is a simple task in the spherical case, where one
needs to deal with only a single radial equation instead of

the set, Eq. (5). In our analysis of α decay, the only input
data are the mass number A and the charge number Z of the
parent nucleus, the deformation β2 and β4 parameters of the
corresponding daughter nucleus, the decay Q0 value, and
the excitation spectrum in the ground-state band of the daugh-
ter nucleus. Among these quantities, as already discussed, the
Q0 value and the excitation spectrum in the daughter nuclei
are very crucial in the α-decay study. So their values are set by
experiment [45,46]. The deformation parameters of daughter
nuclei are taken from Möller et al. [47] instead of experiments.
The reason for this is that information on the value of
hexadecapole deformation is often absent in experiments.
Moreover, the values from Möller et al. are close to the
experimental values of core deformation, and the difference
between them has a tiny influence on α-decay calculations.
To estimate our theoretical results, the experimental α-decay
half-lives are mainly taken from Refs. [46] and [48], and some
new data are from Ref. [49].

1. Even-even nuclei

For the case of even-even nuclei, α decay mainly proceeds
from ground states 0+ to ground states 0+. This means that
the angular momentum and parity of the emitted α particle are
0+. Actually, the even-even parent nuclei can also decay from
their ground states to the excited states of the rotational band
in the corresponding daughter nuclei, owing to the violation of
spherical symmetry. Figure 2 indicates the possible channels
that are involved in the α decay of well-deformed even-even
nuclei. Considering that the high-spin channels are strongly
restrained by the centrifugal barrier, in most cases only the
2+ level in the daughter nucleus has a profound effect on
α-decay calculations, as shown in Fig. 1(b).

A preliminary discussion of our microscopic approach has
already been published for even-even nuclei. Here we present
only a few typical results of even-even nuclei as a supplement
to the previous publication. Before presenting our numerical
results, let us discuss the influence of the newly introduced
Boltzmann distribution of excited states in the daughter nuclei.

FIG. 2. A survey of the observed α transitions in deformed
even-even nuclei. Decay proceeds from the ground state of a parent
nucleus to the members of the ground-state rotational band of the
corresponding daughter nucleus. Q0 represents the Qα value for
the transition from ground state to ground state, and EJd

labels the
excitation energy of the daughter state Jd with respect to the ground
state. Note that the � � 4 α transitions are strongly restrained by the
large centrifugal barrier.
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FIG. 3. Deviations of the calculated half-lives from the exper-
imental values versus the neutron number N for even-even nuclei
with Z = 52–104. The deviations 0.3, 0.4, and 0.5 of the logarithms
correspond to the absolute deviations of half-lives by factors of
2.0, 2.5, and 3.2, respectively. Vertical bars indicate spherical and
deformed neutron magic numbers of the parent nuclei N = 126
and 152.

As already shown, the parameter c used in the Boltzmann
distribution has a small value for even-even nuclei. This means
that the Boltzmann distribution has a small effect on the
calculated half-life and branching ratio for even-even nuclei. In
general, the half-life is increased by 3%–5%. For the branching
ratio to the ground state, the effect is an increase of 1.5%–4.5%.
These are not large enough to affect our systematic results for
even-even nuclei.

Figure 3 displays the deviations of calculated α-decay
half-lives from the experimental data as a function of the
neutron number N of the parent nucleus. As one can see,
the values of log10(Tcal/Texp) are generally within the range
of about ±0.5, which corresponds to the values of the ratio
Tcal/Texp within the range of about 0.32–3.2. This means
that the calculated α-decay half-lives are in good agreement
with the experimental data for even-even nuclei. Because
the constant preformation factor cannot completely describe
the detailed features of nuclear structure, the strong shell
effects are clearly shown from the increased deviations in
the neighborhood of N = 126 and 152. One can also notice
that there is another slightly large derivation in Fig. 3, which
corresponds to the α emitter 194Pb with the proton magic
number Z = 82.

Besides the N = 126 and 152 shell effects, most even-even
superheavy nuclei are characterized by large deformations. It
is worth paying special attention to them. The comparison of
the calculated α-decay half-lives with the experimental data
is illustrated in Fig. 4 for the Z = 88–102 isotopes. Circles
denote the experimental data, and stars stand for the theoretical
results. It is well known that for a given element the decay
Q value of isotopes generally decreases with increasing
neutron number, resulting in an increase in the half-life.
However, in Fig. 4 there is a clear decrease in the half-life
before the neutron number N = 128, shown in the Ra and Th
isotopes. This is attributed to the strong N = 126 shell effect:
the main effect of the N = 126 shell is included in the decay
Q value, which is closely related to the nuclear structure,

FIG. 4. Comparison of the calculated α-decay half-lives with the
experimental data for deformed even-even nuclei ranging from Z =
88 to Z = 102, showing the strong shell effect at the neutron magic
numbers N = 126 and 152.

and the remaining effect is largely absorbed into the α-
preformation factor. We have performed a detailed investiga-
tion of the exotic α decays around the N = 126 shell gap [30].
Here we do not repeat it. Similarly, across the N = 152
deformed shell, the half-life decreases with increasing neutron
number and then increases in the usual way, shown in the Cf,
Fm, and No isotopes, but this effect is less significant. Despite
the shell effects as well as the large deformations involved, one
can see that the theoretical α-decay half-lives follow the exper-
imental ones well over a wide range of magnitude, from 10−7

to 1018 s.
Before we finish the discussion of the numerical results

of even-even nuclei, we would like to add a comment
concerning our result on the relative intensity to the 4+ channel
during the α decay of even-even nuclei. When the decay hap-
pens to the rotational band of daughter nuclei, the component
to the ground state of daughter nuclei is dominant and the next
one is the decay to the 2+ state. The branching ratio to the
4+ state is low (less than 1%) and we have omitted it in the
previous calculations. This is a reasonable approximation for
α-decay half-lives. To gain a clear insight into this, we take
the data for 234Pu as an example, where the branching ratios
of α decay to the 0+, 2+, and 4+ states are 68%, 32%, and
0.4%, respectively [46,49]. We perform numerical calculations
within our model by solving three coupled equations, and the
numerical results of wave functions are plotted in Fig. 5. Based
on the wave functions we obtain the branching ratios 71.1%,
28.6%, and 0.3% for the 0+, 2+, and 4+ states, respectively.
A good agreement is reached between experimental data and
theoretical results. This is also true for other α emitters. When
we further take into account the 4+ channel, much of the time
for numerical computation must be spent on computers and
the complexity of the calculations increases greatly. Moreover,
there are not many data for the 4+ state and the error bar for
the data is relatively large. Hence, in this article we focus
our systematic calculations on the 0+ and 2+ states. This is
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FIG. 5. (Color online) Schematic plot of three-channel wave
functions in α decay of the nucleus 234Pu. The solid line (black),
the dashed line (red), and the dotted line (blue), respectively, de-
note the 0+ → 0+, 0+ → 2+, and 0+ → 4+ channel functions. Note
that the y axis in (b) is magnified by 1013.

reasonable because the influence of the component to the 4+
state is marginal for total half-lives. Further research on the
relative intensities to more daughter states will be carried out
in future.

2. Odd-A and odd-odd nuclei

The results of even-even nuclei prove the basic validity of
our microscopic approach and give us some confidence in our
GDDCM. This stimulates us to make a further investigation
of odd-A and odd-odd α emitters. The situation of odd-A and
odd-odd nuclei is more complicated than that of even-even
nuclei. Their ground-state spin and parity cannot be auto-
matically assigned as those of even-even nuclei. For some
odd-A and odd-odd nuclei, information on the ground-state
spin and parity is still unavailable in experiments. In addition,
their transitions from ground state to ground state usually
involve unpaired nucleons, leading to the strong hindrance
of the additional centrifugal barrier � 	= 0. And we have little
knowledge of the � value in experiment, except for closed-
shell-region nuclei, thanks to only one extra hole/particle
outside the closed shell. These are the reasons that the
experimental data for even-even nuclei, rather than odd-A or
odd-odd nuclei, are usually used as a good test of theoretical
models or approaches. And just because of this, we only
performed a detailed investigation on even-even nuclei in
the previous study [31]. As far as we know, up to now
there are few theoretical calculations of α-decay half-lives for
odd-A and odd-odd nuclei, especially from the microscopic
point. As a further extension of our model toward odd-A and
odd-odd nuclei, we base our work on favored α transitions,
instead of ground state-to-ground state ones, and take into
account the coupled-channel effect as in the case of even-even
nuclei. In view of the fact that experimental information is
rare for the value of � in the case of odd-A and odd-odd
nuclei, we choose the smallest one from the possible � values
in our calculations. In fact, for odd-A and odd-odd nuclei
their structure effects become very important, and thus they
should be adequately investigated for each nucleus rather than
globally, in particular, for deformed ones. In the α-decay study
of odd-A and odd-odd nuclei, we restrict our attention to the
experimentally well-known deformed α emitters.

Table I displays the detailed results of our evaluations
for odd-A nuclei. The first column in Table I denotes the
parent nucleus. The second and third columns are, respectively,
the deformation β2 and β4 parameters of the corresponding
daughter nucleus. The energy gap of the excitation spectrum
in the daughter nucleus is given in column 4. The experimental
and theoretical values of the relative intensity given by
Eq. (22) are listed in columns 5 and 6. The decay Q value for
favored α transition is given in column 7. The experimental and
theoretical α-decay half-lives are listed in the last two columns.
As one can see, there is reasonable agreement in the relative
intensities, and the experimental half-lives are well reproduced
within a factor of about 2. In fact, the present analysis of odd-A
nuclei is merely preliminary because the actual situation of
α transitions in odd-A nuclei may be much more complex
than what we expect. On the one hand, both the � values
and the experimental branching ratios of many nuclei need
to be determined with an improved accuracy. Consequently,
the deviations of our results presented in Table I are larger
than they should be, especially for the relative intensities.
On the other hand, besides the dominant decay channels under
investigation, in odd-A nuclei there exist other decay channels
resulting from various structure effects, such as channels to the
other rotational band in the daughter nucleus and channels with
a change in parity. It is interesting and desirable to combine
our approach with reliable nuclear structure models to further
improve the agreement between experiment and theory. For the
sake of a clear insight into the agreement of α-decay half-lives,
Fig. 6 shows the comparison of the calculated half-lives with
the experimental data for isotopic chains of Z = 91–100. We
can see that the calculated results follow the experimental data
well in the range of 10−2 to 1016 s. The shell effect at the
deformed neutron magic number N = 152 is also seen from
the isotopic chains of Cf, Es, and Fm.

For the case of odd-odd nuclei, the situation is even more
complicated, owing to proton-neutron coupling. Their spins
and parities are mostly assigned based on systematics and

FIG. 6. Same as Fig. 4 except for deformed odd-A nuclei from
Z = 91 to Z = 100. The dotted vertical line stands for the deformed
neutron magic number of the parent nuclei, N = 152.
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TABLE I. Comparison of the calculated α-decay half-lives and relative intensities with the available experimental data for deformed odd-A
nuclei involving α-decay fine structure. The α-decay half-life and relative intensity are calculated using Eqs. (20) and (22), combined with the
Boltzmann distribution of excited states in daughter nuclei, Eq. (23).

Nucleus β2 β4 �E I
exp
2 I cal

2 Q log10 T
exp

1/2 log10 T cal
1/2

(keV) (MeV) (s) (s)

229Th 0.164 0.112 31.670 0.781 0.733 4.931 11.55 11.85
225Pa 0.111 0.081 52.000 0.368 0.951 7.376 0.23 0.48
227Pa 0.147 0.110 42.400 0.633 0.775 6.573 3.64 3.62
225U 0.102 0.072 47.000 0.689 0.881 8.009 −1.21 −1.27
229U 0.165 0.112 28.000 0.505 0.592 6.473 4.32 4.47
233U 0.190 0.114 42.435 0.805 0.920 4.908 12.71 13.13
235U 0.198 0.115 31.600 0.510 0.775 4.474 16.49 16.28
235Np 0.198 0.115 17.200 0.344 0.470 5.112 12.23 12.22
237Np 0.207 0.117 17.167 0.312 0.477 4.870 13.98 13.83
237Pu 0.207 0.117 33.050 0.552 0.719 5.426 11.22 10.83
239Pu 0.215 0.110 12.964 0.617 0.393 5.244 11.94 11.84
241Pu 0.215 0.102 44.300 0.837 0.968 4.979 13.29 13.69
239Am 0.215 0.110 42.600 0.784 0.850 5.872 8.64 8.81
241Am 0.215 0.102 43.418 0.811 0.903 5.578 10.14 10.44
243Am 0.223 0.095 43.180 0.891 0.920 5.364 11.37 11.70
241Cm 0.215 0.102 12.364 0.581 0.369 6.039 8.51 8.29
243Cm 0.223 0.095 44.664 0.788 0.904 5.882 9.03 9.22
245Cm 0.224 0.079 56.890 1.270 1.171 5.450 11.44 11.71
247Cm 0.224 0.071 51.400 1.179 1.137 4.950 14.81 14.97
245Bk 0.223 0.087 32.638 1.186 0.724 5.984 9.19 9.12
247Bk 0.224 0.071 32.000 0.808 0.733 5.622 10.92 11.13
249Bk 0.224 0.062 28.200 0.670 0.686 5.505 12.32 11.79
245Cf 0.223 0.087 56.100 1.117 1.000 7.256 3.92 3.76
247Cf 0.234 0.073 59.000 1.279 1.125 6.400 7.50 7.52
249Cf 0.234 0.064 54.600 1.244 1.105 5.908 10.11 10.04
253Cf 0.235 0.032 61.242 1.252 1.222 6.076 8.70 9.08
245Es 0.224 0.079 31.000 0.784 0.622 7.858 2.25 1.85
247Es 0.234 0.073 49.000 0.855 0.905 7.444 3.60 3.42
249Es 0.234 0.064 61.000 1.123 1.128 6.887 6.03 5.71
251Es 0.235 0.048 30.000 0.935 0.684 6.597 7.42 6.94
253Es 0.235 0.040 41.790 1.134 0.867 6.739 6.26 6.28
255Es 0.235 0.032 35.100 0.952 1.217 6.503 7.64 7.42
251Fm 0.234 0.057 51.600 1.258 0.991 6.945 6.06 5.87
255Fm 0.236 0.024 59.994 1.268 1.133 7.134 4.87 5.01
257Fm 0.226 0.013 80.200 1.671 1.493 6.623 6.96 7.28

the indirect evidence from α-decay studies. In the large-
deformation region, we are only interesting in three odd-odd
α emitters, whose spin-parity and α-decay data are well estab-
lished in experiment. The theoretical results for them are listed
in Table II. We can see that, with the Boltzmann distribution
of excited states in the daughter nuclei, the α-decay half-lives
and relative intensities calculated from the GDDCM agree

well with the experimental data. This shows that the GDDCM
along with the assumption of Boltzmann distributions has very
good accuracy for the α-decay calculations of both odd-A and
odd-odd nuclei.

In conclusion, our theoretical results show good agreement
with the experimental data for not only even-even nuclei but
also odd-A and odd-odd nuclei. The most accurate data are

TABLE II. Same as Table I, but for three deformed odd-odd nuclei, for which experimental spin-parity and decay data are well established.

Nucleus β2 β4 �E I
exp
2 I cal

2 Q log10 T
exp

1/2 log10 T cal
1/2

(keV) (MeV) (s) (s)

240Am 0.215 0.110 42.000 0.859 0.910 5.469 10.99 11.32
242Am 0.215 0.102 65.184 1.201 1.351 5.295 12.01 12.41
254Es 0.235 0.032 70.000 1.554 1.384 6.531 7.40 7.50
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those for even-even nuclei. The data for similar transitions in
odd-A and odd-odd nuclei are less accurate as a rule, because
of the uncertainty of � values, lack of sufficient knowledge of
the level schemes in parent and/or daughter nuclei, and other
structure effects.

Before ending this article, we would like to mention that
there are some other approaches to investigating fine structure
in α decay. Recently, a simple barrier penetration approach was
proposed to calculate α-decay branching ratios for even-even
nuclei [43]. A further calculation of α decays to excited states
of even-even nuclei was carried out within the generalized
liquid drop model [50]. A study of α decays to ground
and excited states was also performed for heavy deformed
nuclei in the framework of the unified model for α decay
and α capture [51]. All these approaches treated α decay
as a one-dimensional problem and worked in the framework
of the well-known WKB semiclassical approximation. The
experimental branching ratios of α decays to rotational states
are well reproduced, and all of them should be considered as an
effective theory. Additionally, the coupled-channel approach
was also employed to describe α-decay fine structure in even-
even nuclei, in combination with a double-folding potential
plus a repulsive core [34,35]. In this case, α decay is understood
as a three-dimensional quantum problem, instead of a simple
one-dimensional one. The cost is that the exact solution of
the coupled-channel Schrödinger equation becomes necessary.
With this approach, the α-decay fine structure to rotational
states is explained with remarkable success. It should be
pointed out that our model works in the coupled-channel
framework as well but adopts different techniques to deal with
the interaction potential and the coupled equations. Despite
this, the results of our model agree well with those of Refs. [34]
and [35]. This confirms that the coupled-channel approach is
very successful in describing α-decay fine structure.

IV. SUMMARY

In summary, we have presented in this paper an extension of
the newly developed GDDCM to include odd-A and odd-odd
α emitters. In the GDDCM, the microscopic deformed poten-
tial is numerically constructed in the double-folding model by
the multipole expansion method. The decay width is computed
using the coupled-channel Schrödinger equation with outgoing
wave boundary conditions. In the case of spherical α emitters,
there is a single channel for α decay, and thus one needs

to solve only a single radial equation to evaluate the decay
width. In the deformed case, where the excited and ground
states in daughter nuclei are closely distributed, the different
channels are strongly coupled, as one would expect. One
must exactly perform coupled-channel calculations for both
α-decay half-lives and branching ratios.

The sensitivity of the calculated half-lives and branching
ratios to some physical quantities used in the calculations has
been discussed. In general, α-decay half-lives have a strong
dependence on the decay Q0 value but depend rather weakly
on the excitation spectrum in the daughter nuclei. In contrast,
branching ratios show a high sensitivity to the excitation
spectrum in the daughter nuclei, while the decay Q0 value
is expected to have little influence on them.

The validity and applicability of the GDDCM have been
tested for a wide range of even-even nuclei, and further
calculations are performed for deformed odd-A and odd-
odd nuclei, which exhibit α transitions similar to those of
deformed even-even nuclei. Considering the strong structure
effect in odd-A and odd-odd nuclei, we assume that the
excitation spectrum in daughter nuclei satisfies the Boltzmann
distribution, which is very similar to the hypothesis of Einstein
for atomic spectrum. The results reported in Tables I and II
are in good agreement with the available experimental data.
Despite this, the preset analysis is merely the beginning
because the actual situation of odd-A and odd-odd nuclei
is more complex than what we consider here. Besides the
dominant decay channels under investigation, there exist other
channels resulting from various structure effects, such as
channels to the other rotational band in the daughter nucleus
and channels with a change in parity. We expect the present
study of odd-A and odd-odd nuclei to be an important step
toward a complete description of them. Efforts toward this
objective are being made.
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