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Relativistic Hartree-Fock-Bogoliubov (RHFB) theory with density-dependent meson-nucleon couplings is
presented. The integrodifferential RHFB equations are solved by expanding the different components of the
quasiparticle spinors in the complete set of eigensolutions of the Dirac equations with Woods-Saxon potentials.
Using the finite-range Gogny force D1S as an effective interaction in the pairing channel, systematic RHFB
calculations are performed for Sn isotopes and N = 82 isotones. It is demonstrated that an appropriate description
of both mean field and pairing effects can be obtained within RHFB theory with finite range Gogny pairing forces.
Better systematics are also found in the regions from the stable to the neutron-rich side with the inclusion of Fock
terms, especially in the presence of ρ-tensor couplings.
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I. INTRODUCTION

During the past decades, much success has been achieved
in nuclear physics by relativistic density functional theories.
One of the most outstanding candidates is the relativistic
Hartree approach with the no-sea approximation, namely,
the relativistic mean field (RMF) theory [1–7]. Within the
RMF framework, valuable information has been obtained for
the structure of the nuclei in and far from the valley of β

stability, including both for ground states [3,4,7] and excited
states [6,8]. At the same time, considerable effort has been
devoted to relativistic Hartree-Fock (RHF) theory [9–16].
However, because of its numerical complexity, for a long
time, it failed in a quantitative description of nuclear systems.
Only in recent years, with the growth of computational
facilities and the development of new methods, has density
dependent relativistic Hartree-Fock (DDRHF) theory shown
significant improvements in a quantitative description of
nuclear phenomena [17–22] with a similar accuracy as RMF.

In DDRHF, the Lorentz covariant structure is kept in full
rigor, which guarantees the self-consistent determination of
the spin-orbit coupling [17] and all well-conserved relativistic
symmetries, e.g., the pseudospin symmetry in the nuclear
spectrum [18]. In addition, significant improvements on the
relativistic description of shell structures have been gained
with the newly introduced constituents by the Fock terms,
i.e., the pseudovector pion and the ρ-tensor couplings. In
Refs. [20,23], the consistency of the evolution of the shell
structure has been considerably improved by the pion exchange
potential, in fact, by its tensor part. With the inclusion of
ρ-tensor couplings, the common disease of several artificial
shell closures existing in the RMF calculations [24] has been
cured in DDRHF theory and the pseudospin symmetry is also
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better preserved [19]. Besides the Fock terms in the isovector
channel, those derived from the isoscalar σ and ω couplings are
found to play a dominant role in reproducing the characteristic
experimental Z dependence of the spin-orbit splitting around
the subshell closure Z = 64 [25]. It has also been demonstrated
that the isoscalar Fock terms are essential for self-consistent
description of the spin-isospin resonances within RPA [21]
and the prediction of neutron star properties [22].

On the other hand, the development of the radioactive
ion beam (RIB) facilities [26] has opened a new frontier for
nuclear physics, the field of exotic nuclei far from the valley of
stability [27–33] and the upgrades and constructions of the RIB
facilities [34–37] in the next few years will provide us with
new possibilities to study exotic modes in nuclear systems.
The current application of DDRHF is limited to nuclei in the
β-stability valley and pairing effects in open shell nuclei are
treated only within the BCS approximation [17,19]. In weakly
bound systems, such as exotic nuclei close to the drip lines, the
Fermi surface of one type of nucleons is close to the particle
continuum, and the single nucleon separation energies are
comparable to the pairing gaps. This results in an enhancement
of the scattering of Cooper pairs into the continuum due to
pairing correlations. Thus, it becomes necessary to include the
continuous part of the single-particle spectrum to describe the
unstable nuclei.

It is now the general consensus that a unified and self-
consistent description of both mean field and pairing corre-
lations can be obtained with the Bogoliubov transformation
and automatically the continuum effects are efficiently taken
into account [38,39]. In this paper relativistic Hartree-Fock-
Bogoliubov (RHFB) theory with density dependent meson-
nucleon couplings is presented as a natural extension of
DDRHF. Its content is organized as follows. In Sec. II
we introduce the general formalism of the RHFB theory
with both zero-range (δ) and finite range (Gogny) pairing
forces, where the integrodifferential RHFB equations are
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solved by expanding the lower and upper components of
the quasiparticle spinors on the complete set of solutions
of the Dirac equation with a Woods-Saxon (DWS) type
potential. The comparison between different treatments of
pairing correlations is discussed in Sec. III and systematic
RHFB calculations are performed and discussed by taking Sn
isotopes and N = 82 isotones as representative cases. Finally,
a brief summary is given in Sec. IV.

II. GENERAL FORMALISM

We briefly recall here the general features of DDRHF theory
in order to make understandable its generalization to the RHFB
case. More details can be found in Refs. [14,17,19] whereas the
effective interactions used in this work have been introduced
in Refs. [17,19,20].

A. Energy functional and relativistic Hartree-Fock potentials

As generally recognized, the nucleon-nucleon interaction
is mediated by the exchange of mesons with isoscalar and
isovector character. The understanding of nuclear structure at
the microscopic level, therefore, has to be achieved in the same
language. Consistent with this criterion, the model Lagrangian,
i.e., the theoretical starting point, contains the degrees of free-
dom associated with the nucleon, the σ -, ω-, ρ-, and π -meson
fields, and the photon field (A) [14]. Following the standard
variational procedure of the Lagrangian [2,14], one finds
the equations of motion for mesons, nucleons, and photons,
namely, the Klein-Gordon, Dirac, and Proca equations, and the
continuity equation, i.e., the energy-momentum conservation
relation, from which is derived the Hamiltonian of the system.
In terms of the creation and annihilation operators (c†α, cα)
defined by the stationary solutions of the Dirac equation, the
Hamiltonian can be generally expressed as

H =
∑
αβ

c†αcβTαβ + 1

2

∑
αα′ββ ′

c†αc
†
βcβ ′cα′

∑
φ

V
φ

αββ ′α′ , (1)

where Tαβ represents the kinetic energy and the two-body
terms V

φ

αββ ′α′ correspond to different types of meson (or
photon) nucleon couplings denoted by φ,

Tαβ =
∫

d rψ̄α(r)(−iγ · ∇ + M)ψβ(r), (2)

V
φ

αββ ′α′ =
∫

d rd r ′ψ̄α(r)ψ̄β(r ′)
φ(x, x ′)

×Dφ(r, r ′)ψβ ′(r ′)ψα′ (r). (3)

In the two-body interaction terms, the interaction matrices

φ(x, x ′) read as


σ (r, r ′) ≡ −gσ (r)gσ (r ′), (4a)


ω(r, r ′) ≡ (gωγµ)r (gωγ µ)r ′ , (4b)


V
ρ (r, r ′) ≡ (gργµ�τ )r · (gργ

µ�τ )r ′ , (4c)


T
ρ (r, r ′) ≡ 1

4M2
(fρσνk �τ∂k)r · (fρσ

νl �τ∂l)r ′ , (4d)


V T
ρ (r, r ′) ≡ 1

2M
(fρσ

kν �τ∂k)r · (gργν �τ )r ′

+ 1

2M
(gργν �τ )r · (fρσ

kν �τ∂k)r ′ , (4e)


π (r, r ′) ≡ −1

m2
π

(fπ �τγ5γµ∂µ)r · (fπ �τγ5γν∂
ν)r ′ , (4f)


A(r, r ′) ≡ e2

4
(γµ(1 − τ3))r (γ µ(1 − τ3))r ′ . (4g)

In coordinate space, the propagators Dφ(r, r ′) for the meson
fields have a Yukawa form

Dφ(r, r ′) = 1

4π

e−mφ |r−r ′|

|r − r ′| . (5)

For the photon field, the propagator DA(r, r ′) can be written
as

DA(r, r ′) = 1

4π

1

|r − r ′| . (6)

In the above expressions [Eqs. (2)–(5)], M denotes the nucleon
mass and mσ (gσ ), mω (gω), mρ (gρ, fρ), and mπ (fπ ) are the
masses (coupling constants) corresponding to σ , ω, ρ, and π

mesons. In this paper, we use arrows to denote isospin vectors
and bold types for vectors in coordinate space.

In the Hamiltonian (1), the indices α, β, α′, β ′ run over all
the single-particle states (ψα) with positive energies (α = k)
and negative energies (α = l). As is commonly done in the
mean field approach, the so-called no sea approximation is
adopted and the contributions from the negative energy states
are neglected. Then, the energy functional can be obtained
from the following expectation value:

E = 〈�0|H |�0〉, (7)

where |�0〉 is the Hartree-Fock ground state in the no
sea approximation [14]. In the energy functional (7), the
contributions of the two-body interactions Vφ consist of two
parts, the direct (Hartree) and exchange (Fock) terms. With
only the direct contributions, Eq. (7) leads to the energy
functional of the RMF theory. With both direct and exchange
contributions we obtain the energy functional for the DDRHF
theory.

In spherically symmetric systems the Dirac spinor can be
written as

ψα(r) = 1

r

⎛
⎝ iGa(r)Y la

jama
(r̂)

−Fa(r)Y l′a
jama

(r̂)

⎞
⎠ . (8)

The radial wave functions Ga(r) and Fa(r) characterize the
upper (large) and lower (small) components and Y l

jm are the
spherical harmonic spinors. Here, the subindex α = {a,ma} =
{na, la, l

′
a, ja,ma} contains the quantum numbers na (number

of nodes of the upper component Ga), ja,ma (total angular
momentum and its projection to the z axis), and la, l

′
a (orbital

angular momenta with la + l′a = 2ja). In the following, we
will use the Latin indices for the subset {nll′j} and Greek
indices for the full set {njll′m}.

By taking the variation of the energy functional (7) with
respect to the Dirac spinor (8), we obtain the spherical Dirac
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Hartree-Fock equation as∫
d r ′h(r, r ′)ψ(r ′) = εψ(r), (9)

where ε is the single-particle energy (including the rest mass)
and the single-particle Dirac Hamiltonian h(r, r ′) contains the
kinetic energy hkin, the direct local potential hD, and exchange
nonlocal potential hE,

hkin(r, r ′) = [α · p + βM]δ(r − r ′), (10a)

hD(r, r ′) = [�T (r)γ5 + �0(r) + β�S(r)]δ(r − r ′), (10b)

hE(r, r ′) =
(

YG(r, r ′) YF (r, r ′)

XG(r, r ′) XF (r, r ′)

)
. (10c)

In the above expression, the local self-energies �S , �0, and
�T contain the contributions from the direct (Hartree) terms
[2–4,7] and the rearrangement terms [6]. The nonlocal self-
energies XG, XF , YG, and YF come from the exchange (Fock)
terms and they take the general form

X
(φ)
Ga

(r, r ′) =
∑

b

T φ

abĵ
2
b (gφFb)rR

XG

ab (mφ ; r, r ′)(gφGb)r ′ ,

(11a)

X
(φ)
Fa

(r, r ′) =
∑

b

T φ

abĵ
2
b (gφFb)rR

XF

ab (mφ ; r, r ′)(gφFb)r ′ ,

(11b)

Y
(φ)
Ga

(r, r ′) =
∑

b

T φ

abĵ
2
b (gφGb)rR

YG

ab (mφ ; r, r ′)(gφGb)r ′ ,

(11c)

Y
(φ)
Fa

(r, r ′) =
∑

b

T φ

abĵ
2
b (gφGb)rR

YF

ab (mφ ; r, r ′)(gφFb)r ′ .

(11d)

In these expressions, gφ represents the coupling constants,
ĵb = √

2jb + 1, and T φ

ab denotes the isospin factors: δτaτb
and

2 − δτaτb
, respectively, for isoscalar and isovector channels. For

example, one has RYG = RXF = −RYF = −RXG = R(σ ) for
the σ -scalar coupling, and

Rab(mσ , r, r ′) =
′∑
L

(
CL0

ja
1
2 jb− 1

2

)2
RLL(mσ ; r, r ′). (12)

The prime on the sum in Eq. (12) indicates that L + la + lb
must be even, and RL1L2 stands for

RL1L2 (mi ; r, r
′) =

√
1

rr ′ [IL1+ 1
2
(z)KL2+ 1

2
(z′)θ (z′ − z)

+KL1+ 1
2
(z)IL2+ 1

2
(z′)θ (z − z′)], (13)

where z = mφr , IL+ 1
2
, and KL+ 1

2
are related to the spherical

Bessel and Hankel functions. The detailed expressions of
all self-energies entering the HF potentials can be found in
Ref. [14] except for the rearrangement potentials because the
couplings there were assumed to be density independent. Here,
the rearrangement potentials are of course included in the
calculations. We observe that, in a nonrelativistic reduction,
the pion pseudovector coupling and the ρ-tensor coupling
lead to central and tensor nucleon-nucleon interactions and

therefore, they play a substantial role in determining the
spin-orbit splittings and shell evolutions [19,20].

In realistic applications, one has to consider the nuclear
medium effects. Within the RHF approach, some efforts
have been devoted to considering the in-medium effects by
introducing nonlinear self-couplings of the σ and ω fields [15]
or cubic and quadratic terms of the scalar field (ψ̄ψ) [16].
Instead of the nonlinear self-couplings, here we assume a
density dependence of the meson-nucleon couplings [40–42]
as we did before [17,19], which looks more coincident with
the model Lagrangian.

As shown in Ref. [42], the density dependence in meson-
nucleon couplings leads to rearrangement terms �

µ

R in the
self-energy �µ in order to preserve the energy-momentum
conservation,

�µ → �µ + γµ�
µ

R. (14)

For example, the rearrangement term due to the density
dependence in σ -scalar coupling can be written as

�
(σ )
R = ∂gσ

∂ρb

[
ρsσ +

∑
b

ĵ 2
b

gσ r2

(
GbY

(σ )
b + FbX

(σ )
b

)]
, (15)

where ρs and ρb are, respectively, the local scalar and baryonic
densities, and the Fock components X

(φ)
b and Y

(φ)
b can be

written as(
Y

(φ)
b

X
(φ)
b

)
r

=
∫

dr ′
(

Y
(φ)
Gb

Y
(φ)
Fb

X
(φ)
Gb

X
(φ)
Fb

)
(r,r ′)

(
Gb

Fb

)
r ′

. (16)

B. Density-dependent relativistic Hartree-Fock-Bogoliubov
theory

In open shell nuclei, the effects of pairing correlations,
which lead to valence particles spreading over the orbits around
the Fermi level, have to be taken into account, either in the
BCS approximation [43] or by the full Bogoliubov theory
[44]. In terms of quasiparticles, the Bogoliubov theory unifies
the treatment of ph and pp correlations in a self-consistent
description of nuclear orbitals [45]. It is specially significant
for the exploration in the regions far from the stability where
the simple BCS method may break down. In the relativistic
case [46,47] earlier investigations within relativistic Hartree
Bogoliubov (RHB) theory have shown that the scattering of
the Cooper pairs into the continuum plays an important role
for the formation of the neutron halos [38,48].

Following the standard procedure of the Bogoliubov
transformation [44], a relativistic Hartree-Fock-Bogoliubov
equation can be derived as [46]∫

d r ′
(

h(r, r ′) − λ �(r, r ′)

�(r, r ′) −h(r, r ′) + λ

)(
ψU (r ′)

ψV (r ′)

)

= E

(
ψU (r)

ψV (r)

)
, (17)

where ψU and ψV are the quasiparticle spinors of the form of
Eq. (8) in the spherical case and the chemical potential λ is
introduced to preserve the particle number on the average. In
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the single-particle Hamiltonian h(r, r ′), the retardation effects
are neglected as is usually done in mean field calculations. The
pairing potential can be written as

�α(r, r ′) = −1

2

∑
β

V
pp

αβ (r, r ′)κβ(r, r ′), (18)

where the pairing tensor κ is

κα(r, r ′) = ψVα
(r)∗ψUα

(r ′). (19)

For the pairing interaction V pp in Eq. (18), a phenomenologi-
cal form is adopted as has been done with great success in RHB
theory [6,47] and in conventional HFB theory [49,50]. The
pairing force is either taken as a density-dependent two-body
force in a zero range limit,

V (r, r ′) = V0δ(r − r ′)
1

4
(1 − σ · σ ′)

(
1 − ρ(r)

ρ0

)
, (20)

with an adjusted strength V0, or as the pairing part of the Gogny
force [51],

V (r, r ′) =
∑
i=1,2

e((r−r ′)/µi )2
(Wi + BiP

σ −HiP
τ − MiP

σ P τ ),

(21)

with the parameters µi , Wi , Bi , Hi , and Mi (i = 1, 2).
In spherically symmetric systems the solution of the RHFB

equations, i.e., the Dirac spinor ψUα
and ψVα

can be written
similarly to Eq. (8):

ψUα
(r) = 1

r

⎛
⎝ iGUa

(r)Y la
jama

(r̂)

−FUa
(r)Y l′a

jama
(r̂)

⎞
⎠ , (22)

ψVα
(r) = 1

r

⎛
⎝ iGVa

(r)Y la
jama

(r̂)

−FVa
(r)Y l′a

jama
(r̂)

⎞
⎠ . (23)

The RHFB equations (17) are then reduced to the system of
coupled integrodifferential equations,[

d

dr
+ κa

r
+ �T

]
GUa

(r) − (Ea + λ − �−)FUa
(r)

+XUa
(r) + r

∫
r ′dr ′�a(r, r ′)FVa

(r ′) = 0, (24a)[
d

dr
− κa

r
− �T

]
FUa

(r) + (Ea + λ − �+)GUa
(r)

−YUa
(r) + r

∫
r ′dr ′�a(r, r ′)GVa

(r ′) = 0, (24b)[
d

dr
+ κa

r
+ �T

]
GVa

(r) + (Ea − λ + �−)FVa
(r)

+XVa
(r) + r

∫
r ′dr ′�a(r, r ′)FUa

(r ′) = 0, (24c)[
d

dr
− κa

r
− �T

]
FVa

(r) − (Ea − λ + �+)GVa
(r)

−YVa
(r) + r

∫
r ′dr ′�a(r, r ′)GUa

(r ′) = 0, (24d)

where Ea are the quasiparticle energies (without the rest mass),
and the local self-energies �+ and �− are

�+ ≡ �0 + �S, �− ≡ �0 − �S − 2M. (25)

In the radial RHFB equations (24), XU , YU , XV , and YV denote
the contributions from the Fock terms, which are of a general
form similar to Eq. (16), where the G and F components are
replaced, respectively, by GU (or GV ) and FU (or FV ) for the
U (or V ) component. For the nonlocal potentials XG, XF , YG,
and YF , one needs to replace the G and F components in Eqs.
(11) by the corresponding GV and FV in the general case, or
by GU and FU in the case of blocking.

The pairing potentials �a(r, r ′) in Eqs. (24) can be
expressed as

�a(r, r ′) = −
∑

b

V
pp

ab (r, r ′)κb(r, r ′), (26)

where the pairing tensor κ(r, r ′) reads as

κb(r, r ′) = 1
2 ĵ 2

b [GUb
(r)GVb

(r ′) + FUb
(r)FVb

(r ′)]

+ 1
2 ĵ 2

b [GVb
(r)GUb

(r ′) + FVb
(r)FUb

(r ′)]. (27)

Details of the pairing interaction matrix element V
pp

ab can be
found in Ref. [39].

C. RHFB equations in Dirac Woods-Saxon basis

In contrast to the RHB approach with δ forces in the
pairing channel where the radial equations (24) become
differential equations, in RHFB theory the radial equations
are fully integrodifferential. For zero-range δ forces in the
pairing channel the integral terms arise from the Fock terms,
and for finite-range pairing forces they also come from the
pairing channel. In coordinate space, it is difficult to solve
such equations, e.g., by a localization procedure similar to
that adopted in Refs. [14,17]. We therefore choose to solve
them by an expansion of the Dirac-Bogoliubov spinors in an
appropriate basis.

In this work we solve the radial RHFB equations (24)
by using the Dirac Woods-Saxon (DWS) basis introduced
by Zhou et al. [52]. This basis has been constructed for the
investigation of weakly-bound nuclei. The set of DWS basis
functions

{[εb, gβ(r, τ )]; εb � 0}, (28)

are eigenfunctions (with eigenvalues εb) of a Dirac equation
with Woods-Saxon–like potentials for �0(r) ± �S(r). They
are determined by the shooting method in coordinate space
within a spherical box of size Rmax [53].

The U and V components of the Dirac Bogoliubov spinors
(22) can be expanded as

ψU =
NF∑
p=1

Upgp +
ND∑
d=1

Udgd, (29a)

ψV =
NF∑
p=1

Vpgp +
ND∑
d=1

Vdgd, (29b)
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where NF and ND , respectively, correspond to the numbers
of positive (εp > 0) and negative (εd < 0) energy states in
the DWS basis. Obviously, because of spherical symmetry the
quantum number κ is preserved, i.e., the RHFB equations have
to be solved for each value of κ and the sums in the expansion
(29) run only over states with the same κ . For a fixed value of
κ we have the radial basis spinors

gp(r) =
(

Gp(r)

Fp(r)

)
, gd (r) =

(
Gd (r)

Fd (r)

)
, (30)

where the subindices p and d correspond to the number of
nodes of the basis functions Gp for positive energy and Fd for
negative energy.

In the DWS basis (29) the radial RHFB equations (24) are
transformed to a matrix eigenvalue problem,

(
H − λ �

� −H + λ

) (
U

V

)
= E

(
U

V

)
, (31)

where H and � are (NF + ND) × (NF + ND) dimensional
matrices, U and V are the column vectors with (NF + ND)
elements. From the expressions of the single-particle Hamil-
tonian h and pairing potential � given in the previous part we
obtain the matrix elements of H and � as

H kin
nn′ =

∫
drGn

(
− d

dr
+ κ

r

)
Fn′

+
∫

drFn

(
d

dr
+ κ

r

)
Gn′ , (32a)

H D
nn′ =

∫
dr[GnGn′�+ + FnFn′�−]

+
∫

dr(GnFn′ + GnFn′)�T , (32b)

H E
nn′ =

∫
dr

∫
dr ′ (Gn Fn

)
r

×
(

YG YF

XG XF

)
(r,r ′)

(
Gn′

Fn′

)
r ′

, (32c)

�nn′ =
∫

dr

∫
dr ′�κ (r, r ′)

× [Gn(r)Gn′(r ′) + Fn(r)Fn′(r ′)], (32d)

where n, n′ run over the radial quantum numbers of the DWS
basis states in Eq. (30) with both positive energies (n, n′ = p)
and negative energies (n, n′ = d).

Before carrying out RHFB applications with the DWS
basis, two constituents should be firstly decided, i.e., the
size of the spherical box Rmax and the number of states (NF

and ND) involved in the expansions (29). In practice, it is
accurate enough to adopt the parameters of the DWS basis as
Rmax = 20 fm, NF = 28, ND = 12 for the general applications
whereas for weakly bound nuclear systems one needs to choose
a larger spherical box radius (Rmax = 24 fm) and a larger
number of states (NF = 36).

III. GENERAL APPLICATIONS OF THE RHFB THEORY

We firstly examine the equivalence between different
pairing mechanisms for stable nuclear systems. By using the
parameter set PKA1 [19], we perform the calculations for the
even-even Sn isotopes from 106Sn to 136Sn by RHFB theory
with Gogny and Delta pairing forces (referred to, respectively,
by Gogny and Delta), and by DDRHF with BCS pairing
[denoted by BCS(δ)] [19]. The comparisons are based on the
fact that equivalent pairing gaps are obtained with different
pairing treatments. For the DDRHF calculation with BCS
pairing, it is performed completely in coordinate space [19].

In Table I are shown the binding energy EB/A and neutron
radii rn, extracted from the calculations with Bogoliubov and
BCS pairings. From Table I one can find good agreement on
the binding energies since the studied nuclei are located in the
stability valley. For the neutron radii, there exist some minor
systematic deviations between the results of Bogoliubov and
BCS pairings. Except for the magic nuclei, the calculations
with BCS pairing present slightly larger values (∼0.01 fm)
than those given by Bogoliubov pairings.

Taking 124Sn as an example, in Fig. 1 are shown the
neutron canonical single-particle energies and the occupation
probabilities (in horizontal error bars) extracted from RHFB
calculations with Gogny and Delta pairing forces. For com-
parison are also shown the results from DDRHF calculations
with BCS pairing. In the Bogoliubov scheme the canonical
single-particle states, i.e., the eigenstates of the density matrix,
can be obtained with the canonical transformation from the
Bogoliubov quasiparticle to the canonical basis [45]. With
the BCS approximation the density matrix and single-particle
Hamiltonian do commute. The corresponding single-particle
energies are therefore the canonical ones.

As shown in Fig. 1 there is no distinct difference in the
occupation probabilities (denoted by horizontal error bars)
between different pairing treatments because of the existence
of the shell gap 82. For the single-particle energies, the calcu-
lations with Bogoliubov and BCS pairings provide identical

Gogny Delta BCS (δ)
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50
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FIG. 1. (Color online) Neutron canonical single-particle energies
for 124Sn, calculated by RHFB with Gogny and Delta pairing forces,
and by DDRHF with BCS pairing [19]. Horizontal error bars denote
the occupation probabilities of the states and filled circles represent
the Fermi levels. See the text for details.
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TABLE I. Binding energy EB/A and neutron radii rn for even-even Sn isotopes. The results are calculated by RHFB with Gogny and
Delta pairing forces, and by DDRHF with BCS pairing [19], in comparison with the experimental data [54]. The used parameter set is
PKA1 [19].

N E/A (MeV) rn (fm)

Exp Gogny Delta BCS (δ) Gogny Delta BCS (δ)

56 −8.4327 −8.4339 −8.4423 −8.4425 4.456 4.451 4.470
58 −8.4688 −8.4605 −8.4687 −8.4694 4.508 4.501 4.523
60 −8.4961 −8.4804 −8.4877 −8.4889 4.558 4.550 4.573
62 −8.5137 −8.4940 −8.5000 −8.5017 4.606 4.597 4.620
64 −8.5226 −8.5018 −8.5063 −8.5085 4.651 4.642 4.665
66 −8.5231 −8.5039 −8.5071 −8.5097 4.695 4.686 4.708
68 −8.5166 −8.5006 −8.5029 −8.5058 4.735 4.728 4.748
70 −8.5045 −8.4921 −8.4937 −8.4969 4.772 4.767 4.785
72 −8.4879 −8.4788 −8.4799 −8.4833 4.805 4.802 4.818
74 −8.4674 −8.4613 −8.4616 −8.4652 4.835 4.834 4.847
76 −8.4436 −8.4401 −8.4396 −8.4431 4.863 4.863 4.874
78 −8.4168 −8.4157 −8.4145 −8.4175 4.889 4.889 4.897
80 −8.3869 −8.3882 −8.3871 −8.3889 4.913 4.913 4.917
82 −8.3549 −8.3579 −8.3579 −8.3579 4.935 4.935 4.935
84 −8.2779 −8.2752 −8.2744 −8.2733 4.993 4.991 5.001
86 −8.1990 −8.1934 −8.1916 −8.1900 5.050 5.046 5.062

values for the states below the Fermi level. For the states
above, particulary the low-l ones, remarkable deviations are
found. As seen from the occupation densities in Fig. 2, different
pairing treatments lead to identical radial distributions for the
deeply bound ν2p states. For the ν3p states, the occupation
densities given by BCS calculations become rather diffuse at
large distance although they are weakly bound. In contrast the
calculations with Bogoliubov pairings still present appropriate
asymptotic behavior at large distance even when the states lie
beyond the particle continuum threshold. From Fig. 2 one may
recognize that within the Bogoliubov scheme the occupation
densities are properly localized inside the nucleus such that

the continuum effects can be efficiently taken into account.
For the stable nuclei, this is less important, e.g., in 124Sn the
scattering of Cooper pairs into the continuum is blocked by
the shell gap 82. In the weakly bound nuclei the valence
orbits may gather around the particle continuum thresh-
old and the continuum effects are then strongly enhanced.
As shown in Fig. 2, such effects can be self-consistently
and efficiently taken into account by the Bogoliubov
transformation [38,39].

In the applications of the RHFB theory with the zero-range
pairing force, the cutoff on the quasiparticle energy is an
important ingredient as well as the pairing strength V0. In the
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FIG. 2. (Color online) The occupation
densities of the ν2p and ν3p states, extracted
from RHFB calculation with Gogny and Delta
pairing forces, and from DDRHF [BCS(δ)]
with BCS pairing [19]. See the text for details.
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above calculations the pairing strength is set to V0 = 325 MeV
with the quasiparticle energy cutoff ∼100 MeV. Compared to
the zero-range pairing force, the finite range Gogny force is of
less arbitrariness because of the finite range and natural cutoff.
In addition, an appropriate description of the mean field can
also be provided by the Gogny force in the nonrelativistic
calculations and therefore better systematics is expected with
the Gogny-type pairing force.

Now we aim for the systematical study of both pairing
correlations and mean fields by considering Sn isotopes from
100Sn to 137Sn, and N = 82 isotones from 129Ag to 153Lu
as representatives. The calculations use the RHFB theory
with the parameter sets PKA1 [19] (with ρ-tensor couplings)
and PKO1 [17] (without ρ-tensor couplings), and they are
compared to those obtained by RHB theory with the parameter
set DD-ME2 [55], one of the most successful candidates in the
existing RMF effective interactions. In the following, the finite
range Gogny force D1S [51] is adopted in pairing channel. For
the isotopes (isotones) with an odd neutron (proton) number,
the blocking effects have to be taken into account. In the
corresponding calculations, we blocked different orbits around
the Fermi surface, which can be provided by the calculations
of the neighboring even isotopes or isotones, and we chose
the state with the largest binding energy |EB | as the ground
state.

In Tables II and III we show the binding energies per particle
EB/A for Sn isotopes and N = 82 isotones, respectively, as
well as the blocked orbits (jb) for the odd-A isotopes. For
the odd Sn isotopes we find, except for 123Sn73, the same
blocking configurations for the parameter sets PKO1 and

DD-ME2, which provide similar neutron spectra, e.g., for
132Sn (see Ref. [19]). However, PKA1 shows very different
blocking results for N < 65. This is mainly due to the fact
that the pseudo-spin partners (ν1g7/2, ν2d5/2) near the Fermi
surface are somehow degenerate in the results of PKA1 [19]. In
contrast the calculations with PKO1 and DD-ME2 present re-
markable gaps between these two states, i.e., the artificial shell
closures N = 58 [19,24]. In Table II a long-range blocking is
found in νs1/2 (more than four odd isotopes), which implies
that the low-l states are more favored by the blocking effects.
For the odd N = 82 isotones we find in Table III identical
blocking on the neutron rich side (Z � 63: 145Eu) for PKA1,
PKO1, and DD-ME2. When Z � 65 (147Tb), PKA1 gives a
different blocking, e.g., the blocking favored state π1s1/2. In
the last rows of Tables II and III we show the the root mean
square deviations � (averaged over the isotopes in the column)
of the binding energy EB/A from the experimental values [54]
for both even and odd nuclei. They indicate that the three
models, RHF with ρ-tensor couplings (PKA1), RHF without
ρ-tensor couplings (PKO1), and RMF (DD-ME2), present
comparable quantitative accuracies, and PKO1 provides the
best overall agreement for the Sn isotopes whereas PKA1
presents the best overall descriptions for N = 82 isotones.

From the binding energies in Tables II and III, we
have extracted the single-nucleon and two-nucleon separation
energies to study the systematics of both mean fields and
pairing correlations. Figure 3 presents the single-neutron
separation energies Sn of Sn isotopes from 101Sn to 138Sn (left
panels) and the single-proton separation energies Sp of N = 82
isotones from 130Cd to 153Lu (right panels), in comparison

TABLE II. The binding energies per particle EB/A (MeV) of Sn isotopes and the blocked neutron (ν) orbits jb of the odd isotopes. The
results are calculated by RHFB with PKA1 [19] and PKO1 [17], RHB with DD-ME2 [55], in comparison to the data [54]. The quantities
� are the rms deviations.

N Exp PKA1 PKO1 DD-ME2 N Exp PKA1 PKO1 DD-ME2

EB/A EB/A EB/A EB/A EB/A EB/A jb EB/A jb EB/A jb

50 −8.2479 −8.3097 −8.2831 −8.2635 51 −8.2740 −8.3242 ν2d5/2 −8.3027 ν1g7/2 −8.2804 ν1g7/2

52 −8.3244 −8.3587 −8.3454 −8.3198 53 −8.3420 −8.3686 ν2d5/2 −8.3588 ν1g7/2 −8.3327 ν1g7/2

54 −8.3836 −8.4001 −8.3969 −8.3688 55 −8.3965 −8.4047 ν2d5/2 −8.4046 ν1g7/2 −8.3778 ν1g7/2

56 −8.4327 −8.4340 −8.4390 −8.4109 57 −8.4401 −8.4327 ν2d5/2 −8.4413 ν2d5/2 −8.4158 ν2d5/2

58 −8.4688 −8.4606 −8.4724 −8.4463 59 −8.4706 −8.4551 ν1g7/2 −8.4715 ν2d5/2 −8.4487 ν2d5/2

60 −8.4961 −8.4805 −8.4977 −8.4746 61 −8.4932 −8.4733 ν3s1/2 −8.4928 ν2d5/2 −8.4740 ν2d5/2

62 −8.5137 −8.4942 −8.5149 −8.4957 63 −8.5069 −8.4854 ν3s1/2 −8.5049 ν2d5/2 −8.4898 ν2d5/2

64 −8.5226 −8.5019 −8.5243 −8.5085 65 −8.5141 −8.4912 ν3s1/2 −8.5117 ν3s1/2 −8.4997 ν3s1/2

66 −8.5231 −8.5041 −8.5260 −8.5122 67 −8.5096 −8.4907 ν3s1/2 −8.5117 ν3s1/2 −8.5010 ν3s1/2

68 −8.5166 −8.5007 −8.5213 −8.5080 69 −8.4995 −8.4844 ν3s1/2 −8.5046 ν3s1/2 −8.4935 ν3s1/2

70 −8.5045 −8.4922 −8.5110 −8.4976 71 −8.4853 −8.4725 ν3s1/2 −8.4920 ν3s1/2 −8.4793 ν3s1/2

72 −8.4879 −8.4790 −8.4960 −8.4820 73 −8.4673 −8.4574 ν1h11/2 −8.4744 ν3s1/2 −8.4610 ν1h11/2

74 −8.4674 −8.4615 −8.4768 −8.4624 75 −8.4456 −8.4391 ν1h11/2 −8.4529 ν1h11/2 −8.4406 ν1h11/2

76 −8.4436 −8.4403 −8.4536 −8.4395 77 −8.4208 −8.4171 ν1h11/2 −8.4285 ν1h11/2 −8.4169 ν1h11/2

78 −8.4168 −8.4158 −8.4265 −8.4139 79 −8.3928 −8.3917 ν1h11/2 −8.4002 ν1h11/2 −8.3905 ν1h11/2

80 −8.3869 −8.3883 −8.3956 −8.3858 81 −8.3629 −8.3633 ν1h11/2 −8.3677 ν1h11/2 −8.3618 ν1h11/2

82 −8.3549 −8.3580 −8.3605 −8.3556 83 −8.3107 −8.3103 ν2f7/2 −8.3093 ν2f7/2 −8.3034 ν2f7/2

84 −8.2779 −8.2754 −8.2757 −8.2644 85 −8.2320 −8.2277 ν2f7/2 −8.2246 ν2f7/2 −8.2123 ν2f7/2

86 −8.1990 −8.1936 −8.1921 −8.1744 87 −8.1530 −8.1455 ν2f7/2 −8.1413 ν2f7/2 −8.1222 ν2f7/2

� 0.0197 0.0115 0.0137 � 0.0177 0.0095 0.0146
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TABLE III. Same as Table II, but for N = 82 isotones.

Exp PKA1 PKO1 DD-ME2 Exp PKA1 PKO1 DD-ME2

EB/A EB/A EB/A EB/A EB/A EB/A jb EB/A jb EB/A jb

130Cd −8.2561 −8.2563 −8.2699 −8.2491 129Ag −8.1930 −8.1887 π1g9/2 −8.2046 π1g9/2 −8.1772 π1g9/2
132Sn −8.3549 −8.3580 −8.3605 −8.3556 131In −8.2988 −8.2989 π1g9/2 −8.3056 π1g9/2 −8.2941 π1g9/2
134Te −8.3838 −8.3818 −8.3998 −8.3888 133Sb −8.3649 −8.3626 π1g7/2 −8.3730 π1g7/2 −8.3659 π1g7/2
136Xe −8.3962 −8.3912 −8.4208 −8.4063 135I −8.3848 −8.3788 π1g7/2 −8.4031 π1g7/2 −8.3911 π1g7/2
138Ba −8.3934 −8.3869 −8.4253 −8.4089 137Cs −8.3890 −8.3807 π1g7/2 −8.4157 π1g7/2 −8.4009 π1g7/2
140Ce −8.3764 −8.3694 −8.4123 −8.3956 139La −8.3781 −8.3685 π1g7/2 −8.4107 π1g7/2 −8.3951 π1g7/2
142Nd −8.3461 −8.3395 −8.3787 −8.3618 141Pr −8.3540 −8.3453 π2d5/2 −8.3869 π2d5/2 −8.3715 π2d5/2
144Sm −8.3037 −8.2979 −8.3312 −8.3140 143Pm −8.3178 −8.3097 π2d5/2 −8.3464 π2d5/2 −8.3305 π2d5/2
146Gd −8.2496 −8.2449 −8.2723 −8.2548 145Eu −8.2693 −8.2613 π2d5/2 −8.2922 π2d5/2 −8.2759 π2d5/2
148Dy −8.1809 −8.1810 −8.2032 −8.1853 147Tb −8.2067 −8.2022 π2d3/2 −8.2268 π2d5/2 −8.2100 π2d5/2
150Er −8.1022 −8.1074 −8.1250 −8.1065 149Ho −8.1335 −8.1346 π3s1/2 −8.1528 π1h11/2 −8.1356 π1h11/2
152Yb −8.0157 −8.0252 −8.0384 −8.0196 151Tm −8.0501 −8.0575 π3s1/2 −8.0710 π1h11/2 −8.0533 π1h11/2
154Hf −7.9180 −7.9354 −7.9442 −7.9250 153Lu −7.9593 −7.9719 π3s1/2 −7.9810 π1h11/2 −7.9629 π1h11/2

� 0.0071 0.0247 0.0099 � 0.0071 0.0222 0.0100

with the experimental data from Ref. [54]. It is well known
that the odd-even differences on the single-nucleon separation
energies reflect the effects of the pairing correlations. In
Fig. 3, PKA1, PKO1, and DD-ME2 present comparable and
satisfactory quantitative agreements with the data for both
isotopic and isotonic chains, which means that the appropriate
description of the pairing correlations can be provided by
the RHFB theory with the finite-range Gogny pairing force.
From Fig. 3, one can find some systematics in the results
of these three models. On the neutron-rich side, i.e., after

132Sn for Sn isotopes and before 146
64 Gd for N = 82 isotones,

PKA1 shows a better agreement than PKO1 and DD-ME2.
On the proton rich side, these three models show similar
accuracy.

In Fig. 4 are shown the two-nucleon separation energies
(plots a and b) and the deviations (plots c and d) from
the experimental data for Sn isotopes (plots a and c) and
N = 82 isotones (plots b and d). It can be seen that PKA1,
PKO1, and DD-ME2 reproduce well the data in a rather wide
range, the deviations being within ±0.5 MeV. As we know,
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FIG. 3. (Color online) Single-neutron separation energies (MeV) along Sn isotopic (Sn: left panels) and N = 82 isotonic (Sp: right panels)
chains. The results are calculated by RHFB with PKA1 [19], PKO1 [17], and by RHB with DD-ME2 [55], in comparison to the experimental
data [54].
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and by RHB with DD-ME2 [55]. See the text for details.

the sudden change on the two-nucleon separation energy in
general reflects the existence of significant structure (e.g., at
132Sn). From Figs. 4(c) and 4(d), one can see that PKA1 shows
a different agreement from PKO1 and DD-ME2. Along the Sn
isotopic chain, PKA1 presents good quantitative agreement
from N = 61 to 87 and large deviations are found on the proton
rich side. In the results calculated by RHB with DD-ME2, large
deviations are seen on both neutron and proton rich sides as
shown in Fig. 4(c). Among these three effective interactions,
PKO1 provides the best overall agreement with the data for Sn
isotopes while for N = 82 isotones [Fig. 4(d)] PKA1 presents
the best overall agreement.

Concerning the separation energies, better systematics are
obtained from the stable region to the neutron rich side with
the inclusion of Fock terms, especially with the presence of
ρ-tensor couplings, e.g., around 132Sn in Sn isotopic chain as
well as the region around 140Ce in N = 82 isotones (see right
panels of Fig. 4). In fact, such improvements are consistent
with the elimination of the artificial shell closures 58 and
92 [19,24] beyond the magic gaps 50 and 82, which may
change the mean fields and pairing effects. These artificial
shell closures appear in all RMF models, and in RHF they can
be eliminated with the inclusion of the ρ-tensor couplings. In
addition, the improved systematics from the stable region to
neutron rich side are meaningful for the reliable exploration
of the nuclear systems with extreme neutron-to-proton ratios.

In principle, with the model Lagrangian based on
meson-exchange nucleon-nucleon interactions one could have
the same degrees of freedom in RMF as in RHF. However, the

pion pseudovector and ρ-tensor couplings cannot be efficiently
taken into account by the RMF because of the lack of exchange
terms. As pointed out in Refs. [19,20], these two couplings
bring indeed significant improvements on the description of the
shell structure and its evolution while because of their nature,
they do not bring much additional freedom to the description
of binding energies. This is the reason why three different
models provide equivalent accuracy on the binding energies
of Sn isotopes and N = 82 isotones. Even though, distinct
deviations still exist between RHF and RMF, or between
RHFB and RHB, in the systematic behaviors of the binding
energies.

IV. SUMMARY

In this paper, we have introduced the relativistic Hartree-
Fock-Bogoliubov (RHFB) theory with density-dependent
meson-nucleon couplings. The RHFB equations are solved by
an expansion of the Dirac-Bogoliubov spinors on a relativistic
Dirac Woods-Saxon (DWS) basis. By taking the finite range
Gogny force D1S as the pairing force, we have performed
RHFB-DWS calculations for both stable and weakly bound
nuclei. The parameters of the DWS basis are determined for
the applications of the RHFB theory in exotic as well as stable
nuclei. The quantitative agreement between Bogoliubov and
BCS pairings in describing the stable open shell nuclei was
shown by taking the even Sn isotopes as the representatives.
We have applied the RHFB theory with the Gogny pairing
force to the study of Sn isotopes and N = 82 isotones, and
demonstrated that the RHFB theory with the finite-range
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Gogny force in the pairing channel can provide an appro-
priate quantitative description of both mean field and pairing
correlation effects. In addition, better systematics from the
stable region to the neutron-rich side are obtained with the
inclusion of Fock terms, especially with the presence of
ρ-tensor couplings which can eliminate artificial shell closures
at 58 and 92. In fact, such improvements on systematics are
meaningful for reliable explorations of exotic regions.
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[55] G. A. Lalazissis, T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev.

C 71, 024312 (2005).

024308-10


