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Isospin constraints on the parametric coupling model for nuclear matter
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We make use of isospin constraints to study the parametric coupling model and the properties of
asymmetric nuclear matter. Besides the usual constraints for nuclear matter—the effective nucleon mass and
the incompressibility at saturation density—and the neutron star constraints—maximum mass and radius—we
study the properties related to the symmetry energy. These properties constrain the parameters of the model to a
small range. We apply our results to study thermodynamic instabilities in the liquid-gas phase transition as well
as neutron star configurations.
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I. INTRODUCTION

The search for an effective nuclear matter theory has been
one of the main goals of nuclear physics (see, e.g., the
pioneering work of Fetter and Walecka [1]). The advances in
experimental data acquisition have played an essential role in
the improvement of nuclear models. One of the most required
parameters to constrain symmetric nuclear matter models, the
incompressibility [2], has made many contributions since the
nonlinear Boguta and Bodmer model [3] was proposed as an
alternative to the Walecka model [4]. The derivative coupling
models proposed by Zimanyi and Moszkowski (ZM) were
also inspired to correct distortions in the incompressibility and
effective nucleon mass determinations [5].

In this work we make use of the so-called parametric cou-
pling model (PCM) [6], which describes nuclear matter with
density-dependent coupling constants. The PCM, presented in
Sec. II, has appeared in the literature since the first attempt
to unify Walecka and ZM models in a unique model [7]. The
PCM was successful in reproducing the results obtained in
the Walecka [4], ZM [5], and exponential coupling models [8]
and even more successful in reproducing nuclear matter and
neutron star main properties using special choices for the
free parameters that define the density dependence of the
coupling constants. The PCM has been used to study a wide
range of problems, especially the nuclear matter compression
modulus [9], the inclusion of strange meson fields [10], and
the hadron-quark phase transition [11,12].

Presently, an important issue in nuclear physics is to
constrain the nuclear matter equation of state (EOS) from
compact star properties or from laboratory measurements such
as those planned for the next generation of exotic radioactive
beam facilities at CSR, China, FAIR, Germany, RIKEN, Japan,
and SPIRAL2(GANIL), France, or the planned Facility of
Rare Isotope Beams, USA, where the high-density behavior
of symmetry energy will be further studied experimentally.
While saturation properties of symmetric nuclear matter such
as the saturation density, binding energy, and incompressibility
are quite well settled, properties of asymmetric nuclear matter,
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such as the density dependence of the symmetry energy, are
much less constrained.

Many authors have recently tested nuclear models, phe-
nomenological [13–23], variational [17], and microscopic
[18,24], such as the Brueckner-Hartree-Fock formalism, to
impose constraints or verify their compatibility with data
coming from heavy-ion collisions (HICs), giant monopole
resonances, or isobaric analog states. In particular, recent
experimental constraints from isospin diffusion in HICs gave
the values L = 88 ± 25 MeV for the slope parameter of
the symmetry energy and Kτ = −500 ± 50 MeV for the
isospin incompressibility coefficient [16,18]. The latter is in
agreement with the value of Kτ = −550 ± 100 MeV predicted
by the independent measurement of the isotopic dependence
of the giant monopole resonance in Sn isotopes [25,26] and
the value of Kτ = −500+125

−100 MeV obtained from the study
of neutron skins [19]. On the contrary, isoscaling in HICs
favors L ∼ 65 MeV [27] and nucleon emission ratios favor
L ∼ 55 MeV [28].

The main goal of the present work is to constrain even more
the free parameters in the PCM by studying the symmetry
energy and its density dependence through its slope and
its second derivative with respect to the density. We try to
establish some correlations between the symmetry energy, and
its density derivatives, and quantities of astrophysical interest
such as the crust-core crossing density, the density at muon and
at strangeness onset, the maximum star mass, and the threshold
star mass for direct Urca [29].

We summarize the PCM in Sec. II and discuss the
symmetry energy dependence on the density in Sec. III, the
thermodynamic instabilities in Sec. IV, and the neutron star
properties in Sec. V. Finally, we draw some conclusions in
Sec. VI.

II. PARAMETRIC COUPLING MODEL

We first study the nuclear matter properties within the PCM.
This model is based on the Walecka model [4]. However, to
correct the values of the effective nucleon mass and incom-
pressibility of symmetric nuclear matter at saturation density,
Taurines et al. [6] have introduced parametric couplings. They
are introduced in a manner similar to that used by ZM to
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include the derivative couplings in their models. Here we
briefly describe the model and the reader is referred to Ref. [6]
for further details. The PCM Lagrangian density reads

L =
∑
B

ψ̄B[iγµ∂µ − (MB − g�
σBσ ) − g�

ωBγµωµ]ψB

−
∑
B

ψB

[
1

2
g�

ρBγµτ · ρµ

]
ψB +

∑
λ

ψ̄λ[iγµ∂µ−mλ]ψλ

+ 1

2
(∂µσ∂µσ − mσ

2σ 2) − 1

4
ωµνω

µν + 1

2
mω

2ωµωµ

− 1

4
ρµν · ρµν + 1

2
m2

ρρµ · ρµ, (1)

where

g�
σB ≡ m�

αBgσ , g�
ωB ≡ m�

βBgω, g�
ρB = m�

γBgρ, (2)

and

m�
nB ≡

(
1 + gσσ

nMB

)−n

, n = α, β, γ . (3)
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FIG. 1. Coupling parameters gi of models (a) S and SI and
(b) SV and SVI, as a function of α. For each pair of models the
gσ and gω parameters are equal and only the gρ couplings vary:
gσ (solid line), gω (dotted line), and gρ (dashed line for S and SV;
dot-dashed line for SI).

In the preceding equations, ψB represents the baryon fields
that can be summed over the whole baryon octet. The baryon
fields are coupled to the meson fields σ , ω, and ρ. The electron
and muon fields appear as ψλ and must be introduced for the
description of stellar matter.

The parametric couplings restore the Walecka model for
α = β = γ = 0, the ZM1 model for α = 1 and β = γ = 0,
the ZM3 model for α = β = 1 and γ = 0, and the exponential
coupling model for α = β = γ = ∞. The gσ and gω coupling
constants are chosen to reproduce the binding energy EB =
ε/ρ − M = −15.75 MeV at the saturation density ρ0 =
0.16 fm−3. We fix the isovector coupling constant gρ to fit
the symmetry energy a4 = 32.5 MeV, at the same saturation
density.

We work with four versions of the PCM: (a) varying
the scalar parameter α with the vector parameter β = 0 and
isovector parameter γ = 0 (model S); (b) varying the scalar
and vector parameters α = β while keeping the isovector
parameter γ = 0 (model SV); (c) varying all three parameters,
α = β = γ (model SVI); and (d) varying the scalar and isovec-
tor parameters α = γ while keeping the vector parameter
β = 0 (model SI). We expect to verify the dependence of the
nuclear matter main properties on the coupling constants. We
also consider the parametrization (a) SI2, with α = 0.1, β = 0,
and (b) SVI2 α = β = 0.2, while, in both cases, we vary γ . The
latter two choices allow us to explore the isovector degree of
freedom while choosing reasonable properties for the isoscalar
channel, namely, for symmetric nuclear matter.

In Fig. 1, we present the meson couplings gσ , gω, and
gρ , as a function of the parameter α for all models. We plot
the couplings for models S and SI in Fig. 1(a) and those for
models SV and SVI in Fig. 1(b). Because the values of the
gσ and gω couplings are first chosen to reproduce symmetric
nuclear matter data, and only after this choice is the value of
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FIG. 2. (Color online) Effective-to-bare coupling constant ratio
g∗

i /gi for n = 0.0 (solid line), 0.05 [(brown) long-dashed line], 0.20
[(dark-green) medium-dashed line], 0.40 [(pink) short-dashed line],
and 1.0 [(cyan) dotted line] with i = σ, ω, ρ for different choices of α

in the PCM, as well as TW functionals rσ [(purple) short-dot-dashed
line], rω [(light-green) long-dot-dashed line], and rρ [(light-brown)
dot-dot-dashed line], where ri = �i/�0. Note that TW curves are
shown with thicker lines.
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FIG. 3. Dependence of the slope of symmetry energy on the free
parameter α for models S (dotted line), SV (solid line), SI (dot-dashed
line), and SVI (dashed line).

gρ established, the scalar and vector coupling constants are the
same for the pairs of models S/SI and SV/SVI. These two pairs
of models differ only in the isovector channel. It is shown that
for models S and SI the gρ parameter has stabilized at a con-
stant value of α ∼ 0.2. For models SV and SVI this occurs only
for α ∼ 0.5. The gσ and gω parameters stabilize only for α ∼ 1,
however, saturation properties of symmetric nuclear matter
restrict the accepted values to α < 1. In all four versions of the
model, α = ∞ has a stable result that essentially does not differ
from α = 2 and the changes from α = 1 are very small. The
density dependence of the coupling constants can be examined
in Fig. 2, where we have plotted g∗

i

gi
= m∗

n = (1 + gσ σ

nMB
)−n.

The greater the value of n, the stronger the density de-
pendence and the reduction of the effective coupling constant
value at higher densities. To compare the results obtained with
the PCM, we have also plotted in Fig. 2 the density dependence
of the relative Typel and Wolter (TW) couplings [30]. The
behavior of �i/�i0, i = σ, ω, is similar to that obtained with
the PCM for α = 1. The same does not occur for �ρ , which
has a much faster decrease with density.

We have included hyperons in the present model for the
high-density EOS in the inner regions of a neutron star.
Because discussion of the hyperon coupling constants is not
the aim of this work, we just fix the hyperon-meson coupling
constants to χ = gσY

gσN
= gωY

gωN
= gρY

gρN
= √

2/3. To study neutron
stars we must also include the Baym-Pethick-Sutherland
(BPS) EOS for densities below the neutron drip line [31].

III. SYMMETRY ENERGY

In Tables I–IV we report some of the properties of
the models under study: the symmetry energy slope L =
3ρ0∂Esym/∂ρ, the symmetry energy incompressibility Ksym =
9ρ2

0∂2Esym/∂ρ2, the symmetry term of the incompressibility
of the nuclear EOS Kτ = Ksym − L(6 − Q0/K), where Q0 =
27ρ3

0∂3(E/A)/∂ρ3, the effective nucleon mass M∗/M , the
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FIG. 4. (Color online) (a) Symmetry energy, (b) symmetry energy
slope L, and (c) incompressibility Ksym for model SI with α =
0, 0.10, 0.20, and 1.00 = γ , β = 0. α = 0 (solid line), α = 0.1
[(dark-brown) long-dashed line], α = 0.2 [(green) short-dashed line],
α = 1.0 [(cian) dotted line], NL3 [(purple) dot-dashed line], and TW
[(light-brown dot-dot-dashed line].

onset density of strangeness ρs , the onset density of muons ρµ,
the threshold density for the direct Urca process ρDU and the
mass of a star with central density equal to ρDU, MDU/M�, and
the mass MMAX/M� and radius of the stable star configuration
with maximum mass.
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TABLE I. Results for model S. The binding energy (15.75 MeV), saturation density (0.16 fm−3), and symmetry energy (32.5 MeV) at
saturation are the same for all parametrizations. Quantities given are the symmetry energy slope L, the symmetry energy incompressibility
Ksym, the symmetry term of the incompressibility of the nuclear EOS Kτ , the effective nucleon mass at saturation density M∗/M , the
onset density of strangeness ρs , the onset density of muons ρµ, the threshold density for the direct Urca process ρDU and the mass of a star
with central density equal to ρDU, MDU/M�, and the mass MMAX/M� and radius of the stable star configuration with maximum mass.

α L Ksym K Kτ Q0 M∗/M ρt ρs ρµ ρDU MDU MMAX R

(MeV) (MeV) (MeV) (MeV) (MeV) (fm−3) (fm−3) (fm−3) (fm−3) (M�) (M�) (km)

0.00 111.42 105.67 566 −970 −2068.27 0.537 0.1025 0.244 0.109 0.194 0.77 2.58 12.61
0.05 101.35 35.74 310 −601 −87.60 0.650 0.0969 0.282 0.109 0.210 0.71 2.11 10.68
0.10 98.22 13.39 224 −490 195.97 0.737 0.0952 0.309 0.110 0.221 0.68 1.79 9.50
0.20 96.60 2.55 212 −336 529.01 0.798 0.0950 0.330 0.111 0.229 0.68 1.54 9.31
0.40 95.92 −2.15 218 −312 603.79 0.833 0.0951 0.339 0.111 0.234 0.68 1.48 9.58
1.00 95.57 −3.95 224 −310 626.67 0.850 0.0951 0.345 0.112 0.236 0.68 1.49 9.91

TABLE II. The same as Table I for model SI.

α L Ksym K Kτ Q0 M∗/M ρt ρs ρµ ρDU MDU MMAX R

(MeV) (MeV) (MeV) (MeV) (MeV) (fm−3) (fm−3) (fm−3) (fm−3) (M�) (M�) (km)

0.00 111.42 105.67 566 −970 −2068.27 0.537 0.1025 0.244 0.109 0.194 0.77 2.58 12.61
0.05 90.00 1.05 310 −564 −86.28 0.650 0.0970 0.284 0.107 0.213 0.69 2.11 10.69
0.10 82.34 −38.77 224 −402 355.86 0.737 0.0954 0.314 0.107 0.229 0.65 1.80 9.50
0.20 77.90 −64.01 212 −340 520.91 0.798 0.0952 0.339 0.107 0.248 0.65 1.55 9.26
0.40 76.25 −74.09 218 −323 596.36 0.833 0.0952 0.354 0.106 0.264 0.67 1.48 9.44
1.00 75.78 −78.79 224 −322 625.09 0.850 0.0954 0.366 0.106 0.278 0.69 1.49 9.53

TABLE III. The same as Table I for model SV.

α L Ksym K Kτ Q0 M∗/M ρt ρs ρµ ρDU MDU MMAX R

(MeV) (MeV) (MeV) (MeV) (MeV) (fm−3) (fm−3) (fm−3) (fm−3) (M�) (M�) (km)

0.00 111.42 105.67 566 −970 −2068.27 0.537 0.1025 0.244 0.109 0.194 0.77 2.58 12.61
0.05 108.29 83.26 458 −848 −1190.65 0.554 0.0938 0.254 0.108 0.197 0.77 2.42 11.96
0.10 105.84 63.78 360 −751 −611.36 0.570 0.0861 0.263 0.108 0.199 0.73 2.26 11.31
0.20 102.40 36.71 276 −560 47.68 0.600 0.0793 0.281 0.108 0.204 0.69 1.96 10.06
0.40 99.00 12.42 195 −336 483.72 0.649 0.0727 0.310 0.108 0.212 0.63 1.39 8.70
1.00 96.66 −1.99 159 −165 685.86 0.710 0.0699 0.342 0.109 0.221 0.62 0.83 9.00

TABLE IV. The same as Table I for model SVI.

α L Ksym K Kτ Q0 M∗/M ρt ρs ρµ ρDU MDU MMAX R

(MeV) (MeV) (MeV) (MeV) (MeV) (fm−3) (fm−3) (fm−3) (fm−3) (M�) (M�) (km)

0.00 111.42 105.67 566 −970 −2068.27 0.537 0.1025 0.244 0.109 0.194 0.77 2.58 12.61
0.05 98.18 45.03 458 −562 −83.73 0.554 0.0940 0.254 0.106 0.198 0.75 2.42 11.96
0.10 88.05 −0.74 360 −443 351.78 0.570 0.0863 0.265 0.105 0.203 0.68 2.26 11.31
0.20 74.84 −57.56 276 −364 525.89 0.600 0.0795 0.286 0.102 0.214 0.64 1.97 10.07
0.40 64.58 −98.07 195 −286 602.54 0.649 0.0731 0.323 0.100 0.239 0.59 1.40 8.65
1.00 61.13 −104.91 159 −231 626.04 0.710 0.0704 0.374 0.098 0.293 0.57 0.66 8.67
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FIG. 5. (Color online) Ksym and
Kτ as a function of the symmetry
energy slope L for all parametriza-
tions studied. Presently accepted lim-
its from isospin diffusion (ID) in
heavy-ion collisions [16,18], giant
monopole resonance (GMR) in Sn
isotopes [25,26], and neutron skin
studies (NS) [19].

The slope L is within the experimental constraints
55 MeV < L < 113 MeV for all parametrizations considered.
In the S and SV models the value of the slope is quite large,
though never below 95 MeV. The variation of L as the free
parameter α increases is shown in Fig. 3. It is shown that L

decreases with the increase in α, starting at ∼110 MeV and
stabilizing at ∼95 MeV for models S and SV, at ∼75 MeV for
model SI, and at ∼60 MeV for model SVI.
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FIG. 6. (Color online) Spinodal curves for model S, α = 0
(short-dashed line), models S and SI, α = 1 (solid black and brown
dot-dashed lines), and models SV and SVI, α = 1 (long-dashed and
cyan dotted lines), as indicated. The solid red, dot-dashed, and dark-
blue dotted lines represent the β-equilibrium EOS for α = β = γ = 1
(red line) and α = β = γ = 0 (blue line), and the circle, triangle, and
square stress the crossing point of the EOS with the spinodal for
their respective α values. The inset magnifies the crossing of the
β-equilibrium EOS with the spinodal.

A value of Kτ in the interval [−400,−675] MeV imposes
very strong restrictions. According to some authors [22,32,33],
however, it is difficult to determine the experimental value
of Kτ accurately, as it may suffer from the same ambigu-
ities already encountered in earlier attempts to extract the
incompressibility coefficient of infinite nuclear matter from
finite-nucleus extrapolations. We, therefore, do not rule out
models with values of Kτ larger than −400 MeV. In fact,
in Ref. [24] the properties of several relativistic and Skyrme
models that reproduce the ground-state properties of stable and
unstable nuclei or the properties of nuclear or neutron matter
have been compared, and it is shown that a large number of
models have Kτ < −400 MeV.

For reference, in Fig. 4 we plot, for the different
parametrizations considered, the symmetry energy [Fig. 4(a)],
its slope L [Fig. 4(b)], and the incompressibility Ksym

[Fig. 4(c)] for model SI. We also include the correspond-
ing curves obtained with the nonlinear Walecka model
parametrization NL3 [34] and density-dependent relativistic
hadronic model TW [30]. Varying α and γ between 0 and 1,
we go from the hard symmetry energy behavior of NL3 to the
soft TW behavior. Similar conclusions are madfe for the slope
and the incompressibility: as we increase α the behavior of
our parametric model changes from an NL3-like to a TW-like
behavior.

To compare the predictions of the different parametrizations
under study and the experimental constraints on L and Kτ , in
Fig. 5 we plot Ksym and Kτ versus the slope L for all models.
It is shown that Ksym and Kτ exhibit a linear correlation with
L, as also discussed in Ref. [24]. We have checked that in fact
this correlation also exists for the ratio Q0/K , which enters
the definition of Kτ . We include the constraints obtained from
isospin diffusion (ID) in HICs [16,18], isotopic behavior of the
giant monopole resonance (GMR) in Sn isotopes [25,26], and
neutron skin studies (NS) [19]. The models that better satisfy
the constraints are S and SI, with 0.05 < α < 0.1 and SVI,
with 0.05 < α < 0.2. Model SV presents values with good
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agreement with L and Kτ only for α ∼ 0.2. So far we have
considered the S, SV, SI, and SVI versions of the PCM in
which two, one, or none of the parameters has been set to zero,
while the remaining parameters have been set equal. In the next
sections we maintain this analysis to impose some constraints
on the parameter choice, using neutron star observations. We
finally vary the parameters independently and choose two sets
that give excellent values not only for L and Kτ but also for
K and neutron star maximum masses.

IV. THERMODYNAMICAL INSTABILITIES

The system is unstable against phase separation keeping
volume and temperature constant, if the free energy curvature
matrix Fij ,

Fij =
(

∂2F
∂ρi∂ρj

)
T

, (4)
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FIG. 7. (Color online) (a) Equation of state and (b) corresponding
mass-radius curves for the families of stars obtained with the
parametrizations in Tables I–IV. As indicated for α = 0.05 the
coincident S and SI curves are shown by the (green) short-dashed line,
whereas the (red) dot-dot-dashed line stands represents the SV/SVI
single curve. For α = 1.0, the S, SI, SV, and SVI curves are shown by
the (black) solid, (brown) dot-dashed, long-dashed, and (cyan) dotted
lines, respectively.

is negative [35]. Stability implies that the free energy densityF
is a convex function of the densities ρp and ρn. In this section,
we define the free energy F with no leptons or hyperons.

Because we are interested in studying the spinodal curve of
the two-fluid nuclear system, it is enough to evaluate the zero
of the smallest eigenvalue λ− of Fij , where

λ− = 1

2
[Tr(F) ±

√
Tr(F)2 − 4Det(F)]

and where the relevant eigenvectors are

δρj
−

δρi
− = λ− − Fii

Fij

,

with i, j = p, n [35,36].
The thermodynamic spinodal, defined by the λ− = 0

condition, determines the instability regions of the system and
is plotted in Fig. 6 for the models under discussion. We point
out that, for symmetric matter, all the models have the same
density, binding energy, and symmetry energy at saturation
but different incompressibilities and effective nucleon masses.
The model with the largest incompressibility (S; α = 0)
has the largest spinodal and the models with the smallest
incompressibility (SV and SVI; α = 1) have the smallest
spinodal. The point of the spinodal with ρp = ρn corresponds
to the minimum of the pressure of symmetric nuclear matter,
when the incompressibility is zero. Because we impose that
the pressure is zero for all models at the same density, and
the saturation density is 0.16 fm−3, the incompressibility
of the models with a larger curvature will become zero at
a larger density. We note that the effect of the parameter γ is
very small and seen only for very asymmetric matter, where it
slightly reduces the spinodal.

In Fig. 6 we also plot the β-equilibrium EOS for α = 0 and
for model SVI with α = 1. The crossing of the β-equilibrium
EOS with the thermodynamical spinodal instability line gives a
prediction for the transition density approximately 15% larger
than the value obtained from a Thomas-Fermi calculation of
the pasta phase [37]. Therefore, we determine the crust-core
transition density from the crossing between the EOS and the
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TABLE V. Results for α = 0.1 and β = 0.

γ M∗/M K L Ksym Kτ Q0 ρt ρs ρµ ρDU MDU MMAX R

(MeV) (MeV) (MeV) (MeV) (MeV) (fm−3) (fm−3) (fm−3) (fm−3) (M�) (M�) (km)

0.450 0.749 224 60 −123.5 −585 −378.93 0.0894 0.305 0.107 0.253 0.68 1.811 9.512
0.240 0.749 224 70 −87.7 −587 −253.76 0.0874 0.305 0.107 0.240 0.67 1.806 9.510
0.120 0.749 224 80 −46.3 −583 −158.76 0.0865 0.305 0.107 0.231 0.66 1.803 9.511

spinodal and expect that our estimation of the transition density
will define an upper bound of the correct transition density [38]
between the crust and the core of a neutron star. It is shown that
quite different predictions are obtained within the PCM for the
transition density, both because the spinodals have a different
behavior for neutron-rich matter and because the EOS for
β-equilibrium stellar matter also differ when varying α from
0 to 1. Even if the EOS do not differ considerably for different
parameters, the values of the density and isospin asymmetries
at the crossing of the EOS with the spinodal are found to be
quite different, though always with low proton densities. In
Fig. 6 we only plot the EOS for α = 0 and α = 1 for model
SVI. For the transition densities we have obtained 0.102 fm−3

(α = 0), ρt ∼ 0.095 fm−3 (models S and SI with α = 1),
and ρt ∼ 0.070 fm−3 (models SV and SVI with α = 1). The
values of ρt given in Tables I–IV show a decrease in ρt with
the decrease in the slope L, contrary to the results in Ref. [24].
However, we must take these values cautiously because we
are varying not only the slope L, but also the incompressibility
K , while imposing the same saturation density for all models.
As a consequence the extension of the spinodal region grows
with K and it is this correlation that is reflected in the data in
Tables I–IV. In Sec. V we calculate the transition density for
a selected set of parameters and then we will be able to obtain
a correlation btween L and ρt similar to the one obtained in
Ref. [24].

V. NEUTRON STAR CONSTRAINTS

Besides heavy-ion experiments, we can make use of
astrophysical observations of neutron stars to establish some
constraints on the PCM and its free parameters. We therefore
obtain the EOS of β-equilibrium matter, including the presence
of hyperons, and integrate the Tolman-Oppenheimer-Volkoff
equation for a spherical compact star in hydrostatic equilibrium
[39,40] to obtain the family of stars that correspond to each
parametrization considered.

The different EOS are shown in Fig. 7(a) for all four
versions of the model, considering the limiting values α =
0.05 and α = 1.00. The results for values of 0.05 < α < 1.00
are intermediate and lie between the two curves. The kink

in each curve corresponds to the onset of strangeness. For
α = 0.05 the incompressibility is 310 MeV for models S and
SI and 458 MeV for models SV and SVI. The last EOS is
the hardest one, and therefore, the onset of hyperons occurs at
smaller densities for this model. The hyperons make the EOS
softer but never softer than any of the other versions (with
higher values of α) of the model.

The corresponding neutron star families (mass-radius) are
shown in Fig.7(b). As expected, one can see that all models
with low values of α have maximum neutron star masses above
2M�, while the results change drastically when values of α

approach the unit, reducing the maximum neutron star mass
obtained with models S and SI to values close to 1.5M�.
The results get even smaller when models SV and SVI are
considered, reducing the maximum neutron star mass to values
below 1M�.

One can establish the minimum value required for
the maximum neutron star mass from observations. From
Tables I–IV we see that, for models S and SI, which present
almost the same neutron star masses, α < 0.1 allows neutron
star masses greater than 1.8M�, while models SV and SVI
have a wider range of values (α < 0.3) that yield the same star
mass.

According to Ref. [41], observations on cooling predict
that direct Urca should occur only in stars with a mass
M > 1.35M�. We have determined the star with maximum
mass that does not allow the direct Urca process (MDU)
for the different parametrizations of the model proposed.
By ρDU we denote the baryonic density that defines the
onset of the Urca process. The results are summarized in
Tables I–IV. No model satisfies the condition MDU > 1.35M�.
All four versions of the model predict the Urca process with
densities 0.194 fm−3 < ρDU < 0.293 fm−3, which correspond
to neutron stars masses around 0.57 M� < MDU < 0.77 M�.
This result is expected, as PCM presents the same main
features as the models discussed in Ref. [41], which are not in
agreement with Urca expectations. The threshold density for
the direct Urca process is plotted versus the slope L in Fig. 8. It
is shown that it depends strongly on the slope of the symmetry
energy: a smaller slope corresponds to a larger density of the
Urca onset.

TABLE VI. Results for α = β = 0.2.

γ M∗/M K L Ksym Kτ Q0 ρt ρs ρµ ρDU MDU MMAX R

(MeV) (MeV) (MeV) (MeV) (MeV) (fm−3) (fm−3) (fm−3) (fm−3) (M�) (M�) (km)

0.310 0.60 276 60 −82.2 −517 −344.08 0.0884 0.286 0.102 0.218 0.65 1.971 10.072
0.210 0.60 276 70 −57.3 −539 −243.27 0.0877 0.286 0.102 0.214 0.64 1.968 10.077
0.125 0.60 276 80 −28.5 −547 −132.82 0.0868 0.286 0.102 0.210 0.63 1.966 10.069
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TABLE VII. Results for TW and NL3.

Model B/A ρ0 K M∗/M Esym L Ksym Kτ ρt ρs ρµ ρDU MDU MMAX R

(MeV) (fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (fm−3) (fm−3) (fm−3) (fm−3) (M�) (M�) (km)

TW 16.3 0.153 240.1 0.56 32.0 55.3 −124.7 −332.1 0.085 0.287 0.115 0.315 1.46 2.012 11.60
NL3 16.3 0.148 270 0.60 37.4 118.5 100.9 −698.4 0.065 0.217 0.111 0.205 1.00 1.707 12.65

We expect to be able to infer isospin asymmetry properties
or establish a few constraints on the parametrizations from
neutron star observations. Comparing models S and SI or
models SV and SVI, which present the same global behavior,
we identified a small difference in neutron star radii that
becomes larger as α increases. For models S and SI the
difference between the radii reaches �R = 380 m for α = 1.0,
while it reaches �R = 330 m for models SV and SVI. This
difference would correspond, for example, to a difference
of �νf ∼ 0.1 kHz (∼4%) in the fundamental mode of a
star [42,43] and is larger if we consider stars with masses
below the maximum allowed mass.

In Fig. 9 several properties of the neutron star structure
are plotted as a function of the symmetry energy slope for
models S, SV, SI, and SVI. The figure shows the baryonic
densities at the onset of hyperons for each model. Hyperons are
very important because their appearance results in softening
of the EOS and lowering of the neutron star maximum mass.
Figure 9 also presents the baryonic density at the muon onset
and the density at which the proton fraction reaches the value
that allows the direct Urca process to occur in neutron stars
(for details see Refs. [29] and [41]). While the muon onset is
not very sensitive to the value of L, the hyperon onset may
vary by 40%–50%, and the densities for the onset of Urca by
20%–50%, between the limits of the plotted values of L, which
are all within the experimental constrained values.

In Fig. 10 we analyze the dependence of the maximum-mass
neutron star radius on α and the asymmetry parameters L,
Ksym, and Kτ . It is shown that there is a correlation that may
help to impose restrictions on the parameters: smaller values of
L, Ksym, and |Kτ | give a larger radius for the maximum-mass
configuration.

We propose to use the new parametrizations SI2 and
SVI2 because models S, SI, SV, and SVI with reasonable
incompressibilities predict maximum star masses that are
too small. With a fixed α and/or α = β parameter and a
changing γ parameter, we have changed the symmetry energy
slope. Tables V and VI report the properties of the EOS and
neutron stars for these new parametrizations. The maximum
star masses have improved and are of the order 1.8M�, while
the properties of symmetric nuclear matter are all reasonable.
However, the density for Urca onset is still too small in all
models and the radius of the maximum mass configuration
is also quite small. We tried to vary all the parameters
independently of each other but we were not able to find a
parametrization that predicts larger densities for the onset of
the Urca process than those already obtained. This seems to be
a weak point of these models. We also made an estimation of
the crust-core transition densities by calculating the crossing of
the β-equilibrium EOS with the thermodynamical spinodal as

explained in Sec. IV. The results are reported in Tables V and
VI and vary between 0.086 and 0.089 fm−3, showing a small
decrease when the slope of the symmetry energy increases.

We next compare our results with two relative mean field
models: NL3 with constant couplings and TW with density-
dependent coupling parameters (Table VII). We have obtained
better values for the slope of the symmetry energy for models
SI2 and SVI2, well within the experimental range, than with
NL3 and TW. For these two models the slope of the symmetry
energy corresponds, respectively, to the upper and lower limit
of L proposed from the experimental values. We have also
obtained results for Kτ closer to the experimental ones than
those found within NL3 and TW, maintaining good results
for the compression modulus, effective nucleon mass, and
neutron star global properties. The PCM introduces a density
dependence on the coupling parameters weaker than the one
with TW (see Fig. 2), mainly for the isospin channel. The
parametrization of the coupling parameters within the PCM
does not allow for such a strong density dependence for the
coupling parameters as TW shows. For the crust-core transition
density models SI2 and SVI2 preview a density similar to that
obtained with TW. Concerning the correlation between ρt and
L, models SI2 and SVI2 behave like those in Ref. [24], with
the value of ρt decreasing as L increases. The density for the
strangeness onset is closely related to the incompressibility of
the EOS: SI2 is very soft and predicts the largest density for
the strangeness onset; SVI2 gives a result very similar to that
with TW, ∼40% larger than NL3. Other properties of models
SI2 and SVI2 are also closer to TW than to NL3, except for
the the onset density for the Urca process and the mass of the
compact star with this density at the center: it is seen that, for
other similar saturation properties, the value of Kτ for TW
seems to be the only great difference.

VI. CONCLUSIONS

We have employed the parametric coupling model, de-
veloped by Taurines et al. [6], to describe nuclear matter
properties, in particular, those related to the isospin channel,
which had still not been investigated in the PCM. Some of
the parameters of the model were fixed by the binding energy
(15.75 MeV) and saturation density (0.16 fm−3) for symmetric
matter and by the symmetry energy (32.5 MeV). We have
tried to restrict the remaining parameters by reproducing
experimental results obtained with HICs at intermediate
energies and neutron star properties.

Considering a wide range of experimental data for the slope
of the symmetry energy L, 55 MeV < L < 115 MeV, and for
the symmetry term of the incompressibility of the nuclear EOS
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Kτ , −375 MeV < Kτ < −650 MeV, we have ruled out some
values of the free parameters. The models that best satisfy
the constraints are S and SI, with 0.05 < α � 0.1, and SVI,
with 0.05 < α � 0.2. Model SV presents values with good
agreement with the L and Kτ experimental values only for
0.2 � α � 0.3.

Some properties of neutron star matter and neutron star
structure have been described with the PCM for the range
of parameters restricted by the values of L and Kτ , namely,
the maximum mass star configuration, and the densities of the
onset of muons, strangeness, and the direct Urca process. It has
been shown that all properties are reasonably well described
except the prediction of the direct Urca process at a density that
is too low. It is also shown that the density at the onset of muons
is almost independent of the parameters of the model, but the
strangeness onset is sensitive to the symmetry energy slope: a
larger slope corresponds to a smaller onset density. The same
is true for the direct Urca process, although with a slightly
weaker dependence. It has also been shown that the radius
and mass of the maximum-mass stable star configuration are
correlated with the L value: a larger L corresponds to a larger
radius and a larger mass. A similar correlation exists with
the symmetry term of the incompressibility of nuclear matter.
However, from model to model this correlation has a different
slope and a given value of L and Kτ does not define the neutron
star properties in a unique way.

Even though the proposed range of validity of the parame-
ters of the PCM is in agreement with the experimental range
described previously for heavy ions, it is a common belief
that the slope of the symmetry energy should be close to the
lower limit of the interval 55 MeV < L < 115 MeV [19]. To
investigate other possibilities of the model, we have proposed
new parametrizations chosen to reproduce the symmetry
energy slope L = 60, 70, and 80 MeV. These parametrizations
have shown excellent results also for Kτ , K , M∗, and the
neutron star maximum mass but still predict quite low densities
for the onset of the Urca process. The results reported in
Tables V and VI describe some of these results. We have tried
to find a set of parameters that could predict a larger density
for the onset of the direct Urca process, without success.
The PCM presents the same main features of the models

discussed in Ref. [41], which are not in agreement with Urca
expectations.

We have constrained the free parameters of the PCM using
the properties of asymmetric nuclear matter, but it is important
to mention that the EOS that show the best results for these
properties (see Tables V and VI) are in perfect agreement
with those imposed by the analysis of symmetric nuclear
matter properties such as those described in Ref. [44], where
constraints, obtained from the analysis of nuclear matter flow
in HICs, were proposed for the high-density EOS of symmetric
matter. This problem was recently examined in Ref. [45].
It is also important to mention that the constraints imposed
by asymmetric nuclear matter properties are stronger than
those obtained from symmetric nuclear matter (for details see
Ref. [45]).

We have compared our results with two relativistic mean
field models: NL3 with constant couplings and TW with
density-dependent coupling parameters (Table VII). It is
shown that models SI2 and SVI2 predict results closer to those
with TW except for the onset density of the Urca process.
These could be related to the larger Kτ value that TW has, as
all the other saturation properties are similar. It has also been
shown that while the density dependence of the g∗

σ and g∗
ω

coupling parameters in the PCM is similar to that with TW,
the density dependence of g∗

ρ is very different.
The relation between the symmetry energy and some

properties of neutron stars has also been discussed. The
different models considered in the present study with one or
more density-dependent couplings, showed quite large differ-
ences among them, even for the same values of L and Kτ .
We conclude that the properties of nuclear matter for both
symmetric and asymmetric matter at saturation are not enough
to define the structure of compact stars and experimental data
at two to three times saturation density are required.
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