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We discuss the results of calculations of the shear viscosity and thermal conductivity of pure neutron matter,
carried out within the Landau-Abrikosov-Khalatnikov formalism. The probability of neutron-neutron collisions
in the nuclear medium has been obtained from a realistic potential, using both the correlated basis function and
the G-matrix approach. The results of our work indicate that medium modifications of nucleon-nucleon scattering
are large, their inclusion leading to a dramatic enhancement of the transport coefficients. On the other hand, the
results obtained from the two theoretical schemes appear to be in fairly good agreement.

DOI: 10.1103/PhysRevC.81.024305 PACS number(s): 21.65.−f, 26.60.−c, 97.60.Jd

I. INTRODUCTION

The knowledge of transport properties of neutron matter
is relevant to the understanding of a variety of neutron star
properties. Viscosity plays a crucial role in determining the
onset of the gravitational-wave-driven instability, associated
with the excitation of r-modes, in rapidly rotating stars [1],
while thermal conductivity is one of the factors determining
neutron star cooling [2].

Unlike the equation of state (EOS), which is generally ob-
tained from realistic dynamical models, strongly constrained
from nuclear systematics and nucleon-nucleon scattering data,
the nonequilibrium properties of neutron star matter are often
studied using oversimplified models of the nucleon-nucleon
(NN) interaction.

The main difficulty involved in calculation of transport
coefficients within the formalism originally developed by
Abrikosov and Khalatnikov (AK) [3], based on the Landau
theory of normal Fermi liquids [4], is the determination of
the NN collision probability in the nuclear medium. Most
studies of the transport properties of neutron star matter
have circumvented this problem, neglecting medium modi-
fications of the NN cross sections altogether and using the
measured NN scattering phase shifts to construct the collision
probability [5–7].

Nuclear many-body theory (NMBT) provides a consistent
framework to obtain the in-medium NN cross section and
the transport coefficients of nuclear matter from realistic NN
potentials, using either the G-matrix [8] or the correlated basis
function (CBF) [10] formalism. In both approaches one can
define a well-behaved effective interaction, suitable for use
in perturbation theory in the Fermi gas basis and allowing
for a consistent treatment of equilibrium and nonequilibrium
properties [8–10].

In this paper we discuss the results of calculations of
the shear viscosity and thermal conductivity of pure neutron
matter, carried out using the CBF and G-matrix effective
interactions.

*benhar@roma1.infn.it

In Sec. II, after outlining the elements of NMBT, we
analyze the main features of the CBF and G-matrix effective
interactions, while Sec. III is devoted to discussion of the
in-medium NN cross section in the kinematical setup relevant
to the calculation of transport coefficients. The main features
of the AK formalism are reviewed in Sec. IV, where we also
present the results of numerical calculations. Finally, in Sec. V
we summarize our findings and state the conclusions.

II. EFFECTIVE INTERACTIONS IN NUCLEAR
MANY-BODY THEORY

NMBT is based on the tenet that nuclei can be described in
terms of pointlike nucleons, whose dynamics are dictated by
the Hamiltonian,

H =
∑

i

k2
i

2m
+

∑
j>i

vij +
∑

k>j>i

Vijk, (1)

where ki and m are the momentum of the ith nucleon and its
mass, respectively.

The NN potential vij reduces to the Yukawa one-pion
exchange potential at large distances, while its behavior at
short and intermediate range is determined by a fit of deuteron
properties and NN scattering phase shifts. The state-of-the-art
NN parametrization referred to as the Argonne v18 potential
[11] is written in the form

vij =
18∑

n=1

vn(rij )On
ij . (2)

In Eq. (2)

O
n�6
ij = [1, (σ i · σ j ), Sij ] ⊗ [1, (τ i · τ j )], (3)

where σ i and τ i are Pauli matrices acting in spin and isospin
space, respectively, and

Sij = 3

r2
ij

(σ i · rij )(σ j · rij ) − (σ i · σ j ). (4)

The operators corresponding to n = 7, . . . , 14 are associated
with the nonstatic components of the NN interaction, while
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those corresponding to n = 15, . . . , 18 account for small
charge symmetry violations. Being fit to the full Nijmegen
phase-shift database, as well as to low-energy scattering
parameters and deuteron properties, the Argonne v18 poten-
tial provides an accurate description of scattering data by
construction.

The three-nucleon potential Vijk , whose inclusion is needed
to reproduce the observed binding energies of the three-
nucleon system and the empirical nuclear matter equilibrium
properties, consists of the Fujita-Miyazawa two-pion exchange
potential supplemented by a purely phenomenological repul-
sive contribution [12].

The predictive power of the dynamical model based on
the Hamiltonian of Eq. (1) has been extensively tested by
computing the energies of the ground and low-lying excited
states of nuclei with A � 12. The results of these studies, in
which the many-body Schrödinger equation is solved exactly
using stochastic methods, turn out to be in excellent agreement
with experimental data [13]. Accurate calculations can also be
carried out for uniform nuclear matter, exploiting translational
invariance and using the stochastic method [14], the variational
approach [15], or G-matrix perturbation theory [16,17].

One of the most prominent features of the NN potential
is the strongly repulsive core, whose cleanest manifestation
is the observed saturation of nuclear charge densities. Owing
to the presence of the core, the NN potential cannot be used
to carry out ab initio microscopic calculations of nuclear
observables using standard perturbation theory. The matrix
elements of the interaction Hamiltonian between eigenstates
of the noninteracting system, Fermi gas states in the case
of uniform nuclear matter, turn out to be very large or even
divergent.

In the G-matrix approach this problem is circumvented by
replacing the bare NN potential with the well-behaved operator
G, defined through the Bethe-Goldstone equation,

〈ij |G(E)|kl〉 = Gij,kl(E)

= vij,kl +
∑
mn

vij,mn

Qmn

E − εm − εn + iη

×Gmn,kl(E), (5)

where i ≡ (ki , si , ti), with ki , si and ti being the momentum
and the spin and isospin projections specifying the ith single-
particle state. The Pauli operator Qmn restricts the sum over
intermediate states to those compatible with the exclusion
principle, while the so-called starting energy E corresponds
to the sum of the nonrelativistic energies of the interacting
nucleons.

The single-particle energy of a nucleon in state i is given
by

εi = k2
i

2m
+ Re[Ui], (6)

where Ui describes the mean field felt by the nucleon owing
to its interactions with the other particles of the medium.
In the so-called Brueckner-Hartree-Fock approximation, Ui

is calculated in the “on-shell approximation” through a

self-consistent process. The resulting expression is

Ui =
∑
j∈{F }

〈ij |G(E = εi + εj )|ij 〉a, (7)

where the sum runs over all occupied states in the Fermi
sea {F } and the two-nucleon matrix elements are properly
antisymmetrized. We note here that the so-called continuous
prescription [17] has been adopted for the single-particle
potential when solving the Bethe-Goldstone equation. As
shown in Ref. [18], the contribution to the energy per
particle from three-hole line diagrams is minimized by this
prescription.

Once a self-consistent solution of the G matrix is achieved,
the energy per particle at the two-hole line level takes the form

E

A
= 3

5

k2
F

2m
+ 1

2

∑
i,j∈{F }

〈ij |G(E = εi + εj )|ij 〉a, (8)

where kF is the Fermi momentum, related to the den-
sity through the relation ρ = νk3

F /6π2, ν being the spin-
isospin degeneracy of the momentum eigenstates (ν = 2 and
ν = 4 for pure neutron matter and symmetric nuclear matter,
respectively).

In the approach based on correlated wave functions one
uses the bare potential v, whose nonperturbative effects are
incorporated in the basis states, obtained from the Fermi gas
states |nFG〉 through the transformation

|n〉 = F |nFG〉. (9)

The operator F , embodying the correlation structure induced
by the NN interaction, is written in the form

F = S
∏
ij

fij , (10)

where S is the symmetrization operator accounting for the
fact that, in general, [fij , fik] �= 0. The two-body correlation
functions fij , whose operator structure reflects the complexity
of the NN potential, are written in the form

fij =
6∑

n=1

f n(rij )On
ij , (11)

with the On
ij given by Eq. (3).

The shapes of the radial functions f n(rij ) are determined
through functional minimization of the expectation value of
the nuclear Hamiltonian in the correlated ground state, carried
out at the two-body level of the cluster expansion [19]. The
resulting Euler Lagrange equations have been solved using
correlation ranges taken from Ref. [20].

Within the CBF approach, at the two-body cluster level,
one finds [9,10]

E

A
= 3

5

k2
F

2m
+

∑
j>i

〈ij |Veff|ij 〉a, (12)

where

Veff =
∑
i<j

f
†
ij

[
− 1

m
(∇2fij )− 2

m
(∇fij ) · ∇+vijfij

]
, (13)

and the derivatives act on the relative coordinates.
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The contributions of many-body clusters, not included in
the effective interaction of Eq. (13), are expected to become
important in the high-density regime relevant to neutron stars.
In Ref. [10] the NN potential has been modified to effectively
take into account processes involving more than two nucleons.
The resulting binding energies of both symmetric nuclear
matter and pure neutron matter turn out to be in fairly good
agreement with those obtained in Ref. [15] using the FHNC
approach and the full Argonne v18 potential over a broad
density range.

One would be tempted to exploit the analogies between
Eq. (8) and Eq. (12), to establish a direct link between G

and Veff . Hovewer, determining such a connection at the
operator level is not trivial. To see this, just consider that,
while all matrix elements of G involve the bare interaction
v only, the matrix elements of Veff also include purely
kinetic contributions, not containing v, which arise from the
derivatives of the correlation functions. In addition, unlike Veff ,
G exhibits an explicit energy dependence.

The CBF effective interaction, being defined through its
ground-state expectation value, is somewhat limited in scope,
with respect to the G-matrix effective interaction. However,
a systematic comparison between the two formalisms can be
carried out at the level of matrix elements. In this work we
focus on the matrix elements of the effective interactions in
momentum space relevant to calculation of the NN scattering
rate in pure neutron matter, whose knowledge is required to
obtain the transport coefficients within the Landau-Abrikosov-
Khalatnikov formalism.

We have used the truncated version of the Argonne v18

potential referred to as v′
6 [21], whose definition only involves

the static contributions, that is, those corresponding to n � 6,
in Eq. (3). The CBF effective interaction derived from this
potential has also been used to obtain a weak response of
nuclear matter at moderate momentum transfer [9,22].

For the sake of simplicity, in this work we have neglected
the contribution of the three-nucleon potential appearing in
Eq. (1).

III. NUCLEON-NUCLEON SCATTERING IN THE
NUCLEAR MEDIUM

A. Kinematics

Consider the process in which two nucleons carrying
momenta k1 and k2 scatter to final states of momenta k′

1 and
k′

2. The total energy of the initial state,

E = k2
1

2m
+ k2

2

2m
, (14)

can be conveniently rewritten in terms of the center of
mass (c.m.) and relative momenta, K = k1 + k2 and k =
(k1 − k2)/2, as

E = K2

2M
+ k2

2µ
= E + Erel, (15)

with M = 2m and µ = m/2.

In the reference frame in which the c.m. of the system is at
rest (c.m. frame) E = Ec.m. = Erel, while in the laboratory (L)
frame, in which k2 = 0, E = EL = 2Erel.

Analysis of the NN scattering rates relevant to the calcu-
lation of transport coefficients is carried out in the frame in
which the Fermi sphere is at rest, often referred to as the AK
frame. Moreover, in the low-temperature regime, in which the
results of Ref. [3] are applicable, scattering processes can only
involve nucleons with momenta close to the Fermi momentum.
Therefore, one can set

|k1| = |k2| = ∣∣k′
1

∣∣ = ∣∣k′
2

∣∣ = kF . (16)

At energies below the pion production threshold the scattering
process is elastic, so that the requirement of energy conserva-
tion,

(k1 + k2)2 = 2k2
F (1 + cos θ )

= (k′
1 + k′

2)2 = 2k2
F (1 + cos θ ′), (17)

implies that the angle between the momenta of the two
nucleons is the same before and after the collision. In general,
however, the angle φ between the initial and the final relative
momenta, k and k′ = (k′

1 − k′
2)/2, defined through

cos φ = (k · k′)
|k||k′| , (18)

does not vanish. Hence, for any given Fermi momentum, that
is, for any given matter density, the scattering process in the
AK frame is specified by the c.m. energy,

EAK = k2
F

2m
(1 + cos θ ), (19)

and the two angles θ and φ.
As the NN scattering cross section is often evaluated in the

c.m. frame, it is convenient to establish a relationship between
kinematical variables in the c.m. frame and those in the AK
frame. Exploiting the frame invariance of the relative energy,
we easily obtain

Ec.m. = k2
F

2m
(1 − cos θ ), (20)

while the c.m. scattering angle θc.m. can be indentified with φ,
defined in Eq. (18).

B. Cross section

In both the G-matrix and the CBF efffective interaction
approaches, the NN cross section in matter at density ρ can be
written in the form

dσ

d	k′
= m
2

16π2

∑
SMM ′

∣∣MMM ′
S (θ, φ)

∣∣2
, (21)

where m
 is the nucleon effective mass, and the transition
amplitude in the channel of total spin S and initial and final
spin projections M and M ′, MMM ′

S (θ, φ), involves the matrix
elements of either G or Veff between Fermi gas states.

Numerical calculations of the cross sections are carried out,
expanding MMM ′

S (θ, φ) in partial waves. In the case of pure
neutron matter, in which the total isospin of the interacting pair
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is T = 1, the expansion only involves partial waves of even
(odd) angular momentum in spin singlet (triplet) states.

The matrix elements of the CBF effective interaction can
be written in the form

MSJ
��′ (k) = 2

π

∫
r2drj�(kr)〈�′SJ |Veff|�SJ 〉j�′(kr). (22)

In this equation, � and J denote the orbital and total angular
momentum, respectively, j� is the spherical Bessel function,
|�SJ 〉 is the spin-angle state, and r is the magnitude of the
relative distance. Note that, owing to the presence of the
tensor operator of Eq. (4), the NN potential couples states
of different orbital angular momenta. These matrix elements
are directly comparable with those obtained from the partial
wave expansion of the G matrix [see Eq. (5)].

In Fig. 1 we show the matrix element M(1S0) = M00
00 , eval-

uated at nuclear matter equilibrium density, ρ0 = 0.16 fm−3

(top), and 2ρ0 (bottom), in the kinematical setup described in
Sec. III A. The solid and dashed lines correspond to the matrix
elements of the CBF and G-matrix effective interactions, re-
spectively, while the dot-dashed line was obtained by replacing
Veff with the bare v′

6 potential. Renormalization of the NN
interaction, carried out by either solving the Bethe-Goldstone
equation or modifying the basis states, appears to have a strong
impact on the matrix elements, which become more attractive
with respect to the matrix elements of the bare interaction.
On the other hand, the CBF and G-matrix approaches yield

FIG. 1. (Color online) Top: M(1S0) matrix element of the CBF
[solid (pink) line] and G-matrix [dashed (blue) line] effective
interactions [M00

00 in Eq. (22)] for neutron matter at nuclear matter
equilibrium density, as a function of relative momentum. For com-
parison, the dot-dashed (green) line shows the result corresponding to
the bare v′

6 potential. Bottom: Same as the top panel, but for density
ρ = 2ρ0.

FIG. 2. (Color online) Same as Fig. 1, but for the M(3P2) matrix
elements.

rather similar results in the considered range of densities and
momenta.

The matrix elements M(3P2) = M12
11 are shown in Fig. 2. It

appears that in this channel the results obtained using the CBF
are closer to those corresponding to the bare interaction, while
being appreciably different from the G-matrix results. Note,
however, that the matrix elements corresponding to the 3P2

channel are over one order of magnitude smaller than those
corresponding to the 1S0 channel.

It must be pointed out that the density dependence of the
matrix elements is rather mild. In the CBF approach the density
dependence arises from the two-body correlation functions,
while in the G-matrix it comes through the presence of the Pauli
operator and the single-particle potentials appearing in the
denominator of Eq. (5). In addition, one should also take into
account the density dependence associated with the starting
energy E, as the matrix elements reported in Figs. 1 and 2
were computed at twice the Fermi energy of the corresponding
density.

The convergence of the partial-wave expansion is illustrated
in Fig. 3, showing the ratio

RL = 1

σtot

L∑
�=0

σ �
tot (23)

as a function of the c.m. energy [see Eq. (20)]. In Eq. (23) σtot

is the total in-medium NN cross section, while σ �
tot denotes the

contribution of the �th partial wave. All cross sections were
evaluated in the kinematical setup relevant to the calculation
of transport coefficients, discussed in Sec. III A. The definition
obviously implies that, as L → ∞, RL → 1.

The results in Fig. 3 show that the total cross section
obtained including only the partial waves with � = 0 and 1,
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FIG. 3. (Color online) Energy dependence of the ratio RL, defined
by Eq. (23). The dashed (green), dot-dashed (pink), and solid (blue)
lines were obtained including the contributions of states of angluar
momentum � up to 0, 1, and 2. The top and bottom panels correspond
to CBF and G-matrix effective interactions, respectively.

corresponding to the spin-singlet and spin-triplet states of
lowest angular momentum, is within less than 5% of the
fully converged result. Comparison between the top and the
bottom panels, corresponding to CBF and G-matrix effective
interactions, also shows that the two approaches lead to a
similar qualitative behavior, although the G-matrix R0 exhibits
a somewhat steeper energy dependence.

In Fig. 4 we compare the total NN cross section at nuclear
matter equilibrium density, computed in the kinematics of
Sec. III A, as a function of Ec.m.. The difference in the
cross sections obtained using the CBF (solid line) versus the
G-matrix (dashed line) approaches does not exceed ∼20% at
Ec.m. > 10 MeV. On the other hand, the screening effect
owing to the presence of the nuclear medium, illustrated by
the difference between the solid and dashed lines and the
dot-dashed line, corresponding to the free-space cross section
obtained from the t matrix associated with the v′

6 potential,
turns out to be large. At Ec.m. > 100 MeV, where the CBF and
G-matrix results are very close to one another, the in-medium
cross section turns out to be quenched by a factor of ∼3.

IV. TRANSPORT COEFFICIENTS

A. Abrikosov-Khalatnikov formalism

The theoretical description of transport properties of normal
Fermi liquids is based on Landau theory [4]. Working within
this framework and including the leading term in the low-
temperature expansion, AK [3] obtained approximate expres-
sions for the shear viscosity and the thermal conductivity. Let

FIG. 4. (Color online) Total in-medium neutron-neutron cross
section in neutron matter, computed at nuclear matter equilibrium
density as a function of energy in the center-of-mass frame. The
solid (pink) and dashed (blue) lines were obtained using the CBF
and G-matrix effective interactions, respectively, in the kinematical
setup discussed in Sec. III A. For comparison, the dot-dashed (green)
line shows the free-space cross section, obtained from the t matrix
associated with the v′

6 potential.

us consider viscosity, as an example. The AK result reads

ηAK = 1

5
ρm
v2

F τ
2

π2(1 − λη)
, (24)

where vF = kF /m
 is the Fermi velocity, and m
 and τ denote
the quasiparticle effective mass and lifetime, respectively. The
latter can be written in terms of the angle-averaged scattering
probability 〈W〉, with [see Eq. (21)]

W(θ, φ) =
∑

SMM ′

∣∣MMM ′
S (θ, φ)

∣∣2
, (25)

according to

τT 2 = 8π4

m∗3

1

〈W〉 , (26)

where T is the temperature and

〈W〉 =
∫

d	

2π

W(θ, φ)

cos (θ/2)
. (27)

Note that, as pointed out in Sec. III A, the scattering process
involves quasiparticles on the Fermi surface. As a conse-
quence, for any given density ρ, W depends only on the
angular variables θ and φ. Finally, the quantity λη appearing in
Eq. (24) is defined as

λη = 〈W[1 − 3 sin4 (θ/2) sin2 φ]〉
〈W〉 . (28)

The exact solution of the equation derived in Ref. [3],
obtained by Brooker and Sykes [23], reads

η = ηAK
1 − λη

4

×
∞∑

k=0

4k + 3

(k + 1)(2k + 1)[(k + 1)(2k + 1) − λη]
, (29)
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the size of the correction with respect to the result of Eq. (24)
being 0.750 < (η/ηAK) < 0.925.

The expression of the thermal conductivity κ is obtained
following the same procedure, the only difference being that
in this case the leading term in the low-energy expansion is
linear, rather than quadratic, in the inverse temperature T −1.
The resulting expression is

κ = κAK
3 − λκ

4

×
∞∑

k=0

4k + 5

(k + 1)(2k + 3)[(k + 1)(2k + 3) − λκ ]
, (30)

where

κAK = 1

T

8

3

k3
F

m
4

2π2

〈W〉(3 − λκ )
, (31)

and

λκ = 〈W(1 + 2 cos θ )〉
〈W〉 . (32)

In this case the correction to the AK result turns out to
be larger. From Eq. (32) it follows that −1 < λκ < 3, in turn
implying [see Eq. (30)] 0.417 < (κ/κAK) < 0.561.

B. Results

Figures 5 and 6 show the T -independent quantities ηT 2

and κT , respectively, as a function of density. The calculations
were carried out using the formalism described in the previous
section and the scattering probabilities W(θ, φ) obtained from
both the G-matrix and the CBF effective interactions, which
were computed at zero temperature. For comparison, in Fig. 5
we also display, by the dot-dashed line, the results obtained
from the free-space scattering probability, computed using the
t matrix associated with the bare v′

6 potential.

FIG. 5. (Color online) Density dependence of the T -independent
quantity ηT 2 in pure neutron matter. The solid (blue) and dashed
(pink) lines correspond to the CBF and G-matrix effective interac-
tions, respectively, while the dot-dashed (green) line shows the results
obtained from the t matrix associated with the v′

6 potential.

FIG. 6. (Color online) Density dependence of the T -independent
quantity κT in pure neutron matter. The solid (blue) and dashed
(pink) lines were obtained using the CBF and G-matrix effective
interactions, respectively.

As the ratios m
/m resulting from the two approaches, CBF
and G matrix, turn out to be rather close to one another (the
difference never exceeds a few percent in the density range
shown in Figs. 5 and 6), all calculations were carried out using
the CBF effective masses.

Figure 5 clearly indicates that medium modifications of the
NN scattering cross sections play a critical role, leading to
a dramatic enhancement of the viscosity. A similar effect is
observed in the case of thermal conductivity [24].

Comparison between Figs. 5 and 6 shows that, while the
density dependence of the thermal conductivity resulting from
the two approaches looks remarkably similar, in the case of
viscosity, sizable discrepancies occur at densities higher than
the nuclear matter equilibrium density.

This feature can be easily explained considering the
different angular dependence of the integrands in Eqs. (28) and
(32), which determine the functions λη and λκ , respectively.
In the case of λκ , W(θ, φ) is weighted with a function that
depends only on θ . As a consequence, the result depends only
on the φ-integrated scattering probability, which is trivially
related to the total cross section [see Eq. (21)] at energy Ec.m.

given by Eq. (20). Hence, the similar behavior exhibited by the
two curves in Fig. 6 merely reflects the fact that the total cross
sections obtained from the G-matrix and CBF approaches turn
out to be close to one another (see Fig. 4). On the other hand,
on the right-hand side of Eq. (28) the scattering probability is
weighted with a factor that emphasizes the differences in the
φ dependence of the CBF and G-matrix W(θ, φ).

We have verified that the large discrepancy between the
solid and the dashed curves in Fig. 5 at high density is in fact
ascribable to λη. The λη-independent quantities ηAK(1 − λη)/4
obtained from the CBF and G-matrix approaches turn out to
be within less than 5% of one another at ρ = 0.32 fm−3. On
the other hand, removal of the λκ dependence in κAK does not
produce any significant effects.
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V. CONCLUSIONS

Many-body theory provides a fully consistent framework
suited to construct effective interactions starting from highly
realistic models of nuclear dynamics. In this work, we have em-
ployed the effective interactions resulting from the G-matrix
and CBF approaches to compute the in-medium NN cross
sections, which are needed to obtain the transport coefficient
within the Landau-Abrikosov-Khalatnikov formalism.

The calculations have been carried out using the truncated
v′

6 form of the NN potential from Ref. [11]. The effects of
three- and many-body forces, though known to be sizable at
high density, have not been taken into account. The results in
Ref. [10] show that many-body forces give rise to a change in
the shear viscosity of less than 10% at ρ <∼ 0.32 fm−3. Hence,
their inclusion is not likely to significantly affect the main
conclusions of our work.

The approach based on effective interactions allows one
to consistently take into account screening effects aris-
ing from short-range NN correlations, which lead to a
large decrease in the scattering cross section. As a conse-
quence, the shear viscosity and thermal conductivity obtained
from the effective interactions turn out to be much larger
than the corresponding quantities computed using the bare
NN potential.

Our work, showing that the results of the G-matrix and
CBF schemes are in reasonable agreement with one another,
suggests that as long as the effective interaction is based on
a realistic NN potential, strongly constrained by the large
data set of NN scattering phase shifts, the model dependence
associated with the many-body approach employed is not
critical.

The additional model dependence associated with the
choice of a specific NN potential, mainly owing to differences
in the off-shell behavior of the tensor force, is not expected to
be large. This effect was recently estimated in Ref. [25], whose
authors computed the in-medium NN cross sections within the
Dirac-Brueckner-Hartree-Fock approach using the Bonn A, B,

and C potentials. The resulting total cross sections turn out to
be quite similar, their spread at ρ ∼ 2ρ0 and Ec.m. ∼ 100 MeV
being <∼ 4% [25].

On the other hand, it must be pointed out that Skyrme
effective interactions (for a recent and comprehensive discus-
sion of the application of the Skyrme approach to nuclear
matter and neutron stars, see Ref. [26]), mainly constructed
by fitting bulk properties of nuclear matter, predict in-medium
NN cross sections whose behavior is significantly different
from that predicted by the G-matrix and CBF effective
interactions. As a result, the values of the viscosity and
thermal conductivity coefficients computed using Skyrme
effective interactions turn out to be much lower than those
shown in Figs. 5 and 6. For example, using the SLya
effective interaction, adjusted to reproduce the microscop-
ically derived EOS of neutron and nuclear matter [27],
one finds at nuclear matter equilibrium density ηT 2 ∼ 6 ×
1013 g cm−1 s−1 MeV2 and κT ∼ 4 × 1030 erg cm−1 s−1,
compared to ∼ 1.4 × 1015 g cm−1 s−1 MeV2 and κT ∼ 4 ×
1031 erg cm−1 s−1 obtained from the G-matrix and CBF
formalisms. While the Skyrme approach has proved to be
very useful in many contexts, these results suggest that the
determination of the transport properties of nuclear matter
requires effective interactions providing a quantitative account
of the observed NN scattering data in the limit of vanishing
density.
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