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We renormalize the two-nucleon interaction at leading order (LO) in chiral perturbation theory using the
scheme proposed by Nogga, Timmermans, and van Kolck—also known as modified Weinberg counting. With this
interaction, we calculate the energy per nucleon of symmetric nuclear matter in the Brueckner pair approximation
and obtain a converged, cutoff-independent result that shows saturation, but also substantial underbinding. We
find that the renormalized LO interaction is characterized by an extraordinarily strong tensor force (from one-pion
exchange), which is the major cause for the lack of binding. The huge tensor force also leads to the unusually large
wound integral of 40% in nuclear matter, which implies a very slow convergence of the hole-line or coupled-cluster
expansion, rendering this interaction impractical for many-body calculations. In view of the unusual properties
of the renormalized LO interaction and in view of the poor convergence of the nuclear many-body problem with
this interaction, there is doubt that this interaction and its predictions can serve as a reasonable and efficient
starting point that is improved by perturbative corrections.
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I. INTRODUCTION

The problem of a proper derivation of nuclear forces is
as old as nuclear physics itself, namely, almost 80 years.
The modern view is that, because the nuclear force is a
manifestation of strong interactions, any serious derivation has
to start from quantum chromodynamics (QCD). However, the
well-known problem with QCD is that it is nonperturbative in
the low-energy regime characteristic for nuclear physics. For
many years this fact was perceived to be the great obstacle
for a derivation of nuclear forces from QCD—impossible to
overcome except by lattice QCD. The effective field theory
(EFT) concept has shown the way out of this dilemma. One has
to realize that the scenario of low-energy QCD is characterized
by pions and nucleons interacting via a force governed by
spontaneously broken approximate chiral symmetry. This
chiral EFT allows for a systematic low-momentum expansion
known as chiral perturbation theory (ChPT) [1]. Contributions
are analyzed in terms of powers of small momenta over the
large scale: (Q/�χ )ν , where Q is generic for a momentum
(nucleon three-momentum or pion four-momentum) or pion
mass and �χ ≈ 1 GeV is the chiral symmetry breaking scale.
The early applications of ChPT focused on systems like ππ [2]
and πN [3], where the Goldstone-boson character of the pion
guarantees that the expansion converges. The past 15 years
has also seen great progress in applying ChPT to nuclear
forces [4–20].

However, there is a difference between the purely pionic
and the one-nucleon sector, on the one hand, and two- and
multinucleon systems, on the other hand. Nuclear physics
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is characterized by bound states that are nonperturbative in
nature. Weinberg showed [4] that the strong enhancement of
the amplitude arises from purely nucleonic intermediate states
(“infrared enhancement”). He therefore suggested a two-step
procedure: In step 1, ChPT and naive dimensional analysis are
used to calculate a “potential” that consists of only irreducible
diagrams, and in step 2, this potential is iterated to all orders by
inserting it into a Schrödinger or Lippmann-Schwinger (LS)
equation to generate the amplitude.

At leading order (LO), the potential consists of static
one-pion exchange (1PE) and two nonderivative contact terms.
At next-to-leading order (NLO), multipion exchange starts,
which involves divergent loop integrals that need to be
regularized. An elegant way of doing this is dimensional
regularization, which (besides the main nonpolynomial result)
typically generates polynomial terms with coefficients that
are, in part, infinite or scale dependent [9]. One reason
that so-called contact terms are introduced in the EFT is to
absorb all infinities and scale dependencies and make sure
that the final result is finite and scale independent. This
is the renormalization of the perturbatively calculated NN

amplitude (which, by definition, is the “NN potential”). It is
very similar to what is done in the ChPT calculations of ππ

and πN scattering, namely, a renormalization order by order,
which is the method of choice for any EFT. Thus, up to this
point, the NN calculation fully meets the standards of an EFT
and there are no problems. The perturbative NN amplitude can
be used to make model-independent predictions for peripheral
partial waves [9,10,15].

For calculations of the structure of nuclear few and many-
body systems, the lower partial waves are the most important
ones. The fact that in S waves we have large scattering lengths
and shallow (quasi-) bound states indicates that these waves
need to be treated nonperturbatively. Following Weinberg’s
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prescription [4], this is accomplished by inserting the potential
V into the LS equation:

T ( �p′, �p) = V ( �p′, �p) +
∫

d3p′′

(2π )3
V ( �p′, �p′′)

× MN

p2 − p′′2 + iε
T ( �p′′, �p), (1)

where MN denotes the nucleon mass.
In general, the integral in the LS equation is divergent

and needs to be regularized. One way to achieve this is by
multiplying V with a regulator function, for example,

V ( �p′, �p) �−→ V ( �p′, �p) e−(p′/�)2n

e−(p/�)2n

. (2)

Typical choices for the cutoff parameter � that appears in the
regulator are � ≈ 0.5 GeV � �χ ≈ 1 GeV [16,17].

It is pretty obvious that results for the T matrix may depend
sensitively on the regulator and its cutoff parameter. This is
acceptable if one wishes to build models. For example, the
meson models of the past [21,22] always depended sensitively
on the choices for the cutoff parameters, which were, in fact,
welcome fit parameters for achieving a good reproduction of
the NN data. However, we wish for the EFT approach to be
fundamental in nature and not just another model.

In field theories, divergent integrals are not uncommon and
methods for dealing with them have been developed. One
regulates the integrals and then removes the dependence on the
regularization parameters (scales, cutoffs) by renormalization.
In the end, the theory and its predictions do not depend on
cutoffs or renormalization scales.

So-called renormalizable quantum field theories, like QED,
have essentially one set of prescriptions that takes care of
renormalization through all orders. In contrast, EFTs are
renormalized order by order, in which case the number of
adjustable parameters increases.

As discussed, the renormalization of perturbative EFT
calculations is not a problem. The problem is nonperturbative
renormalization. This problem typically occurs in nuclear EFT
because nuclear physics is characterized by bound states that
are nonperturbative in nature.

Weinberg’s implicit assumption was that the countert-
erms introduced to renormalize the perturbatively calculated
potential, based on naive dimensional analysis (“Weinberg
counting”), are also sufficient to renormalize the nonper-
turbative resummation of the potential in the LS equation.
Unfortunately, it has turned out that this assumption is not
quite correct, as pointed out by Kaplan, Savage, and Wise
(KSW) [23] and others. The criticism of the Weinberg
counting scheme resulted in a flurry of publications on the
renormalization of the nonperturbative NN problem [24–42].
The literature is too comprehensive to discuss all contributions
in detail. Let us just mention some of the work that has
particular relevance to our present paper.

If the potential V consists of contact terms only (a.k.a.
pionless theory), then the nonperturbative summation, Eq. (1),
can be performed analytically, which makes it easier to deal
with the renormalization issue. However, when pion exchange
is included, then Eq. (1) can be solved only numerically and
the renormalization problem is less transparent. Perturbative

ladder diagrams of arbitrarily high order, where the rungs of
the ladder represent a potential made up from irreducible pion
exchange, suggest that an infinite number of counterterms is
needed to achieve cutoff independence for all the terms of
increasing order generated by the iterations. For that reason,
KSW [23] proposed to sum the contact interaction to all orders
(analytically) and to add pion exchange perturbatively up to
the given order. Unfortunately, it turned out that the order-by-
order convergence of 1PE is poor in the 3S1-3D1 state [24].
The failure was triggered by the 1/r3 singularity of the 1PE
tensor force when iterated to second order. Therefore, KSW
counting is no longer taken into consideration (see, however,
Ref. [39]). A balanced discussion of possible solutions is given
in Ref. [29].

Some researchers decided to take a second look at
Weinberg’s original proposal. A systematic investigation and
reanalysis of Weinberg counting in LO has been conducted
by Nogga, Timmermans, and van Kolck [31] in momentum
space and by Pavón Valderrama and one of the present authors
(E.R.A.) at LO and higher orders in configuration space
[30,32,33]. A comprehensive discussion of both approaches
and their equivalence is given in Refs. [36] and [40]. The
LO NN potential consists of 1PE plus two nonderivative
contact terms that contribute only in S waves. By numerical
calculations,1 Nogga et al. find that the given counterterms
renormalize the S waves, that is, the naively expected infinite
number of counterterms is not needed. This means that
Weinberg power counting does actually work in S waves at
LO (ignoring the mπ dependence of the contact interaction
discussed in Refs. [23] and [29]). However, there are problems
with a particular class of higher partial waves, namely, those
in which the tensor force from 1PE is attractive. The first few
cases of this kind of low angular momentum are 3P0, 3P2, and
3D2. The LO (nonderivative) counterterms do not contribute
in P and higher waves, which is the reason for the problem.
But the second-order contact potential provides counterterms
for P waves. Therefore, the promotion of, particularly, the
3P0 and 3P2 contacts from NLO to LO would fix the problem
in P waves. To take care of the 3D2 problem, a fourth-order
contact needs to be promoted to LO. In this way, one arrives
at a scheme of “modified Weinberg counting” [31] for the LO
two-nucleon interaction.

Once cutoff independence of the on-shell NN T matrix
(and NN phase shifts and observables) has been achieved, it
is of interest to know whether cutoff-independent results are
also obtained when this interaction is applied in nuclear few-
and many-body systems. Nogga et al. [31] investigated the
lightest such system, namely, the three-nucleon bound state,
and found cutoff independence of the triton binding energy. It
is the purpose of this article to conduct a similar investigation
in heavier nuclear systems. Because finite nuclei are difficult to
calculate, we choose nuclear matter (infinitely many nucleons).

1For the purposes of the present paper, we conduct the discussion
in momentum space. We note, however, that all information on the
necessary number of counterterms can be determined a priori and
analytically by inspecting the potential in configuration space at short
distances [30,32,33,36].
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We show that the renormalized LO two-nucleon interaction
leads to converged results for the energy per nucleon in nuclear
matter.

Section II briefly describes and repeats the LO renormaliza-
tion procedure with modified Weinberg counting introduced
in Ref. [31]. In Sec. III, we present the novel point of this
paper, namely, the calculation of the energy per nucleon in
symmetric nuclear matter as a function of density, and in
Sec. IV, we compare our results with the work of other authors.
Conclusions are drawn in Sec. V.

II. RENORMALIZING THE N N POTENTIAL
IN LEADING ORDER

In naive dimensional analysis (“Weinberg counting”),
the order-by-order expansion of the chiral NN potential is
given as

VLO = V
(0)

ct + V
(0)

1π , (3)

VNLO = VLO + V
(2)

ct + V
(2)

1π + V
(2)

2π , (4)

VNNLO = VNLO + V
(3)

1π + V
(3)

2π , (5)

VN3LO = VNNLO + V
(4)

ct + V
(4)

1π + V
(4)

2π + V
(4)

3π , (6)

where the superscript denotes the order ν of the low-
momentum expansion. NNLO stands for next-to-next-to-
leading order. Contact potentials carry the subscript “ct”
and pion-exchange potentials can be identified by obvious
subscripts.

The charge-independent 1PE potential reads

V1π ( �p′, �p) = − g2
A

4f 2
π

τ 1 · τ 2
�σ1 · �q �σ2 · �q
q2 + m2

π

, (7)

where �p′ and �p designate the final and initial nucleon momenta
in the center-of-mass system (CMS) and �q ≡ �p′ − �p is the
momentum transfer; �σ1,2 and τ 1,2 are the spin and isospin
operators of nucleons 1 and 2; gA, fπ , and mπ denote the
axial-vector coupling constant, pion decay constant, and pion
mass, respectively. We use fπ = 92.4 MeV and gA = 1.29
to correct for the Goldberger-Treiman discrepancy. Because
higher-order corrections contribute only to mass and coupling
constant renormalizations and because, on shell, there are
no relativistic corrections, the on-shell 1PE has the form of
Eq. (7) in all orders.

Here, we specifically calculate LO np scattering and take
charge dependence (isospin violation) into account. Thus, the
1PE potential reads

V
(np)

1π ( �p′, �p) = −V1π (mπ0 ) + (−1)I+12V1π (mπ±), (8)

where I denotes the isospin of the two-nucleon system, and

V1π (mπ ) ≡ − g2
A

4f 2
π

�σ1 · �q �σ2 · �q
q2 + m2

π

. (9)

We use mπ0 = 134.9766 MeV and mπ± = 139.5702 MeV
[43]. In the LS equation, Eq. (1), we apply

MN = 2MpMn

Mp + Mn

= 938.9182 MeV, (10)

p2 = M2
pTlab(Tlab + 2Mn)

(Mp + Mn)2 + 2TlabMp

, (11)

where Mp = 938.2720 MeV and Mn = 939.5653 MeV are the
proton and neutron masses [43], respectively, and Tlab is the
kinetic energy of the incident neutron in the laboratory system
(“laboratory energy”). The relationship between p2 and Tlab is
based on relativistic kinematics.

Besides the 1PE potential, Eq. (8), the EFT includes contact
terms that represent short-range interactions that cannot be
resolved at the low-energy scale. Furthermore, the contacts are
needed for renormalization. Stating the contact potentials in
partial-wave decomposition, we have one zero-order (ν = 0)
contact in each S wave:

V
(0)

ct

(1
S0

) = C̃1S0 , (12)

V
(0)

ct

(3
S1

) = C̃3S1 . (13)

Up to this point, we are still applying Weinberg counting.
However, as discussed in Sec. I, higher partial waves in
which the pion’s tensor force is attractive need counterterms
to achieve cutoff independence—which leads us to modified
Weinberg counting. To be specific, two P waves receive
counterterms of second order,

V
(2)

ct

(3
P0

) = C3P0p
′p, (14)

V
(2)

ct

(3
P2

) = C3P2p
′p, (15)

and one D wave needs a fourth-order counterterm,

V
(4)

ct

(3
D2

) = D3D2p
′2p2. (16)

For solution of the LS equation, Eq. (1), a regulator function
is necessary, for which we choose the one given in Eq. (2), with
n = 2. The regulator depends on the cutoff mass �, which we
vary over a wide range, from 0.5 to 10 GeV (Table I). In S

waves, we readjust the contact parameter for each choice of �

such that the empirical scattering lengths (as = −23.748 fm
for 1S0 and at = 5.4170 fm for 3S1) are reproduced. In those
P and D waves that carry a contact in modified Weinberg
counting, the contact parameter is used to fit—for the various
choices of �—the empirical phase shift at 50 MeV as given
in Ref. [44]. In all cases, we then calculate the phase shifts for
all energies below 350 MeV.

The resulting phase shifts and mixing parameters for total
angular momentum J � 2 are shown in Fig. 1. The curves
refer to � = 0.5 GeV (dotted line), 1 GeV (dash-dotted line),
5 GeV (dashed line), and 10 GeV (solid line). The curves for
� = 5 GeV and � = 10 GeV are, in general, indistinguishable
on the scale of the figure, which demonstrates that cutoff
independence (nonperturbative renormalization) has been
achieved. It is known from the work of Nogga et al. [31] in
momentum space2 that this is possible. Our results represent
an independent confirmation.

2Again, the analysis is easier in configuration space [30,32,33]; see,
in particular, Table II and the thorough convergence analysis of phase
shifts with total angular momentum J � 5 in Ref. [33].
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TABLE I. Partial-wave contact parameters as a function of the cutoff � for the leading-order
NN potential in modified Weinberg counting. Parameters are defined in Eqs. (12)–(16).

Partial-wave contact Cutoff parameter � (GeV)
parameter

0.5 1.0 5.0 10.0

C̃1S0
(104 GeV−2) −0.109966 −0.087189 −0.06739623 −0.064460345

C̃3S1
(104 GeV−2) −0.076005 1.349900 −0.02692560 0.021786000

C3P0
(104 GeV−4) 0.840321 −0.1722517 0.001856514 0.000384981

C3P2
(104 GeV−4) −0.2316105 −0.0700665 −0.00251447 0.001251038

D3D2
(104 GeV−6) −0.3347880 0.3899800 −0.00020581 −0.00001055

III. NUCLEAR MATTER

As discussed in Sec. I, once cutoff independence has been
achieved for the two-nucleon system, a good question to ask
is whether cutoff-independent predictions are also obtained in
the nuclear many-body problem when this renormalized NN

potential is applied. Nogga et al. [31] addressed this question
for the three-nucleon system where they confirmed the cutoff

independence of the triton binding energy at LO. We wish to
turn to heavier nuclear systems and choose nuclear matter as
the representative sample.

By definition, nuclear matter refers to an infinite uniform
system of nucleons interacting via a strong force without
electromagnetic interactions. This hypothetical system is
believed to approximate conditions in the interior of heavy
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FIG. 1. (Color online) Phase shifts and mixing parameters of neutron-proton scattering for total angular momentum J � 2 and
Tlab � 350 MeV. The curves display the LO predictions for cutoff parameter � = 0.5 GeV [(black) dotted line], 1 GeV [(blue) dash-dotted
line], 5 GeV [(green) dashed line], and 10 GeV [(red) solid line]. Note that the dashed and solid curves are, in general, indistinguishable on
the scale of the figure. The filled and open circles represent the results from the Nijmegen multienergy np phase-shift analysis [44] and the
VPI/GWU single-energy np analysis SM99 [45], respectively.
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FIG. 2. (Color online) Energy per nucleon, E/A, in symmetric
nuclear matter as a function of the Fermi momentum kF applying the
LO NN potentials with the various cutoffs used in the phase-shift
calculations in Fig. 1. The curve patterns represent the same cutoffs
as in Fig. 1.

nuclei. We assume equal neutron and proton densities, that
is, we consider symmetric nuclear matter. This many-body
system is characterized by its energy per nucleon as a function
of the particle density.

We use the well-established Brueckner-Bethe-Goldstone
method (henceforth, Brueckner theory) [22,46–48] to calculate
the nuclear matter energy. In this theory, a central role is played
by the Brueckner G matrix, which is a solution of the Bethe-
Goldstone integral equation,

G(w) = V − V
Q

H0 − w
G(w), (17)

where w denotes the starting energy, H0 the unperturbed
Hamiltonian, and the Pauli operator Q projects onto unoccu-
pied states. In the pair approximation, the energy per nucleon
is given by

E

A
= 1

A

∑
m�kF

〈m|t |m〉 + 1

2A

∑
m,n�kF

〈mn|G(w)|mn − nm〉,

(18)

where A denotes the number of nucleons, t the kinetic energy
operator, and kF the Fermi momentum, which is related to the

density ρ of symmetric nuclear matter by

ρ = 2

3π2
k3
F . (19)

The starting energy is chosen on-shell, that is,

w = e(m) + e(n), (20)

with single-particle energy

e(m) = t(m) + U (m) (21)

and single-particle potential

U (m) =
{∑

n�kF
〈mn|G(w)|mn − nm〉, m � kF ,

0, m > kF ,
(22)

also known as the “gap” choice for the single-particle potential,
as a gap will obviously occur at the Fermi surface. The
calculations are conducted in partial-wave decomposition and
the Brueckner integral equation is solved by matrix inversion;
see Ref. [48] for details.

The Bethe-Goldstone method was originally devised to
handle the short-distance hard core in nuclear systems. In
chiral EFT, an expansion in both 1/fπ and 1/MN is carried
out. For short distances, r � 1/mπ , pion mass effects can
be neglected, and on purely dimensional grounds an inverse-
power short-distance singularity should be expected: to
LO, V (r) ∼ 1/(f 2

π r3); to NLO, V (r) ∼ 1/(f 4
π r5); to NNLO,

V (r) ∼ 1/(f 4
π MNr6); etc. It is natural to ask whether the

G-matrix result converges in the limit � → ∞. In the
appendix we show that this is indeed the case for the gap
choice Eq. (22) [48]. The proof rests on the finiteness of the
off-shell K matrix [49]. This gives some confidence in the
stability of the numerics for increasing cutoff values.

In Fig. 2, we display our results for the energy per nucleon
in symmetric nuclear matter as a function of density (measured
by the Fermi momentum kF ) applying the LO NN potentials
with the various cutoffs used in the phase-shift calculations in
Sec. II. The same curve patterns in Figs. 1 and 2 indicate
the same cutoffs. The nuclear matter curves for � = 5 GeV
[(green) dashed line] and � = 10 GeV [(red) solid line] cannot
be distinguished on the scale of Fig. 2, demonstrating that
cutoff independence of the predictions is achieved; in other
words, the (red) solid curve represents the renormalized result,
which, as expected, is convergent. This curve shows saturation
at a Fermi momentum kF ≈ 1.0 fm−1 and an energy per
nucleon E/A = −2.6 MeV.
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malized chiral LO potential of
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TABLE II. Partial-wave contributions for S and P waves and total contributions to symmetric nuclear matter at
a density equivalent to a Fermi momentum kF = 1.35 fm−1. Unless denoted otherwise, values not in parentheses or
brackets are contributions to the potential energy as obtained using the Brueckner G matrix; values in parentheses
are corresponding results obtained with the Born approximation, i.e., for G = V ; and, finally, values in brackets
are contributions to the wound integral.

Partial wave LOa N3LOb CD-Bonn [50] AV18 [51]

1S0 −13.42 −16.74 −16.76 −16.07
(−5.98) (−14.73) (−12.64) (−2.77)

[0.056] [0.008] [0.005] [0.017]
3S1 −13.54 −19.42 −18.96 −17.10

(+10.65) (−12.51) (−8.63) (+5.99)
[0.090, 0.112]c [0.017, 0.017]c [0.004, 0.034]c [0.015, 0.053]c

1P1 3.24 3.90 3.91 3.88
(3.27) (4.06) (4.24) (4.23)
[0.000] [0.001] [0.002] [0.001]

3P0 −1.01 −3.14 −3.08 −3.15
(−6.30) (−3.03) (−2.41) (−2.48)

[0.109] [0.001] [0.002] [0.002]
3P1 10.17 9.68 9.81 9.74

(11.09) (10.29) (11.74) (12.08)
[0.004] [0.003] [0.006] [0.007]

3P2 −5.37 −7.27 −7.05 −6.96
(−1.49) (−6.96) (−6.25) (−6.09)

[0.015, 0.015]d [0.001, 0.001]d [0.003, 0.001]d [0.002, 0.002]d

Total potential energy −22.44 −37.02 −36.35 −33.96
(+9.07) (−26.72) (−17.92) (+6.96)

Kinetic energy 22.67 22.67 22.67 22.67
Total energy +0.23 −14.35 −13.67 −11.29

(+31.74) (−4.05) (+4.76) (+29.63)
Total wound [0.405] [0.050] [0.058] [0.101]

aRenormalized LO NN potential of this work, with � = 10 GeV.
bQuantitative N3LO NN potential regularized by a Gaussian with cutoff parameter � = 0.5 GeV [16].
c3S1-3S1 and 3S1-3D1 contributions to the wound integral are given.
d3P2-3P2 and 3P2-3F2 contributions to the wound integral are given.

Based on various pieces of circumstantial evidence, it is
generally believed that the “empirical” saturation properties
of symmetric nuclear matter are kF = 1.35 ± 0.05 fm−1

and E/A = −16 ± 1 MeV [22]. Thus, our renormalized LO
result shows considerable underbinding. In Ref. [31], a triton
energy of −3.6 MeV was found for the converged LO result,
which also deviates considerably from the empirical value
of −8.5 MeV.

The chief reason for this lack of attraction is the fact that the
tensor force of the renormalized LO interaction is unusually
strong, as we explain now.

A simple indicator for the strength of the tensor force
component contained in a given NN potential is the predicted
D-state probability of the deuteron, PD , because the transition
from S to D states can only proceed via the tensor force.
For the LO interaction at � = 5 GeV and � = 10 GeV, PD

comes out to be 7.2% (it is converged). Conventional potentials
typically predict a lower PD , namely, between 4% and 6%;
for example, the AV18 [51], CD-Bonn [50], and N3LO [16]
potentials predict 5.76%, 4.85%, and 4.51%, respectively.
Historically, the highest PD ever predicted by a “realistic” NN

potential was 7.0%, by the Hamada-Johnston potential [52]
of 1962.

In nuclear matter, the so-called wound integral κ is known to
depend sensitively on the strength of the tensor force [22,48].
The wound integral is defined as

κ = ρ

∫
|φ − ψ |2dτ, (23)

where φ denotes the uncorrelated two-nucleon wave function
and ψ the correlated one, which are related by

Gφ = V ψ, (24)

implying

ψ = φ − Q

H0 − w
Gφ. (25)

The physical significance of the wound integral is that it
measures the probability for exiting two nucleons to states
above the Fermi surface. This probability is high for “hard”
and strong tensor force potentials. According to arguments
conveyed by Brandow [53], a n-hole line diagram is propor-
tional to κn−1, and hence, the convergence of the hole-line
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expansion depends on the size of κ , with a large κ suggesting
slow convergence.

As shown in the bottom row in Table II, the renormalized
LO interaction produces a total κ of 40.5%, whereas the
corresponding numbers are 10.1%, 5.8%, and 5.0% for AV18,
CD-Bonn, and N3LO, respectively. The Hamada-Johnston
potential generated a total κ of 21.1%. The partial-wave
contributions to κ listed in Table II (numbers in brackets)
confirm that the strong tensor force of the LO interaction
is the main reason for the extraordinarily high κ . The 3S1-
3D1 transition, which depends entirely on the tensor force,
contributes 11.2% to the LO κ , whereas it is 5.3%, 3.4%,
and 1.7% for AV18, CD-Bonn, and N3LO, respectively. In
Fig. 3, we show the 3S1-3D1 transition potential of the LO
interaction with � = 10 GeV and of conventional potentials,
revealing dramatic differences, particularly for high momenta.
An unusual difference also occurs in the 3P0 state, where LO
generates a contribution to κ of 10.9%, whereas conventional
potentials have at most 0.2%. The tensor operator is known to
have a large matrix element in the 3P0 state. The 3P0 potentials
are included in Fig. 3.

The fact that a strong tensor force (and a large κ) leads to
less binding energy in nuclear matter and finite nuclei can be
understood as follows [22]. For the purpose of discussion, let
us approximate the Brueckner G by

G(w) ≈ VC − VT

Q

H0 − w
VT , (26)

where VC denotes the central force and VT = vT S12 the tensor
force component of a given NN potential (with S12 the
usual tensor operator). Note now that all quantitative nuclear
potentials are fit to the same NN data and, thus, produce
essentially the same on-shell T matrix or, equivalently, the
same on-shell K matrix, which in the preceding approximation
is given by

K(wf ) ≈ VC − PVT

1

t − wf

VT , (27)

where wf is the free (purely kinetic) starting energy and P
denotes the principal value.

A potential with a strong VT (implying a large, attractive
second-order tensor term) will have a less attractive central
force VC to arrive at the same on-shell K matrix compared to a
potential with a weak tensor force. Now, when we enter nuclear
matter and calculate the G matrix, Eq. (26), the Pauli operator
Q [which is absent in the free-space Eq. (27)] and a larger
energy denominator (owing to the single-particle potential
in the many-body environment) reduce the magnitude of the
second term in the G-matrix equation. These two medium
effects are know as the Pauli and dispersion effects. The
larger the attractive second-order tensor term in Eq. (26),
the larger the reduction of the attraction through the medium
effects. Therefore, potentials that produce large integral terms
in the G-matrix equation will predict less attraction in the
many-body system. When the central force is very strong
(“hard” potential), this mechanism applies also to the iterations
of the central term. This happens obviously in the 1S0 state,
where no tensor force is involved, but nevertheless, a large κ

occurs for the LO interaction. This is also part of the reason

why the 3S1-3S1 contribution to the wound is large for LO,
namely, 9.0% (cf. the very hard LO central force shown in the
3S1 frame in Fig. 3).

An idea of the size of the integral term in the Brueck-
ner equation, Eq. (17), is also obtained by comparing the
Born approximation (i.e., G = V ) with the full G. We
therefore also provide in Table II the Born approximation
results (numbers in parentheses) for the various partial-wave
contributions.

As explained in length in Ref. [54], arguments similar to
the preceding ones also apply to Faddeev calculations of three-
particle energy. Thus, the substantial underbinding of the triton
found in Ref. [31] is most likely also related to the huge tensor
force of the renormalized LO interaction.

We note that the discussion of the severely reduced
attraction in nuclear matter owing to “hard” central potentials
and strong tensor force applies, of course, only to a calculation
conducted in the Brueckner pair approximation. The huge
wound integral suggests that there will be large three-,
four-, and higher hole-line contributions, which may provide
additional binding. However, evaluation of multi-hole-line
contributions is extremely involved and cumbersome. Similar
arguments apply when the coupled-cluster expansion is used
to deal with the nuclear many-body problem [55]. Thus, an
extraordinarily strong tensor force makes it very difficult to
obtain converged results in the many-body system, which is
one reason why a large tensor force potential is inconvenient,
to say the least.

The best-studied phenomenology of nuclear forces is the
one-boson-exchange model. This model includes a ρ meson,
which produces a tensor force of opposite sign compared to
the pion (cf. Fig. 3.7 in Ref. [22]). Careful studies have shown
that the reduction of the pion’s tensor force at short range by
the ρ meson is crucial to arrive at a realistic strength for the
nuclear tensor force [56].

In ChPT theory, contributions from heavy mesons, like the
ρ, are too short-ranged to be dissolved, but instead contact
terms are added to the theory. The set of contacts that appears
at NLO (∼Q2) includes a tensor term that may be perceived
as simulating ρ exchange. Therefore, there is a chance that, at
NLO or higher order, the problem of the extraordinarily large
tensor force encountered at LO will be resolved.

IV. COMPARISON WITH OTHER WORKS AND
THE BROADER PERSPECTIVE

Our results clearly show that the saturation mechanism in
nuclear matter is compatible with a nonperturbative renormal-
ization of the venerable 1PE potential. However, the binding
energy turns out to be rather low and the approach looks
discouraging from a coupled-cluster expansion point of view.
Let us therefore analyze our results in the light of other
chiral approaches to nuclear matter, based in spirit on the
EFT concept, where mainly perturbative schemes but also low
cutoffs have been employed. We also provide some perspective
on future work.

If the cutoff parameter takes sufficiently small values,
perturbation theory becomes applicable, as in this case
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high-momentum components are suppressed. For the smallest
cutoff value presented in Fig. 2, � = 0.5 GeV, we see a
clear attraction that is strongly dependent, in fact linearly,
on the Fermi momentum. Actually, chiral-symmetry-based
approaches for nuclear matter have also been pursued in
Ref. [57] in a purely perturbative scheme. The main source of
attraction stems from once iterated 1PE, which is proportional
to the density, ∼k3

F , and depends linearly also on the cutoff
parameter, which needs to be fine-tuned to a value � = 0.4–
0.5 GeV to achieve saturation. The origin of the divergence is
related to vacuum amplitudes, which, to nth order with the 1PE
potential, yield a contribution to the T matrix, Eq. (1), scaling
by naive power counting as ∼�n−1 (pion mass neglected).
The present calculation contains iterated 1PE with additional
counterterms to all orders for any value of the cutoff parameter,
and as we see, it does not exhibit this very strong k3

F -dependent
attraction. Thus, in Fig. 2 only some residual cutoff effect
is displayed after low-energy NN physics has been fixed.
Clearly, the separately large perturbative contributions that
scale with positive powers of � would not converge without
inclusion of counterterms to all orders.

An NLO G-matrix calculation with a finite cutoff of
� = 500 MeV and counterterms was also undertaken in
Ref. [58], and saturation was found. As noted in Ref [32],
there would be a fundamental problem of removing the cutoff
at that order, as the deuteron becomes unbound owing to
the strong 1/r5 repulsive interaction in the triplet channels.
More recently, a perturbative approach has also been pro-
posed where a power-counting scheme is introduced with
extremely low cutoff values, � ∼ mπ , for which saturation is
achieved [59,60].

Finally, Vlow k approaches represent a coarse graining
of the interaction in the physically accessible NN elas-
tic region for CM momenta k � � ≈ 400 MeV, with
the result that all high-precision potentials fitting data
with χ2/df ≈ 1 including the 1PE tail collapse into a
unique Vlow k potential. It has been suggested [62] that
low-momentum interactions in general and chiral N3LO
interactions (having their own cutoff � ≈ 500–700 MeV
[16,17]), in particular, can be treated perturbatively in nuclear
matter calculations, as the corresponding Weinberg eigenval-
ues lie inside the unit circle. Given the universality of the
Vlow k approach and the fact that all interactions contain 1PE
while successfully describing the phase shifts in vacuum, there
seems to be no fingerprint left of chiral dynamics from the
two-body sector. When three-body chiral forces determined
from few-body data are included, realistic saturation properties
with more controlled uncertainties are obtained [63]. A
trading between two- and three-body forces is observed, and
the role played by 3N forces becomes less important as
the Vlow k cutoff is increased from � = 400 MeV to � =
560 MeV, although they still produce saturation at realistic
densities.

Clearly, explicit chiral dynamics is enhanced for larger
cutoff values but also the theoretical difficulties increase.
The spirit of the original proposal of Weinberg’s was that
the potential could be perturbatively defined according to a
prescribed counting. This is clearly possible at large impact
parameters, where neither the strength of the nuclear force

nor our lack of knowledge of its short-distance components
prevents us from using a fuzzy but sensibly large momentum
cutoff value. In a sense, the G-matrix approach is close in spirit
to this idea, where the strength of the nucleon force in the
nuclear medium is characterized by an effective interaction.
As we have shown, the LO 1PE interaction yields cutoff-
independent results, is entirely parameterized by vacuum
properties, and has the nice feature of saturation. The problem
is to define what is meant by NLO, and in nuclear matter
a scheme very close to the standard perturbative EFT idea
is expected to face the same problems already found in the
vacuum sector and described in Sec. I.

Several possible and perturbatively motivated schemes for
renormalization of the chiral NN interaction already suggested
in Ref. [31] include considering higher pion exchanges as
perturbations around the LO calculation using distorted waves.
This proposal was analyzed in Refs. [32] and [42], where it
was shown to be feasible and cutoff independent, but with little
gain from a practical viewpoint: many more counterterms were
needed and a worse description was obtained in the 1S0 channel
and the deuteron. Actually, nonperturbative calculations with
singular potentials behave nonanalytically in the coupling
constant, that is, 1/f α

π with noninteger α [32]. An RG-based
program for pion-full theories was advanced in Ref. [27],
with further detailed results provided in Ref. [28]. This RG
analysis yields one counterterm in each S wave of order Q−1,
which must be iterated, and one in each 3PJ and 3DJ wave
of order Q−1/2, which may be iterated. This is very similar to
the power counting suggested by Nogga et al. [31]. Subleading
counterterms occur in 1S0 at Q0 and in 3S1 at Q1/2, whereas the
subleading 3PJ and 3DJ terms are of order Q3/2. Subleading
and higher terms ought to be treated perturbatively. Finally
each S wave receives an additional term at order Q2. The
number of terms at Q3 in the RG scheme is larger than
in Weinberg counting at NNLO; however, except for the
subleading D-wave interactions, it is essentially the same as
Weinberg counting at N3LO (Q4).

Toy models where a 1/r2 singular potential is perturbed by
1/r4 interactions provide useful insight, but the consequences
for more realistic cases have not yet been worked out [38]. A
follow-up KSW scheme has been pursued in Ref. [39], where
the short-distance singularity is tamed by the introduction
of a Pauli-Villars-like pion mass of about the ρ-meson
mass. An important prerequisite for specific calculations is
the perturbative renormalizability described in Ref. [42].
However, as we discussed in Ref. [36] the huge change needed
from the simple LO 1S0 phase to the real observed one does not
suggest any sort of small effect in the high-momentum region,
as nonperturbatively renormalized calculations suggest. As
already mentioned, this partial wave provides an important
contribution to the energy in nuclear matter.

Turning to nonperturbative schemes, it was noted in
Ref. [49] that off-shell properties of renormalized chiral
potentials do not look much different from more conventional
ones as the singularities are effectively removed. Furthermore,
we know that the inclusion of  degrees of freedom in
chiral potentials [10] leads to a pattern of better convergence,
where, for example, the NLO- and NNLO- deuteron does
exist [61], with an acceptable phenomenological success and
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where much larger and naively more natural momentum cutoff
values display a better convergence (see also the second listing
in Ref. [11], where � ∼ 1 GeV is taken). Actually, this is a case
where the discussion on renormalizability becomes pointless,
as the renormalized and the natural-sized cutoffs are not too far
apart, because finite cutoff effects are less important the more
singular the potential [36]. Indeed, at order ν in the chiral
counting the potential scales as 1/(�ν+2

χ r3+ν) and then the
finite cutoff correction, δ�(k), to the renormalized phase shifts,
δ∞(k), behaves as δ∞(k) − δ�(k) = O(�−1/2−ν/2) [36]. More-
over, unlike the -less renormalized scheme, the deuteron
D-state probability becomes PD ∼ 5.8%, a value comparable
to conventional and phenomenologically successful potentials.
According to our discussion, the corresponding wound integral
would be small enough to guarantee a good converging pattern
of few-body correlations in the nuclear many-body problem.
Thus, a G-matrix approach applied to chiral interactions
including -isobar degrees of freedom has some chance of
furnishing the multiple theoretical requirements of renormal-
izability, power counting for the potential (a la Weinberg), and,
presumably, convergence in the nuclear medium. At present it
is unclear whether such a scheme will be phenomenologically
successful, as the potentials do not contain the important
spin-orbit contributions and it remains to be seen if those can
be represented by appropriate counterterms.

V. CONCLUSIONS

In this work, we have renormalized the two-nucleon inter-
action at LO in ChPT using the scheme proposed by Nogga
et al. [31]—also known as modified Weinberg counting. With
this interaction, we have calculated the energy of symmetric
nuclear matter in the Brueckner pair approximation. We find
that the energy per nucleon as a function of nuclear matter
density converges to a cutoff-independent (i.e., renormalized)
result and shows saturation. The predicted value for the energy
per nucleon at saturation shows considerable underbinding,
which is in line with the converged LO prediction for the
triton binding energy in Ref. [31]. We demonstrate that
the LO interaction contains an unusually strong tensor force
(from pion exchange), which is the main reason for the
lack of binding in few- and many-body systems. In fact,
the tensor force is stronger than that of any NN potential
ever constructed in the 50-year history of realistic nuclear
forces.

The huge tensor force of the renormalized LO interaction
leads to the unusually large wound integral of 40% in
nuclear matter, which implies a very slow convergence of
the hole-line expansion and, similarly, the coupled-cluster ex-
pansion, rendering this interaction impractical for many-body
calculations.

It is well known from the meson theory of nuclear forces
that the tensor force produced by the pion needs to be damped
at short range (or high momenta). In conventional models,
this is achieved through πNN form factors and contributions
from heavy-meson exchange (particularly, ρ exchange). ChPT,
which does not include heavy mesons, provides a contact term
of tensor structure at NLO. Thus, a more realistic tensor force
may be expected at higher orders.

Several possible schemes for renormalization of the chi-
ral NN interaction that have recently been given serious
thought are designed to renormalize the LO interaction non-
perturbatively (as done in the present work) and to add
higher-order corrections in perturbation theory. However,
in view of the unusual properties of the renormalized LO
interaction and in view of the poor convergence of the
nuclear many-body problem with this interaction, there is
doubt whether this interaction and its predictions can serve
as a reasonable and efficient starting point that is improved
by perturbative corrections. To make the interaction more
suitable for many-body calculations, one may consider ap-
plying renormalization-group methods [64] to construct a soft
two-nucleon force (2NF) plus a three-nucleon force (3NF)
equivalent to the original LO interaction. Then there will
be no problem with the application of this “Vlow k” 2NF in
the many-body system. However, it may turn out that the
3NF (needed for proper equivalence with the original LO
interaction) is so strong that the issue is just shifted toward
a problem with the convergence of the 3NF contribution.
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APPENDIX: FINITENESS OF THE G MATRIX FOR
SINGULAR INTERACTIONS

In this Appendix, we show the finiteness of the G matrix
for singular interactions such as the 1PE potential for the
gap choice, Eq. (22) [48], which implies that the potential
energy is suppressed compared to the kinetic energy in the
high-momentum region. The idea underlying the proof is that
short-distance physics much below the healing distance [46]
does not depend on the Fermi momentum. It is convenient
to start with the extension of the G matrix to any arbitrary
energy z,

G(z) = V + V
Q

z − H0
G(z), (A1)

and rewrite this equation as

G(z)−1 = V −1 − Q

z − H0
. (A2)

The G matrix used in the main text, Eq. (17), corresponds to
taking z = w = e(m) + e(n). We now introduce the extended
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K matrix, defined as

K(z) = V + VP 1

z − t
K(z), (A3)

where P denotes the principal value and t is the kinetic energy
operator. The K matrix used in the text, Eq. (27), corresponds
to using z = wf = t(m) + t(n). Below threshold, the principal
value prescription can be removed, as the pole is never hit. This
equation can likewise be written as

K(z)−1 = V −1 − P 1

z − t
. (A4)

In Ref. [49] the finiteness of the K matrix off-shell for short-
distance singular interactions was established solely on the
basis of on-shell renormalization conditions. This means that
if K is finite on-shell, then the off-shell extension remains finite
as well. Note that the renormalization conditions are basically
equivalent to a fixed energy, for example, zero energy. Thus,
K will remain finite also below threshold. Taking z = w and
subtracting K(w)−1 from G(w)−1, we have (principal value

wherever necessary)

G(w) = K(w) + K(w)

×
[

Q − 1

w − H0
− 1

w − t
+ 1

w − H0

]
G(w). (A5)

In this equation, the regulator may be effectively removed
from the K matrix at the operator level even if the energy
w �= wf does not correspond to the scattering energy [49].
If the interaction is attractive, the single-particle potential
U (n) < 0 and w < wf and the (finite-cutoff) K(w) involves
states below threshold. As we see, the first integral involves
only states below the Fermi surface and is thus bound and
cutoff independent provided that kF � �. The only remaining
piece where the cutoff enters explicitly is in the last two terms
involving (w − H0)−1 − (w − t)−1, which, for the gap choice
[see Eq. (22)] [48], vanishes for states above the Fermi surface,
making the integral convergent as well. Thus, the finiteness of
the G matrix is reduced to the finiteness of the K matrix
off-shell.

[1] S. Weinberg, Physica A 96, 327 (1979).
[2] J. Gasser and H. Leutwyler, Ann. Phys. (NY) 158, 142

(1984).
[3] J. Gasser, M. E. Sainio, and A. Švarc, Nucl. Phys. B307, 779
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