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Interpretation of Coulomb breakup of 31Ne in terms of deformation
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The recent experimental data on Coulomb breakup of the nucleus 31Ne are interpreted in terms of deformation.
The measured large one-neutron removal cross section indicates that the ground state of 31Ne is either an s halo or
a p halo. The data can be most easily interpreted as the spin of the ground state being 3/2− coming from either the
Nilsson level [330 1/2] or the Nilsson level [321 3/2] depending on the neutron separation energy Sn. However,
the possibility of 1/2+ coming from [200 1/2] is not excluded. It is suggested that if the large ambiguity in
the measured value of Sn of 31Ne, 0.29 ± 1.64 MeV, can be reduced by an order of magnitude, say to be
±100 keV, one may get a clear picture of the spin-parity of the halo ground state.
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Recent experimental data obtained by using radioactive ion
beams reveal that the neutron numbers such as N = 8, 20,
and 28 are no longer magic numbers in some nuclei toward
the neutron drip line. Those neutron-rich nuclei can well be
interpreted as being deformed and are often called nuclei in
the island of inversion. One-neutron removal cross sections of
a very-neutron-rich nucleus 31Ne due to the Coulomb breakup
are reported in Ref. [1] and found to provide evidence of
the soft E1 excitation. The analysis of the cross section in
Ref. [1] is based on one-particle wave functions in the spherical
Woods-Saxon potential. It was concluded that the measured
large one-neutron removal cross sections were consistent
with a p3/2 or s1/2 neutron halo when a spectroscopic factor
considerably smaller than unity was introduced. The heaviest
halo nucleus so far experimentally established is 19C with
the ground-state spin of 1/2+, namely, an s-halo nucleus.
While the nucleus 19C may be interpreted as a spherical halo
nucleus, the data on 31Ne in Ref. [1] may be most easily
interpreted in terms of the deformation or the one-particle
motion in the deformed mean field, since the spin-parity of
the halo ground state cannot be 7/2−, which is expected
for the 21st neutron for spherical shape. We note that the
analysis of the spectroscopic data on light mirror nuclei,
25
12Mg13 and 25

13Al12, is successfully performed in Ref. [2] in
terms of the deformed mean field using Nilsson orbits occupied
by the 13th nucleon. In the present rapid communication
we attempt the interpretation of the data in Ref. [1] based
on a deformed mean field, using one-particle neutron wave
functions obtained by properly taking into account the weak
binding.

The measured low-excitation energies of the first 2+ state of
both 30Ne [3] and 32Ne [4] are consistent with the picture that
the Ne isotope with these neutron numbers lies inside the
island of inversion. Moreover, the large Coulomb breakup
cross section reported in Ref. [1], which clearly indicates
the halo nature of the ground state of 31Ne, suggests the
efficient contribution by an s or p component of the 21st
neutron in the deformed mean field. These observations invite
us to carry out the analysis of the data on 31Ne in terms of
deformation. It should be also noted that the measured spin

and magnetic moments of the ground state of 33
12Mg21, which

have the same neutron number N = 21, are reported in Ref. [5]
and are consistent with the interpretation of Iπ = 3/2−, while
both neighboring even-even nuclei, 32Mg and 34Mg, are well
interpreted as being deformed. However, since the neutron
separation energy of 33

12Mg21 is 2.22 MeV, a neutron halo is not
expected.

Low-lying states of odd-A medium-heavy deformed nuclei
are in a good approximation expressed by one (quasi)particle
moving in the deformed field produced by the even-even
core [2]. A one-particle picture works much better in deformed
nuclei than in spherical nuclei, because the major part of the
long-range residual interaction in the spherical mean field can
be included in the deformed mean field. In contrast, when
the spherical shell model is applied to nuclei in the island of
inversion, the resultant wave functions are not easy to predict
due to the complicated configuration mixing. Furthermore,
since harmonic-oscillator wave functions are always used
in the traditional shell model calculations, the applicability
of the calculations to the description of halo nuclei can be
questioned.

We start with our formulation for spherical shape. The
neutron bound-state wave function is an eigenfunction of the
Woods-Saxon potential with an energy eigenvalue ε < 0,
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We choose to express one-particle neutron wave functions in
the continuum using the real energy variable ε > 0,
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where µ expresses the reduced mass and
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h̄2 , (8)

while the normalization is expressed as∫ ∞

0
drR

(c)
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�j (ε′, r) = δ(ε − ε′). (9)

The B(E1) value of the E1 excitation from a bound one-
particle (jb) level to a continuum one-particle (jc) level keeping
the even-even core in the ground state as a spectator is written
as
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First, it is found that the Coulomb breakup by the soft E1
excitation of halo neutrons occurs far outside the nucleus 31Ne,
noting that no one-particle resonance with the relevant angular
momentum is present in the low-energy continuum. In Fig. 1
we plot the 2p3/2 radial wave function with the eigenenergy
εb = −300 keV, the continuum s1/2 radial wave function with
εc = +60 keV, and the product of those two wave functions
multiplied by the radial variable. The value of εc is chosen
as an example, because for εb = −300 keV the quantity in
Eq. (10) reaches the maximum around εc = +60 keV [6].
From Fig. 1 it is seen that the major part of the soft E1 matrix
element comes from the region of r = 8–40 fm, far outside of
the core nucleus 30Ne. A similar result is obtained also for soft
E1 excitations of the halo p neutron to continuum d levels,
though the Coulomb breakup cross section is much smaller
than that of the excitation to s levels. Both the tail shape and
the amplitude of the wave function of the halo neutron are
very important for the cross sections of the Coulomb breakup,
while the wave functions inside 31Ne may hardly play a role.

In the phenomena where the structure of deformed wave
functions plays a role, the expression in Eq. (10) is replaced by
the reduced matrix element in Eqs. (4-91) of Ref. [2] together
with Eqs. (1A-67) of Ref. [7]. Continuum one-particle wave
functions in a deformed mean field are calculated in terms
of eigenphase [8,9]. For given εc and �π values there are
a number of independent one-particle wave functions, the
number of which is equal to that of eigenphases, and all
possible contributions must be calculated and summed up.
However, when soft E1 excitations that produce such large
Coulomb breakup cross sections as those in Ref. [1] should
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FIG. 1. The integrand of the radial integral on the right-hand side
of Eq. (10) as a function of radial variable r . Namely, the product
(solid curve) of radial variable, the bound 2p3/2 radial wave function
R

(b)
2p3/2

(ε = −300 keV, r) (dashed curve) in units of fm−1/2, and the

continuum s1/2 radial wave function R(c)
s1/2

(ε = +60 keV, r) (dotted

curve) in units of fm−1/2 MeV−1/2. The unit of the ordinate is for the
product, while the figures written along the ordinate can be used also
for the radial wave functions, R(b)

2p3/2
and R(c)

s1/2
, in respective units. The

radial integration of the solid curve gives the radial matrix element
of the E1 transition, 2p3/2 → s1/2. The depth of the Woods-Saxon
potential is −46.75 MeV for which the eigenstate of the 2p3/2 neutron
is obtained at −300 keV, while the diffuseness and the radius used
are 0.67 and 3.946 fm (for A = 30), respectively.

be estimated, we may conveniently use the halo one-neutron
wave function taken from the s or p component of deformed
Nilsson levels (an approximation in terms of “spectroscopic
factor”), while one-particle wave functions in the continuum
are estimated for the spherical part of the Woods-Saxon
potential.

In Fig. 2, the Nilsson diagram is shown, of which the
parameters are approximately adjusted to the (30Ne + n)
system. The calculation was done in the same manner as
in Ref. [10]. At β = 0 the 1f7/2 one-neutron resonance is
found at 2.40 MeV with the width of 0.224 MeV, while neither
the 2p3/2 nor the 2p1/2 resonance defined by the eigenphase
formalism [8,9] is obtained. However, the complicated nonlin-
ear behavior of the [330 1/2] resonant level for 0.1 < β < 0.2
in the continuum (denoted by a dotted curve) indicates that the
resonantlike component with �π = 1/2− coming from 2p3/2

is present around the energy region. Indeed the 2p3/2 resonance
lying lower than the 1f7/2 one is found if we use a slightly
more attractive Woods-Saxon potential. For the parameters
used in Fig. 2 the Nilsson level that is to be occupied by the
21st neutron is [330 1/2] for 0.22 � β � 0.30, [202 3/2] for
0.30 � β � 0.40, [321 3/2] for 0.40 � β � 0.59, and [200
1/2] for β � 0.59. Varying the parameters of the one-body
potential within a reasonable range, any Nilsson levels other
than those four levels are hardly obtained for the 21st neutron.
The spin-parity of the lowest state is Iπ = 3/2− for [330 1/2]
due to the decoupling parameter lying between −2 (for p3/2)
and −4 (for the f7/2), 3/2+ for [202 3/2], 3/2− for [321
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FIG. 2. Neutron one-particle levels in Woods-Saxon potentials as
a function of quadrupole deformation parameter β. The potential
depth is approximately adjusted so that the 21st neutron of the
prolately deformed nucleus 31Ne can be a halo neutron. The depth,
the diffuseness and the radius of the potential are −39 MeV, 0.67 fm,
and 3.946 fm (for A = 30), respectively. Positive-parity levels are
plotted by solid curves, while asymptotic quantum numbers [N nz 


�] are denoted for bound levels. See the text for details.

3/2], and 1/2+ for [200 1/2]. Among those four Nilsson
orbitals the [202 3/2] level is excluded as a candidate for the
configuration of the ground state of 31Ne, because the smallest
orbital-angular-momentum in the wave function of [202 3/2]
is � = 2, which makes very little halo. Examining Fig. 2 we
may also note that the presence of 31Ne inside the neutron drip
line is possibly realized by the deformation which is created
by the Jahn-Teller effect due to the near degeneracy of 1f7/2,
2p3/2, and 2p1/2 shells in the continuum for spherical shape.

In Figs. 3(a) and 3(b) the probabilities of appreciable
components of the [330 1/2] and [321 3/2] levels calculated at
β = 0.3 and 0.5, respectively, are shown, while the channels
of p1/2 (only in [330 1/2]), p3/2, f5/2, f7/2, h9/2, and h11/2 are
included in the calculation. The radius of the Woods-Saxon
potential is fixed, while the depth is adjusted so as to obtain
respective Nilsson levels as eigenstates of the deformed
potential. As shown in Refs. [11,12], the p components in
�π = 1/2− and 3/2− Nilsson levels increase as the binding
energies approach zero, though the probabilities at zero
energies depend on Nilsson levels. This is in contrast to the fact
that the probability of the s component in �π = 1/2+ Nilsson
levels becomes always unity as the binding energy approaches
zero. For example, at ε� = −300 keV the probability of the
p3/2 component in the [330 1/2] level for β = 0.3 and the
[321 3/2] level for β = 0.5 is 0.5225 and 0.2534, respectively.
For reference, at ε� = −300 keV the probability of the s1/2

component in the [200 1/2] level for β = 0.5 is 0.67.
Now, for example, the shape of the radial wave function

of the p3/2 component of [330 1/2] at β = 0.3 is not the
same as that of the bound 2p3/2 level, even if both [330 1/2]
and 2p3/2 levels are calculatd at the same energy, because
the latter is an eigenstate of a given spherical potential while
the former is not. Moreover, two different spherical potentials

R = 3.946 fm  (A = 30)        β = 0.5 

(b)  Probabilities of major components of the [321 3/2] level 

f7/2 

p3/2 

h11/2 f5/2 

-10 -9 -8 -7 -6 -5 -4 -
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

εΩ  (MeV) 

pr
ob

ab
ili

ty
 

R = 3.946 fm  (A = 30)        β = 0.3 

(a)  Probabilities of major components of the [330 1/2] level 

f7/2 

p3/2 

p1/2 f5/2

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

3 -2 -1 0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

  

pr
ob

ab
ili

ty
 

FIG. 3. (a) Calculated probabilities of the major components of
the [330 1/2] level with β = 0.3 as a function of energy eigenvalue ε�.
(b) Calculated probabilities of the major components of the [321
3/2] level with β = 0.5 as a function of energy eigenvalue ε�. The
potential depth is adjusted to obtain respective ε� values as energy
eigenvalues of the deformed potential. The diffuseness and the radius
of the potential are 0.67 and 3.946 fm (for A = 30), respectively.

lead to different radial wave functions of s1/2 at a given
energy in the continuum. These differences may induce a
nonnegligible change in the resulting B(E1) values, even after
the normalization of the 2p3/2 wave function is adjusted to be
the same as the probability of the p3/2 component in [330 1/2].
In Fig. 4 we show the squared radial integral on the right-hand
side of Eq. (10) as a function of the continuum s1/2 energy
εc, which is calculated using the following two kinds of p3/2

bound-state wave functions: (i) the 2p3/2 wave function with
the energy eigenvalue −300 keV for a spherical potential and a
normalization of 0.5225; (ii) the p3/2 component of [330 1/2]
which has the energy of −300 keV in the deformed potential
with β = 0.3. The difference between the two radial wave
functions, 2p3/2 in (i) and p3/2 in (ii), disappears quickly
outside the nuclear radius. The appreciable difference in
dB(E1)/dE values of the two cases appears only for small
εc values, and the integration of the two curves over εc up till
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and continuum s1/2 with  εc
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FIG. 4. Estimate of | ∫ r dr R(b)
p3/2

(−300 keV, r) R(c)
s1/2

(εc, r)|2 on
the right-hand side of Eq. (10) as a function of εc. The solid curve
is obtained by using the p3/2 wave function taken from the p3/2

component of the [330 1/2] level, which is bound at −300 keV for
β = 0.3. The probability of the p3/2 component is 0.5225. The dotted
curve is calculated using the 2p3/2 wave function with the energy
eigenvalue −300 keV, which is normalized to 0.5225. The depth of
the Woods-Saxon potential of the former is −38.39 MeV, while that
of the latter is −46.75 MeV.

2 MeV gives a difference of about 15%. Generally speaking,
if we replace the p3/2 component of the [330 1/2] level or
the [321 3/2] level by the 2p3/2 wave function with the
same neutron binding and normalization, the E1 transition
2p3/2 → s1/2 has a larger B(E1) value than that of p3/2 →
s1/2. “Larger” or “smaller” depends on whether the spherical
(2p3/2) eigenstate lies energetically higher or lower than the
one-particle level in the Nilsson diagram for the relevant value
of β �= 0. The larger the energy difference, the larger the
difference in the B(E1) values appears, which comes from
the different radial shape of the two wave functions.

By combining Figs. 3(a) and 3(b) with Fig. 2 of Ref. [1],
for a given Sn value we may find the relevant Nilsson level and
the spin-parity of the ground state of the halo nucleus 31Ne,
which are consistent with the observed Coulomb breakup cross
section. It is noted that the strong εb dependence of the radial
integral in Eq. (10) coming from the weakly bound p3/2 or
s1/2 neutron wave function is already taken care of in Fig. 2 of
Ref. [1]. After taking into account both possible ambiguities in

the parameters of the one-body potential and the approxima-
tion in terms of the “spectroscopic factor” of s or p neutrons,
we may conclude at least the following; The ground state has
Iπ = 1/2+ coming from the Nilsson level [200 1/2] if Sn

is appreciably larger than 500 keV. In this case the relevant
deformation is expected to be very large, β � 0.6. If Sn is
smaller than 500 keV, the ground state can be a p-wave halo
and Iπ = 3/2−. If Sn is smaller than 200 keV, the relevant
Nilsson level may be [321 3/2]. Otherwise, it is [330 1/2].

Improving the accuracy of the measured Sn value to much
better than that of the available value [13], Sn = 0.29 ±
1.64 MeV, can clarify the Iπ value when it is combined
with the data in Ref. [1]. On the other hand, for example,
the measurement of the magnetic moment of 31Ne may not
clearly pin down the spin-parity, since the estimated magnetic
moment coming from the N = 21st neutron in a deformed
core is anyway negative and lies in the range of −0.4 �
µ/µN � −1.0 for possible states with Iπ = 3/2− coming
from either [330 1/2] or [321 3/2] Nilsson orbits and those
with Iπ = 1/2+ from [200 1/2].

In the present analysis the possibility of excited states of
30Ne after the Coulomb breakup is not included; however,
the related Coulomb breakup cross section is relatively small
and lies within the ambiguities in the model calculation. The
possible many-body pair correlation is not included either. This
is because, first of all, the halo neutron wave-function extends
so much beyond the core nucleus that it couples weakly to
the pairing field provided by the well-bound core nucleons.
Second, in the ground state of odd-N nuclei the relevant
neutron single-particle energy lies very close to the Fermi
level. Then, irrespective of the nature of one-particle orbits,
the occupation probability of the doubly degenerate neutron
level obtained from solving the Hartree-Fock-Bogoliubov
equation is approximately equal to 0.5 [14,15]. Therefore, the
contribution of halo neutrons to the Coulomb breakup which
is estimated in the present article is expected to work as a first
approximation.

In conclusion, it is shown that the observed large Coulomb
breakup cross section of 31Ne in Ref. [1] is interpreted most
easily and simply in terms of p-wave neutron halo together
with the deformed core 30Ne. The measurement of Sn with an
accuracy much better than that of the presently available one
will clarify the spin-parity of the ground state of 31Ne.

Fruitful discussions with Professor T. Nakamura are much
appreciated.
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