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Calculation of the cross section and the transverse-longitudinal asymmetry of the process
3He(e,e′p) pn at medium energies within the unfactorized generalized Glauber approach
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The cross section and the transverse-longitudinal asymmetry ATL of the three-body breakup process
3He(e,e′p)pn have been calculated by a parameter-free approach based upon realistic few-body wave functions
corresponding to the AV18 interaction, treating the rescattering of the struck nucleon within the unfactorized
generalized eikonal approximation. The results of calculations exhibit a good agreement with recent JLab
experimental data and show the dominant role played by the final state interaction, which, however, in the region
of missing momentum, 300 � pm � 600 MeV/c, and removal energy corresponding to the two-body kinematic
peak and higher, Em � p2

m/4mN , is dominated by single-nucleon rescattering, providing evidence that the final
state interaction is mainly due to the one between the struck nucleon and a nearby correlated one.
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The exclusive reaction A(e,e′p)X, when an energetic
electron knocks out quasielastically from the nucleus A a
proton p, which is detected in coincidence with the scattered
electron e′, has provided in the past extremely rich information
on shell-model single-particle (s.p.) properties, like the low
momentum part of s.p. wave functions and the corresponding
s.p. energies (see, e.g., Ref. [1]). Nowadays, the possibility
to perform exclusive experiments at high-momentum transfer
makes the A(e,e′p)X process a powerful tool to investigate
also those nuclear properties that are expected to exhibit
deviations from independent particle motion, generated by
short-range correlations (SRC) that should arise when two or
more nucleons approach the range of the intermediate-distance
tensor and short-distance repulsive nucleon-nucleon (NN )
forces. Obtaining information on SRC in nuclei is a primary
goal of modern nuclear physics [2], because not only would
the detailed knowledge of SRC help to firmly establish the
limits of validity of the standard model of nuclei, based on the
assumption of pointlike nucleons interacting via two- and
three-body interactions, but it would also have a strong
impact on various fields of physics, like, to cite only a few
examples, quark physics and QCD, the structure and properties
of dense matter (e.g., neutron stars), relativistic heavy-ion
collisions, and high-energy scattering processes [3]. Recently,
a combined analysis of A(e,e′p)X and related processes on the
12C nucleus at high-momentum transfer provided quantitative
evidence on SRC (see Ref. [4] and references therein quoted)
and has, at the same time, triggered intensive theoretical
and experimental activities. Extracting information on SRC
from (e,e′p)X processes is, however, no easy task, because
reconstructing the initial behavior in the nucleus of the detected
proton is strictly possible only within the so-called plane
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wave impulse approximation (PWIA), that is, by assuming
that when the proton is instantaneously removed from the
nucleus it leaves it without any further interaction with
the medium. In reality, final state interaction (FSI) effects of
the proton with the medium (together with other effects, such
as meson exchange currents (MEC), isobar production, etc.)
may be very important (see, e.g., Ref. [5]). Nonetheless, by
choosing proper kinematics these effects can be minimized
and relevant information on bound nucleon dynamics can
be obtained. Cross-section calculations based upon realistic
correlated wave functions for initial and final states, coupled
with sound models for the treatment of FSI, would help to
choose the correct kinematics and will make the interpretation
of the experimental data free from ambiguities. In this respect,
few-nucleon systems represent an ideal test ground for any
theoretical approach of the exclusive A(e,e′p)X process,
because various realistic microscopic approaches to generate
initial and final nuclear wave functions are at our disposal. In
our previous work [6] we calculated the cross section of the
two-body breakup channel (2BBU), 3He(e, e′p)2H, and the
three-body breakup channel (3BBU), 3He(e, e′p)np, recently
measured at JLab [7] in the range 0 � pm � 1000 MeV/c;
here pm ≡ |pm| is the three-momentum of the undetected
system X (2H or pn) that, within the PWIA, equals the
momentum that the proton had before interaction with the
virtual photon. In Ref. [6] a parameter-free theoretical ap-
proach has been used in which: (i) initial state correlations
(ISC) in the target nucleus 3He have been taken care of
by using state-of-the-art few-body wave functions obtained
[8] by a variational solution of the Schrödinger equation
containing realistic nucleon-nucleon interactions [9], and
(ii) FSI have been treated by a generalized eikonal approx-
imation (GEA) [10], which represents an extended Glauber
approach (GA) based upon the evaluation of the relevant
Feynman diagrams, which describe the rescattering of the
struck nucleon in the final state, in analogy with the Feynman
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diagrammatic approach developed for the treatment of elastic
hadron-nucleus scattering [11,12]. Calculations of Ref. [6]
have been, however, performed within the factorization ap-
proximation (FA), that is, by writing the electron-nucleus cross
section as a product of the off-shell electron-proton cross
section and a distorted nuclear structure function, which is
strictly valid only within the PWIA. The approach of Ref. [6]
has been improved in Ref. [13] where the results of the
calculation based upon an unfactorized generalized eikonal
approximation (UGEA) of the 2BBU channel 3He(e, e′p)2H
have been presented, showing that: (i) the FSI of the struck
proton in the 2BBU channel can satisfactorily be described
within single and double rescattering of the struck proton
(cf. Fig. 1 of Ref. [13]); (ii) the low-momentum part (pm �
300 MeV/c) of the cross section is practically not affected by
FSI and can even be described within the FA; on the contrary
at 300 � pm � 1000 MeV/c, FSI becomes very important,
particularly at “negative” values of the missing momentum
(when φ, the angle between the scattering and reaction planes,
equals zero), and the FA breaks down (cf. Fig. 2 of Ref. [13]);
(iii) in the region 300 � pm � 700 MeV/c the effects of FSI
are almost entirely exhausted by single rescattering (cf. Fig. 2
of Ref. [13]); and (iv) the transverse-longitudinal asymmetry
ATL is extremely sensitive to FSI and cannot be explained
within the FA (cf. Fig. 3 of Ref. [13]). In the present article
the results of UGEA for the 3BBU channel 3He(e, e′p)pn

are presented and compared with the experimental data
of Ref. [14]. By considering the general case of a target
nucleus A, the relevant quantities that characterize the process
A(e,e′p)(A − 1) are the energy and momentum transfer ν

and Q2, respectively, the missing momentum pm = q − p1
(i.e., the momentum of the recoiling system A − 1), and
the missing energy Em =

√
P 2

A−1 + mN − MA = ν − TA−1 −
T p1

= |EA| − |EA−1| + E∗
A−1 = Emin + E∗

A−1. Here, p1 is
the momentum of the detected proton, EA(EA−1) the (negative)
ground state energy of the target (recoiling) nucleus, and
E∗

A−1 the intrinsic excitation energy of the latter (E∗
A−1 =

Em − |Emin|). The cross section of the process has the form

d6σ

d�′dE′d�p1dEp1

=
∣∣∣∣∣∣

p2
1

|p1|
Ep1

+ |p1|−|q| cos θ

E∗
A−1

∣∣∣∣∣∣
dEm

dEp1

σMott

×
∑

i

ViW
A
i (ν,Q2, pm,Em), (1)

where i ≡ {L, T, TL, TT}, Vi are kinematical factors, and the
nuclear structure functions WA

i result from proper combi-
nations of the polarization vector of the virtual photon, ε

µ
λ ,

and the hadronic tensor, WA
µν , the latter depending upon the

nuclear current operators Ĵ A
µ (0). We consider the interaction

of the incoming virtual photon γ ∗ with a bound nucleon (the
active nucleon) of low virtuality (p2 ∼ m2

N ) in the quasielastic
kinematics, that is, corresponding to x ≡ Q2/2mNν ∼ 1. In
quasielastic kinematics, the virtuality of the struck nucleon
after γ ∗ absorption is also rather low and, provided p1 is
sufficiently high, nucleon rescattering with the “spectator”
A − 1 can be described to a large extent in terms of multiple
elastic scattering processes in the eikonal approximation.
Let us now consider the process 3He(e,e′p)pn. In coordi-

nate representation the initial three-body wave function is
	1/2,M3 (r1, r2, r3), whereas the wave function of the final
state is


∗
f = Â

[
SFSI

� (r1, r2, r3)e−ip1r1e−ipm(r 2+r 3)/2

×	
krel∗
Sf σf

(r2 − r3)χ+
1
2 ,λf

]
, (2)

where Â is a proper antisymmetrization operator, 	
krel∗
Sf σf

(r2 −
r3) describes the relative motion of two interacting particles in
the continuum, and, eventually, χ 1

2 ,λf
is the spin wave function

of the struck nucleon and

SFSI
� (r1, r2, r3) = 1 + T FSI

(1) (r1, r2, r3) + T FSI
(2) (r1, r2, r3)

(3)

is the GEA S matrix, which describes both the case of
no FSI and single and double rescattering of the struck
nucleon off the spectator nucleons [6,10]. By introducing the
corresponding Jacobi coordinates R, ρ, and r , the relevant
matrix elements can be computed solely in terms of relative
coordinates ρ and r . For ease of presentation we give explicit
expressions of the single rescattering contribution only, which
has the form T FSI

(1) (ρ, r) = −∑3
i=2 θ (zi − z1)ei�z(zi−z1)
(b1 −

bi), where r i ≡ (zi, bi). It can be seen that, unlike the usual
GA, the GEA S matrix gets also a contribution from a parallel
momentum �z of pure nuclear origin depending upon the
external kinematics and the removal energy of the struck
proton (within the “frozen approximation” �z = 0, and the
usual Glauber profile is recovered). By assuming that the
nuclear current operator is a sum of nucleonic currents jµ(i),
its matrix elements resulting from Feynman diagrams can be
written in momentum space as follows:

J 3
µ =

∑
λ

∫
dp

(2π )3

dκ

(2π )3
SFSI

� ( p, κ)〈λf |jµ(κ − pm; q)|λ〉

×O( pm − κ, p, krel;M3, Sf , σf , λ)

= J 3(PWIA)
µ + J 3(1)

µ + J 3(2)
µ , (4)

where SFSI
� ( p, κ) = ∫

d rdρe−ipreiκρSFSI
� (ρ, r) is the Fourier

transform of the GEA S matrix [Eq. (3)], O is the nuclear
overlap in momentum space,

O( pm − κ, p, krel;M3, Sf , σf , λ)

=
∫

dρdrei(pm−κ)ρeipr	 1
2 ,M3

(ρ, r)	krel∗
Sf ,σf

(r)χ †
1
2 λ

,

(5)

and, eventually, 〈λf |jµ(κ − pm; q)|λ〉 is the nucleon current
operator, with λ and λf being the spin projections of the struck
proton before and after γ ∗ absorption. Note that in Eq. (5)
the quantity κ − pm ≡ k1 represents exactly the momentum
of the struck proton before the electromagnetic interaction,
with κ being the momentum transfer in single rescattering.
It is worth emphasizing that, because our calculations are
performed in momentum space, nonrelativistic reduction of
the current operator jµ is not needed. In the absence of any
FSI the momentum space S matrix is SFSI

� (κ, p) =
(2π )6δ(κ)δ(p) and only the PWIA contribution J 3(PWIA)

µ

survives in Eq. (4). When FSI is active, the contributions from
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single and double rescattering must be taken into account. Let
us consider the former: it results from the single-scattering
momentum space term of SFSI

� ( p, κ), which has the following
form,

T FSI
(1) ( p, κ) = (2π )4

k∗
fNN (κ⊥)

κ || + �z − iε

×
[
δ
(

p − κ

2

)
+ δ

(
p + κ

2

)]
, (6)

where fNN (κ⊥) [the Fourier transform of the profile function

(b)] represents the elastic scattering amplitude of two
nucleons with center-of-mass momentum k∗. Placing Eq. (6)
in Eq. (4) the single-scattering contribution J 3(1)

µ to the nuclear
current is obtained as follows,

J 3(1)
µ =

∑
λ

∫
dκ

(2π )2k∗ 〈λf |jµ(k1; q)|λ〉 fNN (κ⊥)

κ || + �|| − iε

×
[
O

(
−k1,

κ

2
;M3, Sf , σf , λ

)

+O
(
−k1,−κ

2
;M3, Sf , σf , λ

)]
, (7)

where k1, as already mentioned, is the momentum of the
proton before γ ∗ absorption and κ = k1 + q − p1 = k1 +
pm is the momentum transfer in the NN rescattering.
The longitudinal part of the nucleon propagators has been
computed using the relation [κ || + �z ± iε]−1 = ∓iπδ(κ || +
�z) + PV [κ || + �z]−1. Note that in the eikonal approxima-
tion the trajectory of the fast nucleon is a straight line so
that all “longitudinal” and “perpendicular” components are
defined with respect to this trajectory, which means that
the z axis must be directed along the momentum of the
detected fast proton. Looking at the structure of Eq. (7), it
can be seen that, due to the coupling of the nucleonic current
operator 〈λf |jµ(k1; q)|λ〉 with the nuclear overlap integral,
a factorized form for Eq. (7) cannot be obtained; the same
holds for the double-scattering contribution and, consequently,
for the cross section. However, as shown in Ref. [6], if the
longitudinal part of the nucleonic current can be disregarded,
the factorization form can approximately be recovered. Using
the aforementioned formalism, and including the contribution
from double rescattering, J 3(2)

µ , the cross section [Eq. (1)] and
the left-right asymmetry defined by

ATL = dσ (φ = 0◦) − dσ (φ = 180◦)

dσ (φ = 0◦) + dσ (φ = 180◦)
(8)

have been calculated. Following de Forest’s prescription [15],
the “CC1” form of the nucleon current operator has been
adopted; the elastic amplitude fNN has been chosen in the
usual form fNN (κ⊥) = k∗ σ tot(i+α)

4π
e−b2κ2

⊥/2, where the slope
parameter b, the total nucleon-nucleon cross section σ tot, and
the ratio α of the real to the imaginary parts of the forward
scattering amplitude were taken from the world’s experimental
data. The results of our calculations are shown in Figs. 1, 2,
and 3. In Fig. 1 the full unfactorized cross section at two
values of pm is compared with the PWIA result and with the
experimental data; in this figure the role played by single and
double rescattering is clearly illustrated. In Fig. 2 the factorized
and unfactorized results are compared at pm = 440 MeV/c

FIG. 1. The differential cross section [Eq. (1)] for the process
3He(e, e′p)pn calculated at two values of the missing momentum
versus the excitation energy of the two-body final state E∗

2 = Em −
Emin (Emin = 2mp + mn − M3). Dotted lines, PWIA approximation;
dashed and solid lines, unfactorized calculations with single and
double rescattering in the final state, respectively. Experimental data
are from Ref. [14].

(similar results are obtained at higher values of pm). Finally
in Fig. 3 the asymmetry ATL is exhibited. As in Ref. [13], no
approximations have been made in the evaluation of the single-
and double-rescattering contributions: intrinsic coordinates
have been used and the energy dependence of the profile
function has been taken into account in the properly chosen
CM system of the interacting pair. Note that the experimental
kinematics has been intentionally chosen so as to cover
the theoretically predicted two-nucleon correlation region
characterized by a peak position given by E∗

2 = Em − Emin ∼
2mN

{√
(1/2)[1 +

√
1 + (pm/mN )2] − 1

} → p2
m/4mN in the

nonrelativistic limit. It can be seen that the location of the ex-
perimental peaks agrees with such a prediction. The amplitude
of the peak is largely affected by FSI, whose inclusion brings
the theoretical calculation into very good agreement with the
experimental data. The relevant effects of FSI can be explained
by the fact that the kinematics of the experiment is such

FIG. 2. Comparison at pm = 440 MeV/c of the results of calcu-
lations performed within the unfactorized approach (NFA) and the
factorization approximation (FA).
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FIG. 3. The ATL asymmetry [Eq. (8)] calculated in correspon-
dence of two values of pm versus the excitation energy of the two-body
final state. The solid line includes both single and double scattering.

that the missing momentum is always almost perpendicular
to the momentum of the final proton and FSI is maximized.
Concerning the effects of the latter, an interesting observation
is in order: it can be seen that in the region of the correlation
peak, and at higher values of E∗

2 , the effects from double
rescattering are very tiny; the same appears to be the case in the
2BBU channel at 300 � pm � 700 MeV/c. We consider this
as more evidence that in these regions of missing momentum
and energy FSI mainly occurs within the correlated pair. In
Fig. 2 the factorized and unfactorized results are compared
at pm = 440 MeV/c; it can be seen that the unfactorized
calculation differs by 5–7% from the factorized one and better
agrees with the experimental data. Eventually, in Fig. 3 the
transverse-longitudinal asymmetry ATL [Eq. (8)], calculated
within the PWIA and taking into account FSI, is presented.
It is well known that, when the explicit expressions of Vi

and WA
i are placed in Eq. (8), the numerator is proportional

to the transverse-longitudinal response WTL, whereas the
denominator does not contain WTL at all, which means that
ATL is a measure of the relevance of the transverse-longitudinal
response relative to the other responses. In the eN cross section
the behavior of the asymmetry ATL is known to be a negative
and decreasing function of the missing momentum [15] and
the same behavior should be expected in eA scattering within
the PWIA. The asymmetry presented in Fig. 3 clearly shows
that a measurement of the 3BBU channel at φ = 0◦ would
provide results not very different from the ones obtained at
φ = 180◦. To sum up, we have calculated in momentum space
the cross section of the processes 3He(e,e′p)pn, using realistic
ground-state two- and three-body wave functions, treating the

FSI of the struck nucleon with the spectator nucleon pair
within the generalized eikonal approximation. As in the case of
the 2BBU calculation [13], our approach is a parameter-free
one, for it only requires the knowledge of the nuclear wave
functions, the FSI factor being fixed directly by NN scattering
data. At the same time, calculations are very involved mainly
because of the complex structure of the wave function of
Ref. [8], which has to be first transformed to momentum space
and then used in the calculations of multidimensional integrals,
including also the computation of principal values. The main
results of our calculations can be summarized as follows:
(i) a good agreement between theoretical calculations and
experimental data on the 3BBU process 3He(e,e′p)pn has been
achieved; (ii) FSI effects are very relevant, but in the region

of the “correlation peak” (E∗
2 � p2

m

4m
) and at higher values of

removal energies (E∗
2 � p2

m

4m
), they can be accounted for by

single rescattering, the double-rescattering contribution being
negligible, which means that, within the Glauber approach, the
struck, or “active,” particle is within the short range of nuclear
force, whereas the third particle is outside it; this represents
an implicit demonstration that at high-momentum transfer, the
final state interaction is mainly concentrated in the correlated
pair; (iii) factorized and unfactorized results may differ at
φ = 180◦ by at most 10%; and (iv) the ATL asymmetry is in
qualitative agreement with unpublished experimental results
[16]. In closing the present article, we would like once again
to point out (see Ref. [13]) that unfactorized calculations for
complex nuclei within particular models of the ground-state
wave functions are nowadays a common practice (see, e.g.,
Ref. [5] and references therein quoted), whereas in the case of
few-body systems described by realistically correlated wave
functions they are very involved and not so common. As a
matter of fact, in the case of the 3He(e,e′p)X process, besides
our calculations, to our knowledge only two other ones have
been published: the one of Ref. [17], similar in spirit to
our approach, but where only the 2BBU channel has been
considered, and the one of Ref. [18] where both the 2BBU and
3BBU have been calculated within the diagrammatic approach
of Ref. [19], obtaining a good agreement with the experimental
data by an alternative three-body mechanism that differs from
the two-body Glauber rescattering of our approach.

The authors are indebted to the Pisa Group for making
available the variational three-body wave functions. Thanks
are due to S. Gilad, A. Saha, M. Sargsian, S. Scopetta, and
M. Strikman for useful discussions. L.P.K. is indebted to the
Italian Ministry of University and Research (MIUR) for a grant
within the program “Rientro dei Cervelli.” M.A. is supported
by the DOE under Contract DE-FG02-93ER40771. We thank
the DEISA Consortium (www.deisa.eu), co-funded through
the EU FP6 project RI-031513, and the FP7 project RI-222919,
for support within the DEISA Extreme Computing Initiative.

[1] S. Frullani and J. Mougey, Adv. Nucl. Phys. 14, 1 (1984).
[2] DOE/NSF Nuclear Science Advisory Committee (2008), The

Frontiers of Nuclear Science, arXiv:0809.3137 [nucl-ex].

[3] L. L. Frankfurt, M. Sargsian, and M. I. Strikman, Int. J. Mod.
Phys. A 23, 2991 (2008).

[4] R. Subedi et al., Science 320, 1476 (2008).

021001-4



RAPID COMMUNICATIONS

CALCULATION OF THE CROSS SECTION AND THE . . . PHYSICAL REVIEW C 81, 021001(R) (2010)

[5] M. Iodice et al., Phys. Lett. B653, 392 (2007); S. Janssen, Jan
Ryckebusch, Wim Van Nespen, and Dimitri Debruyne, Nucl.
Phys. A672, 285 (2000).

[6] C. Ciofi degli Atti and L. P. Kaptari, Phys. Rev. C 71, 024005
(2005); Phys. Rev. Lett. 95, 052502 (2005).

[7] M. M. Rvachev et al., Phys. Rev. Lett. 94, 192302 (2005).
[8] A. Kievsky, S. Rosati, and M. Viviani, Nucl. Phys. A551, 241

(1993); (private communication).
[9] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C

51, 38 (1995).
[10] L. L. Frankfurt, M. M. Sargsian, and M. I. Strikman, Phys. Rev.

C 56, 1124 (1997).

[11] V. N. Gribov, Sov. Phys. JETP 30, 709 (1970).
[12] L. Bertocchi, Nuovo Cimento A 11, 45 (1972).
[13] C. Ciofi degli Atti and L. P. Kaptari, Phys. Rev. Lett. 100, 122301

(2008).
[14] F. Benmokhtar et al., Phys. Rev. Lett. 94, 082305

(2005).
[15] T. de Forest, Jr., Nucl. Phys. A392, 232 (1983).
[16] F. Benmokhtar, Ph.D. thesis, New Brunswick, New Jersey, 2004.
[17] R. Schiavilla, O. Benhar, A. Kievsky, L. E. Marcucci, and

M. Viviani, Phys. Rev. C 72, 064003 (2005).
[18] J.-M. Laget, Phys. Rev. C 72, 024001 (2005).
[19] J.-M. Laget, Nucl. Phys. A579, 333 (1994).

021001-5


