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The solutions analytically derived by W. Glockle, J. Golak, R. Skibinski, and H. Witala [Phys. Rev. C 79,
044003 (2009)] for the three-dimensional wave function and on-shell ¢ matrix in the case of scattering on a
sharply cut-off Coulomb potential appear to be fallacious if finite values of a cut-off radius are concerned. And
the analysis carried out for an infinite cut-off radius limit is incomplete.
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In a recent article [1], nonrelativistic scattering of two
equally charged particles with mass m interacting via potential
Vir)= é@(R —r) was considered. It was stated that the
exact wave function and scattering amplitude were analytically
derived for arbitrary values of a cut-off radius R. On this basis
a renormalization factor that relates the scattering amplitude
in the limit R — oo with the physical Coulomb scattering
amplitude was obtained. The purpose of this Comment is
threefold: (i) to point out that the analytical results of Ref. [1]
are erroneous for finite values of R, (ii) to show that the analysis
performed there for the limit R — oo lacks completeness, and
(iii) to indicate a different renormalization approach that is free
from uncertainties associated with the cut-off renormalization.

In Ref. [1] the solution of the Lippmann-Schwinger
equation for < R was incorrectly assumed to be of the form
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where n = ”;—;2 is a Sommerfeld parameter. The constant!
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was determined in Ref. [1] by inserting Eq. (1) into the
Lippmann-Schwinger equation,
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and solving the latter at r = 0. The correct form of the solution
in the interior region r < R is
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where the function A.A(l%) is deﬁped on a unit sphere. To
demonstrate that A(k) # 4w A8%(k — p), that is, that Eq. (4)
does not reduce to Eq. (1), one may employ the usual partial
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wave formalism (see, for instance, Ref. [2]). Consider the
following expansion in Legendre polynomials:

A(ky =Y @1+ DA P(p - k). (5)
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Matching the interior Lippmann-Schwinger solution and its
derivative to the exterior ones at » = R yields
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where h;l) is a spherical Hankel function of the first kind [3]
and
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with the Coulomb phase shift o; = argl’(/ + 1 + in). It can be
checked that Ag = A but A;>; # A; that is, Eq. (1) is invalid
for any finite value of R. The expression for the scattering
amplitude (the on-shell + matrix) obtained in Ref. [1] for the
case of finite values of R is invalid as well, because it derives
from the wave function (1).

In the following, we discuss the limit R — oo considered
in Ref. [1]. The wave function (1) can be presented as the
product Cr¥"), where Wt is a Coulomb wave and Cr is a
constant (Cg_, o — €~ 1MC2PR)) The Coulomb wave satisfies
a homogeneous Lippmann-Schwinger equation [4]:
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Let us introduce an auxiliary function which is a difference
between the exact wave function (4) and the wave function (1)
in the limit R — oo:

VR() = W) — e MO, (8)

According to Egs. (3) and (7), this function satisfies the
following equation (r < R):
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with the inhomogeneous term
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For r <« R one has approximately
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and thus it can be shown that wl(eo)(F) ~ (0. However this

observation does not imply that %(eo) (F) ~ 0forany r < R.In

fact, the situation is nontrivial in the region r < R (within the
partial wave formalism this amounts to the [ < pR terms [5]).
Using Eq. (8), the scattering amplitude can be presented as
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where p’ = p#. The asymptotic behavior of the first term was
examined in Ref. [1] but the second term was not considered
there at all. However, because of nontrivial properties of ¥/ in
the region r < R, the latter term might yield a nonvanishing
contribution to the scattering amplitude in the limit R — oo.
Thus, the analysis of the case R — oo carried out in Ref. [1]
is incomplete and the obtained renormalization factor requires
more rigorous substantiation.

Finally, it is useful to note that the renormalization treat-
ments involving cut-off Coulomb potentials are of doubtful
value from a practical viewpoint, especially in the case of
many-body Coulomb scattering. In this respect, the methods
based on regularization and renormalization of the Lippmann-
Schwinger equations in the on-shell limit are more efficient.
The two-particle case is fully explored: (i) the Green’s function
is derived analytically both in coordinate and in momentum
representations [6], (ii) an off-shell amplitude is known [7], and
(iii) the rules for taking the on-shell limit are formulated [8].
The two-particle results can be straightforwardly generalized
to the many-particle case (see, for example, Ref. [9]).

We thank Sergue I. Vinitsky for drawing our attention
to the article [1] and Akram Mukhamedzhanov for useful
discussions.
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