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Comment on “Exact three-dimensional wave function and the on-shell t matrix for the sharply
cut-off Coulomb potential: Failure of the standard renormalization factor”
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The solutions analytically derived by W. Glöckle, J. Golak, R. Skibiński, and H. Witala [Phys. Rev. C 79,
044003 (2009)] for the three-dimensional wave function and on-shell t matrix in the case of scattering on a
sharply cut-off Coulomb potential appear to be fallacious if finite values of a cut-off radius are concerned. And
the analysis carried out for an infinite cut-off radius limit is incomplete.
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In a recent article [1], nonrelativistic scattering of two
equally charged particles with mass m interacting via potential
V (r) = e2

r
�(R − r) was considered. It was stated that the

exact wave function and scattering amplitude were analytically
derived for arbitrary values of a cut-off radius R. On this basis
a renormalization factor that relates the scattering amplitude
in the limit R → ∞ with the physical Coulomb scattering
amplitude was obtained. The purpose of this Comment is
threefold: (i) to point out that the analytical results of Ref. [1]
are erroneous for finite values of R, (ii) to show that the analysis
performed there for the limit R → ∞ lacks completeness, and
(iii) to indicate a different renormalization approach that is free
from uncertainties associated with the cut-off renormalization.

In Ref. [1] the solution of the Lippmann-Schwinger
equation for r < R was incorrectly assumed to be of the form

�
(+)
R (�r) = Aei �p·�r

1F1(−iη, 1, i(pr − �p · �r)), (1)

where η = me2

2p
is a Sommerfeld parameter. The constant1

A = 1

1F1(−iη, 1, 2ipR)
(2)

was determined in Ref. [1] by inserting Eq. (1) into the
Lippmann-Schwinger equation,

�
(+)
R (�r) = ei �p�r − µe2

2π

∫
d3r ′

r ′
eip|�r−�r ′|

|�r − �r ′|�(R − r ′)�(+)
R (�r ′),

(3)

and solving the latter at r = 0. The correct form of the solution
in the interior region r < R is

�
(+)
R (�r) = 1

4π

∫
d2k̂A(k̂)eipk̂·�r

1F1(−iη, 1, i(pr − pk̂ · �r)),

(4)

where the function A(k̂) is defined on a unit sphere. To
demonstrate that A(k̂) �= 4πAδ2(k̂ − p̂), that is, that Eq. (4)
does not reduce to Eq. (1), one may employ the usual partial
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(2π )3/2 is suppressed throughout.

wave formalism (see, for instance, Ref. [2]). Consider the
following expansion in Legendre polynomials:

A(k̂) =
∑

l

(2l + 1)AlPl(p̂ · k̂). (5)

Matching the interior Lippmann-Schwinger solution and its
derivative to the exterior ones at r = R yields

Al = i(pR)−2

W (ψl, h
(1)
l )(pR)

, (6)

where h
(1)
l is a spherical Hankel function of the first kind [3]

and

ψl(pr) = eiσl
|�(l + 1 + iη)|

�(1 + iη)

(2pr)l

(2l + 1)!

× e−ipr
1F1(l + 1 − iη, 2l + 2, 2ipr),

with the Coulomb phase shift σl = arg�(l + 1 + iη). It can be
checked that A0 = A but Al�1 �= A; that is, Eq. (1) is invalid
for any finite value of R. The expression for the scattering
amplitude (the on-shell t matrix) obtained in Ref. [1] for the
case of finite values of R is invalid as well, because it derives
from the wave function (1).

In the following, we discuss the limit R → ∞ considered
in Ref. [1]. The wave function (1) can be presented as the
product CR�(+)

c , where �(+)
c is a Coulomb wave and CR is a

constant (CR→∞ → e−iη ln(2pR)). The Coulomb wave satisfies
a homogeneous Lippmann-Schwinger equation [4]:

�(+)
c (�r) = −µe2

2π

∫
d3r ′

r ′
eip|�r−�r ′|

|�r − �r ′|�
(+)
c (�r ′). (7)

Let us introduce an auxiliary function which is a difference
between the exact wave function (4) and the wave function (1)
in the limit R → ∞:

ψR(�r) = �
(+)
R (�r) − e−iη ln(2pR)�(+)

c (�r). (8)

According to Eqs. (3) and (7), this function satisfies the
following equation (r < R):

ψR(�r) = ψ
(0)
R (�r) − µe2

2π

∫
d3r ′

r ′
eip|�r−�r ′ |

|�r − �r ′|�(R − r ′)ψR(�r ′), (9)
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with the inhomogeneous term

ψ
(0)
R (�r) = ei �p�r + µe2

2π
e−iη ln(2pR)

×
∫

d3r ′

r ′
eip|�r−�r ′ |

|�r − �r ′|�(r ′ − R)�(+)
c (�r ′). (10)

For r � R one has approximately

eip|�r−�r ′ |

|�r − �r ′| ≈ eipr ′

r ′ e−i �p′ �r ( �p′ = pr̂ ′),

and thus it can be shown that ψ
(0)
R (�r) ≈ 0. However this

observation does not imply that ψ
(0)
R (�r) ≈ 0 for any r < R. In

fact, the situation is nontrivial in the region r � R (within the
partial wave formalism this amounts to the l � pR terms [5]).

Using Eq. (8), the scattering amplitude can be presented as

fR = −µe2

2π
e−iη ln(2pR)

∫
d3r ′

r ′ e−i �p′ �r ′
�(R − r ′)�(+)

c (�r ′)

− µe2

2π

∫
d3r ′

r ′ e−i �p′ �r ′
�(R − r ′)ψR(�r ′), (11)

where �p′ = pr̂ . The asymptotic behavior of the first term was
examined in Ref. [1] but the second term was not considered
there at all. However, because of nontrivial properties of ψR in
the region r � R, the latter term might yield a nonvanishing
contribution to the scattering amplitude in the limit R → ∞.
Thus, the analysis of the case R → ∞ carried out in Ref. [1]
is incomplete and the obtained renormalization factor requires
more rigorous substantiation.

Finally, it is useful to note that the renormalization treat-
ments involving cut-off Coulomb potentials are of doubtful
value from a practical viewpoint, especially in the case of
many-body Coulomb scattering. In this respect, the methods
based on regularization and renormalization of the Lippmann-
Schwinger equations in the on-shell limit are more efficient.
The two-particle case is fully explored: (i) the Green’s function
is derived analytically both in coordinate and in momentum
representations [6], (ii) an off-shell amplitude is known [7], and
(iii) the rules for taking the on-shell limit are formulated [8].
The two-particle results can be straightforwardly generalized
to the many-particle case (see, for example, Ref. [9]).

We thank Sergue I. Vinitsky for drawing our attention
to the article [1] and Akram Mukhamedzhanov for useful
discussions.
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