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Composition and thermodynamics of nuclear matter with light clusters
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We investigate nuclear matter at a finite temperature and density, including the formation of light clusters
up to the α particle (1 � A� 4). The novel feature of this work is to include the formation of clusters as well
as their dissolution due to medium effects in a systematic way using two many-body theories: a microscopic
quantum statistical (QS) approach and a generalized relativistic mean-field (RMF) model. Nucleons and clusters
are modified by medium effects. While the nucleon quasiparticle properties are determined within the RMF model
from the scalar and vector self-energies, the cluster binding energies are reduced because of Pauli blocking shifts
calculated in the QS approach. Both approaches reproduce the limiting cases of nuclear statistical equilibrium
(NSE) at low densities and cluster-free nuclear matter at high densities. The treatment of the cluster dissociation
is based on the Mott effect due to Pauli blocking, implemented in slightly different ways in the QS and the
generalized RMF approaches. This leads to somewhat different results in the intermediate density range of about
10−3 to 10−1 fm−3, which gives an estimate of the present accuracy of the theoretical predictions. We compare the
numerical results of these models for cluster abundances and thermodynamics in the region of medium excitation
energies with temperatures T � 20 MeV and baryon number densities from zero to a few times saturation density.
The effects of cluster formation on the liquid-gas phase transition and on the density dependence of the symmetry
energy are studied. It is demonstrated that the parabolic approximation for the asymmetry dependence of the
nuclear equation of state breaks down at low temperatures and at subsaturation densities because of cluster
formation. Comparison is made with other theoretical approaches, in particular, those that are commonly used in
astrophysical calculations. The results are relevant for heavy-ion collisions and astrophysical applications.
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I. INTRODUCTION

The composition and the equation of state (EoS) of nuclear
matter, possible phase transitions, or condensates are widely
discussed in several areas of nuclear physics. They attain an
increasing importance in astrophysics and cosmology. Many
of the systems under consideration have large charge asymme-
tries and cover a broad range of densities. Therefore, a deeper
understanding of the composition and the thermodynamical
properties of nuclear matter and, in particular, the density
dependence of the symmetry energy, from very low saturation
densities to supersaturation densities, is of great interest. Let
us mention three examples of systems where the knowledge
of the symmetry energy in a broad range of densities is of
crucial importance: (1) the surface structure of exotic nuclei
with large neutron excess or new exotic collective modes,
(2) the structure and composition of neutron stars from the
ultradense core to the crust at subsaturation densities with

*s.typel@gsi.de
†gerd.roepke@uni-rostock.de
‡thomas.klaehn@googlemail.com
§blaschke@ift.uni.wroc.pl
‖hermann.wolter@physik.uni-muenchen.de

varying asymmetry due to β equilibrium, and (3) core collapse
supernovae, where at high densities the symmetry energy
determines the energy of the shock and at low densities it
affects the nuclear composition, neutrino interactions, and
aspects of nucleosynthesis.

This wide spectrum of applications illustrates the im-
portance of gathering reliable information on the EoS of
nuclear matter and, specifically, the symmetry energy, since
predictions of its density dependence differ strongly for
different theoretical approaches. Therefore, considerable effort
has been made to obtain constraints from observational data on
all aspects of the EoS. A promising source of information arises
from the study of heavy-ion collisions, where transient states of
very different densities can be investigated and the asymmetry
can be varied to a certain extent by choosing the collision
system. Central collisions at high energies yield large compres-
sions and provide information from observations of nucleon
flow [1] and particle production as shown for kaons, for exam-
ple, in Refs. [2,3]. Recent reviews of studies of the symmetry
energy in heavy-ion collisions were given in Refs. [4–6].

Recently, particular interest has been devoted to the prop-
erties of nuclear and neutron matter at very low densities,
down to the limit of zero density. Below saturation density,
correlations are expected to become important and nuclear
matter can become inhomogeneous. An aspect of this is seen in
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TYPEL, RÖPKE, KLÄHN, BLASCHKE, AND WOLTER PHYSICAL REVIEW C 81, 015803 (2010)

fragmentation as a signature of the liquid-gas phase transition.
At even smaller densities, down to one hundredth or one
thousandth of saturation density and at moderate temperatures,
few-body correlations remain important. This results from the
fact that at low densities the system can minimize its energy
by forming light clusters such as deuterons, or particularly
strongly bound α particles. With increasing density such
clusters will dissolve as a result of the Pauli principle. Thus
there exists an interesting detailed evolution of the correlations
and the composition in nuclear matter depending on the density
and temperature that presents a challenge to a theoretical
description.

In the laboratory, low-density matter occurs in the outer
regions of heavy nuclei, in halo nuclei, in expanding hot matter
from heavy-ion reactions, in the envelopes of core-collapse su-
pernovae, and also in recently discussed low-density isomeres
such as the Hoyle state of 12C [7]. Experimental information
on the composition and behavior of very-low-density nuclear
matter was recently obtained by Kowalski et al. [8] from
the observation of the light particles emitted in low-energy
heavy-ion collisions. It was found that the fraction of light
particles is substantial at very low densities, implying a finite
symmetry energy in the limit of zero density.

Nonrelativistic Skyrme Hartree-Fock and relativistic mean-
field calculations revealed a tight correlation between the
density derivative of the neutron matter EoS near 2/3 of the
saturation density and the neutron skin thickness �Rnp of
heavy nuclei [9,10]. This observation translates into a cor-
relation of the density dependence of the symmetry energy at
saturation density with �Rnp [6,11–16]. The scheduled PREX
experiment at JLab is expected to provide a precise value of
the neutron skin thickness of 208Pb from the observation of
parity violations in electron scattering [17], hence providing
an independent constraint on the density dependence of the
symmetry energy.

At densities beyond nuclear saturation constraints on the
EoS are expected in increasing quality from neutron star ob-
servables such as masses, mass-radius relations, gravitational
binding energy, and the cooling behavior of neutron stars. A
recent review by Klähn et al. [18] discusses these constraints
in confrontation with those from heavy-ion collisions. It
demonstates that at present it is far from trivial to obtain an EoS
that is consistent with all these available observational data.
The study of exotic structures like pasta phases in the inner
crust of neutron stars gives information on very-neutron-rich
matter around normal densities [19–23].

The actual composition of very-low-density matter is also
relevant for the investigation of various stages in supernova
explosions as pointed out in a number of recent publications.
It is known to affect the effectiveness of the neutrino reheating
of the shock wave [24]. Also, the stellar core collapse is mostly
determined during the dynamical plunge phase at densities
between 1012 and 1014g/cm3, where temperatures between
1010 K and 1011 K are reached [25,26]. The sensitivity of the
collapse dynamics on the properties of matter in this density
regime could strongly influence the structure and composition
of the protoneutron star [27] and possible gravitational wave
and neutrino signals emitted at various stages during and after
core bounce.

Only very few models for the EoS are applicable in actual
supernova simulations. The reason is found in the required
wide range of temperatures, densities, and asymmetries, which
either are not available, for example, in tabular form, or
are not covered by the model. The most frequently used
EoS are those of Lattimer and Swesty [28] and of Shen
et al. [29]. The former one is based on an extended liquid
drop model for the nuclei embedded in a nucleon and α-
particle gas, whereas the latter one has been developed in
the framework of the relativistic mean-field (RMF) approach
with nonlinear meson self-couplings [30]. Shen et al. [29] use
the Thomas-Fermi approximation to describe heavy nuclei
embedded in a gas. They consider α particles as a separate
species, using an excluded volume prescription to model the
dissolution of α particles at high densities, which accounts for
medium effects only in a very global way. The model neglects
other light clusters such as deuterons, tritons, and helions
(3He).

The problem of cluster formation in low-density nuclear
matter has been addressed recently based on a virial expansion
[31] to obtain the EoS for nuclear matter at all asymmetries
including nucleons and α particles (4He) [32] and in later
work also tritons and helions [33] (see also Ref. [34] for a
closely related formulation in an S-matrix approach and the
quasiparticle gas model [35]). The virial coefficients in the
Beth-Uhlenbeck approach [36] are given by the cluster-bound
state energies and scattering phase shifts. In Ref. [32] these
were taken directly from experiment, thus providing an exact
limit for the EoS at very low densities, where the scattering
is not yet influenced by medium effects. These results are
believed to be reliable for densities up to nsat/1000 and not
too small temperatures. They provide a benchmark for other
calculations.

The present article emphasizes that correlations, in-medium
modifications of cluster properties, and mean-field effects must
be considered simultaneously in the description of low-density
nuclear matter, because all these affect the thermodynamical
properties of the EoS. The occurrence of clusters also changes
the symmetry energy because the cluster correlations depend
on the asymmetry of the system. Here we restrict ourselves
to matter in thermodynamic equilibrium at temperatures T �
20 MeV and baryon number densities n � 0.2 fm−3, where
the quark substructure and excitations of internal degrees of
freedom of nucleons (protons and neutrons) are not important
and the nucleon-nucleon interaction can be represented by an
effective interaction potential.

In this work, we explore two approaches to the problem:
One is a quantum statistical (QS) formulation based on the
thermodynamic Green function method [37]. This approach
makes explicit use of an effective nucleon-nucleon interaction.
It allows us to account for medium effects on the cluster
properties. The second approach is a generalized RMF model,
where the medium-modified clusters are introduced as explicit
degrees of freedom. The two methods have their strengths
and deficiencies. The RMF method is reliable to determine
the nucleon quasiparticle propagator in the medium, and this
information is introduced into the QS model. The QS model,
however, can determine the medium modifications of the
clusters, such as the mass shift and the (momentum-dependent)
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Mott densities, where the clusters get dissolved. These are then
introduced in parametrized form into the RMF method.

The particle number density nτ (T ,µp, µn) of protons
(τ = p) or neutrons (τ = n) depends on the temperature T

and the chemical potentials µτ . In the QS approach it is
obtained from the single-particle spectral function, which can
be expressed in terms of the self-energy. This is the main
quantity to be evaluated. Considering the ladder approximation
[37,38], the formation of bound states is taken into account
in a Bethe-Goldstone equation that in the low-density limit
reduces to an effective Schrödinger equation. Effects of the
medium can be included in a self-consistent way within the
cluster mean-field approximation (for references, see [38–40]).
The bound-state energies are also modified because of Pauli
blocking in the correlated medium. An extended discussion
of the two-particle problem can be found in Ref. [41]. This
generalized Beth-Uhlenbeck formulation accounts for medium
effects suppressing correlations at high densities. It allows one
to determine the second virial coefficient and also contains
the Brueckner approach to matter near saturation density. The
approach has been extended to three- and four-particle bound
states in Refs. [38,42]. The medium-dependent shift of the
cluster binding energies has been investigated in Refs. [43,44].
We emphasize again that this quantum statistical approach
avoids the introduction of semi-empirical concepts such as
the excluded volume mechanism to mimic in-medium effects.
However, because the quasiparticle propagator is introduced
from the outside (i.e., from the RMF model), the back effect
of the clusters on the mean field is not included.

The RMF model, in contrast, takes this back reaction fully
into account. However, only the bound-state contributions
of the clusters are included (from the QS model). Thus the
continuum contributions are missing, which, as we shall see,
leads to an overestimation of the two-particle correlations.
Thus, by investigating both these models we also obtain
an estimate of the remaining uncertainties of theoretical
approaches. Also, in the present work, in both approaches,
we have not yet included the contribution of heavier clusters,
which should appear in the intermediate density range before
the matter becomes homogenous again at densities near
saturation. This problem will be addressed in a later work.

Extending the quasiparticle approach including the for-
mation of light clusters enables us to describe the smooth
transition from the low-density limit, where the nuclear statis-
tical equilibrium (NSE) or the virial expansion are applicable,
to the region of the saturation density where mean-field
concepts have been successfully applied. None of the existing
approaches to model the EoS gives satisfactory results in both
regions simultaneously. More precisely, the EoS of Lattimer
and Swesty [28] as well as the EoS of Shen et al. [29] fail to
reproduce the NSE in the low-density limit, whereas the EoS
in the virial expansion [31–33] ignores medium effects on light
clusters and cannot describe the dissolution of clusters at high
densities.

The outline of this article is as follows: In Sec. II we review
the QS approach to the EoS and put particular emphasis on
the calculation of the medium modifications of the clusters.
As one result we obtain a density- and temperature-dependent
modification of the binding energies of the clusters. In Sec. III

we introduce our generalized RMF model with light clusters
as explicit degrees of freedom. We use a RMF model with
density-dependent meson-nucleon couplings [45], which has
been used very successfully to describe nuclear structure in
a wide region of the nuclear chart and has also been tested
in heavy-ion collisions. The medium-dependent masses of
the clusters lead to a coupling of the nucleon and cluster
dynamics. We also show how the thermodynamic quantities,
such as free and internal energy, pressure, and entropy are
obtained as functions of density and temperature. In Sec. IV
we discuss the composition of nuclear matter and present the
thermodynamical quantities for symmetric nuclear matter in
both approaches. We also compare to the NSE model that
gives the correct low-density limit. Of particular interest is
the phase transition from the (partially) clusterized to the
homogeneous medium, which is considered in Sec. V. In
Sec. VI we discuss specifically the symmetry energy of nuclear
matter as a function of density and temperature, which is
drastically changed at very low densities because of the cluster
correlations. In Sec. VII we finally compare the results for the
α cluster fraction in the QS and generalized RMF models
with previous approaches and discuss the advantages of the
present ones. We close with an outlook on further work, which
should finally lead to an EoS that can be used in a wide range
of problems, including nuclear structure, heavy-ion reactions,
and supernovae simulations. Throughout the article we use
natural units where h̄ = c = kB = 1.

II. QUANTUM STATISTICAL APPROACH TO THE
EQUATION OF STATE

A. Single-particle spectral function and quasiparticles

Using the finite-temperature Green function formalism, a
nonrelativistic quantum statistical approach can be given to
describe the equation of state of nuclear matter including the
formation of bound states [38,41]. It is most convenient to start
with the nucleon number densities nτ (T , µ̃p, µ̃n) as functions
of temperature T and nonrelativistic chemical potentials µ̃τ

for protons (τ = p) and neutrons (τ = n), respectively,

nτ (T , µ̃p, µ̃n) = 1

�

∑
1

〈a†
1a1〉δτ,τ1

= 2
∫

d3k1

(2π )3

∫ ∞

−∞

dω

2π
f1,Z(ω)S1(1, ω), (1)

where � is the system volume, {1} = {k1, σ1, τ1} denotes
the single-nucleon quantum numbers momentum, spin, and
isospin. Summation over spin yields the factor 2 and

fA,Z(ω) = (exp{β[ω − Zµ̃p − (A − Z)µ̃n]} − (−1)A)−1

(2)

is the Fermi or Bose distribution function, which depends on
the inverse temperature β = 1/T . The nonrelativistic chemical
potential µ̃τ is related to the relativistic chemical potential
µτ by µτ = µ̃τ + mτ with the nucleon mass mτ . Instead of
the isospin quantum number τ we occasionally use the mass
number A and the charge number Z. Both the distribution
function and the spectral function S1(1, ω) depend on the
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temperature and the chemical potentials µ̃p and µ̃n, not given
explicitly. We work with a grand canonical ensemble and have
to invert Eq. (1) to write the chemical potentials as functions
of the densities np and nn. For this EoS, expressions such as
the Beth-Uhlenbeck formula and its generalizations have been
derived [32,38,41].

We consider both the total number densities of protons
and neutrons, ntot

p and ntot
n , and the temperature T as given

parameters. Alternatively, the total baryon density n = ntot
n +

ntot
p and the asymmetry of nuclear matter δ = (ntot

n − ntot
p )/n =

1 − 2Yp are used. Yp denotes the total proton fraction.
In addition to the frozen equilibrium where ntot

p and ntot
n

are given, we assume homogeneity and isotropy in space.
Thermodynamical stability is considered in Secs. V and IV B.
In a further development, allowing for weak interactions,
β equilibrium may be considered, which is of interest for
astrophysical applications. In that case the asymmetry δ is
uniquely determined for given n and T .

The spectral function S1(1, ω) is related to the self-energy

(1, z) according to

S1(1, ω) = 2Im 
(1, ω − i0)

[ω − E(1) − Re 
(1, ω)]2 + [Im 
(1, ω − i0)]2
,

(3)

where the imaginary part has to be taken for a small negative
imaginary part in the frequency ω. E(1) = k2

1/(2m1) is the
kinetic energy of the free nucleon. The solution of the relation

E
qu
1 (1) = E(1) + Re 


[
1, E

qu
1 (1)

]
(4)

defines the single-nucleon quasiparticle energies E
qu
1 (1) =

E(1) + �ESE(1). Expanding for small Im 
(1, z), the spectral
function yields a δ-like contribution. The densities are calcu-
lated from Fermi distributions with the quasiparticle energies
so that

nqu
τ (T , µ̃p, µ̃n) = 2

�

∑
k1

f1,Z

[
E

qu
1 (1)

]
(5)

follows for the EoS in mean-field approximation. This result
does not contain the contribution of bound states and therefore
fails to be correct in the low-temperature, low-density limit
where the NSE describes the nuclear matter EoS.

As shown in Refs. [38,41], the bound-state contributions
are obtained from the poles of Im 
(1, z), which cannot be
neglected in expanding the spectral function with respect to
Im 
(1, z). A cluster decomposition of the self-energy has
been proposed, see Ref. [38]. The self-energy is expressed in
terms of the A-particle Green functions, which read in bilinear
expansion

GA(1 . . . A, 1′ . . . A′, zA) =
∑
νK

ψAνK (1 . . . A)
1

zA − E
qu
A,ν(K)

×ψ∗
AνK (1′ . . . A′). (6)

The A-particle wave function ψAνK (1 . . . A) and the corre-
sponding eigenvalues E

qu
A,ν(K) result from solving the in-

medium Schrödinger equation (see the following subsections).
K denotes the center-of-mass momentum of the A-nucleon
system. In addition to the bound states, the summation over
the internal quantum states ν includes also the scattering states.

The evaluation of the equation of state in the low-density
limit is straightforward. Considering only the bound-state
contributions, we obtain the result

ntot
p (T , µ̃p, µ̃n) = 1

�

∑
A,ν,K

ZfA,Z

[
E

qu
A,ν(K; T , µ̃p, µ̃n)

]
,

(7)

ntot
n (T , µ̃p, µ̃n) = 1

�

∑
A,ν,K

(A− Z)fA,Z

[
E

qu
A,ν(K; T , µ̃p, µ̃n)

]
,

for the EoS describing a mixture of components (cluster
quasiparticles) obeying Fermi or Bose statistics. The total
baryon density results as n(T , µ̃p, µ̃n) = ntot

n (T , µ̃p, µ̃n) +
ntot

p (T , µ̃p, µ̃n). To derive the extended Beth-Uhlenbeck for-
mula, see Ref. [42], we restrict the summation to A � 2, but
extend the summation over the internal quantum numbers ν,
not only to the excited states but also to the scattering states.
Note that at low temperatures Bose-Einstein condensation may
occur.

The NSE is obtained in the low-density limit if the in-
medium energies E

qu
A,ν(K; T , µ̃p, µ̃n) can be replaced by the

binding energies of the isolated nuclei E
(0)
A,ν(K) = E

(0)
A,ν +

K2/(2Am), with m = 939 MeV the average nucleon mass.
For the cluster contributions, that is, A > 1, the summation
over the internal quantum numbers is again restricted to the
bound states only. We have

nNSE
p (T , µ̃p, µ̃n) = 1

�

bound∑
A,ν,K

ZfA,Z

[
E

(0)
A,ν(K)

]
,

(8)

nNSE
n (T , µ̃p, µ̃n) = 1

�

bound∑
A,ν,K

(A − Z)fA,Z

[
E

(0)
A,ν(K)

]
.

The summation over A includes also the contribution of free
nucleons, A = 1.

In the nondegenerate and nonrelativistic case, assuming
a Maxwell-Boltzmann distribution, the summation over the
momenta K can be performed analytically and the thermal
wavelength λ = √

2π/(mT ) of the nucleon enters. As shown
below, the medium effects in nuclear matter are negligible be-
low 10−4 times the saturation density nsat for the temperatures
considered here.

Interesting quantities are the mass fractions

XA,Z = A

�n

∑
ν,K

fA,Z

[
E

qu
A,ν(K; T , µ̃p, µ̃n)

]
(9)

of the different clusters. From the EoS considered here,
thermodynamical potentials can be obtained by integration,
in particular the free energy per volume F/�. In the special
case of symmetric nuclear matter, Y s

p = 0.5, the free energy
per volume is obtained from the averaged chemical potential
µ̃ = (µ̃p + µ̃n)/2 as

F (T , n, Y s
p)/� =

∫ n

0
dn′µ̃

(
T , n′, Y s

p

)
. (10)

In the quantum statistical approach described above, we
relate the EoS to properties of the correlation functions, in
particular to the peaks occurring in the A-nucleon spectral
function describing the single-nucleon quasiparticle (A = 1)
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as well as the nuclear quasiparticles (A � 2). Different
approaches to these quasiparticle energies can be given by
calculating self-energies that reproduce known properties of
the nucleonic system. In the following subsections, Secs. II B
and II C, we discuss results obtained from a microscopic
Hamiltonian approach to nuclear matter. In Sec. III a RMF
approach is given that is based on an effective nucleon-meson
Lagrangian.

B. Medium modification of single-nucleon properties

The single-particle spectral function contains the single-
nucleon quasiparticle contribution, E

qu
1 (1) = E

qu
τ (k), given in

Eq. (4), where τ denotes isospin of particle 1 and k is the
momentum. In the effective mass approximation, the single-
nucleon quasiparticle dispersion relation reads

Equ
τ (k) = �ESE

τ (0) + k2

2m∗
τ

+ O(k4), (11)

where the quasiparticle energies are shifted at zero momentum
k by �ESE

τ (0), and m∗
τ denotes the effective mass of neutrons

(τ = n) or protons (τ = p). Both quantities, �ESE
τ (0) and m∗

τ ,
are functions of T , np, and nn, characterizing the surrounding
matter.

Expressions for the single-nucleon quasiparticle energy
E

qu
τ (k) can be given by the Skyrme parametrization [46] or by

more sophisticated approaches such as relativistic mean-field
approaches [30], see Sec. III, and relativistic Dirac-Brueckner
Hartree-Fock [47] calculations. We use the density-dependent
RMF approach of Ref. [45] that is designed not only to
reproduce known properties of nuclei but also agrees with
microscopic calculations in the low-density region. It is
expected that this approach gives at present an optimal fit to
the quasiparticle energies and is applicable in a large interval
of densities and temperatures.

Microscopic calculations are based on a model describing
the interaction between the nucleons. To go beyond the mean-
field approximation, strong interaction as well as bound-state
formation must be taken into account. This can be done in the
low-density region where in the nonrelativistic case a T matrix
can be introduced. We start from a nonrelativistic Hamiltonian
in fermion second quantization,

H =
∑

1

E(1)a†
1a1 + 1

2

∑
12,1′2′

V (12, 1′2′)a†
1a

†
2a2′a1′ , (12)

where the kinetic energy is E(1) = P 2
1 /(2m1) and the potential

energy contains the matrix element V (12, 1′2′) of the nucleon-
nucleon interaction.

Because there is no fundamental expression for the nucleon-
nucleon interaction, a phenomenological form is assumed to
reproduce empirical data such as the nucleon-scattering phase
shifts. Different parametrizations are in use. For calculations
one can use potentials such as PARIS and BONN or their sep-
arable representations [48]. To obtain the empirical parameter
values of nuclear matter at saturation density, three-body forces
have been introduced in the Hamiltonian (12). In particular, the
Argonne AV18/UIX potential [49] has been used to calculate
light nuclei [50].

Replacing the two-particle T matrix in the Born ap-
proximation with the interaction potential V , we obtain the
Hartree-Fock approximation for the energy shift:

�EHF(1) =
∑

2

[V (12, 12) − V (12, 21)]f1,τ2 [E(2)

+�EHF(2)]. (13)

In this approximation, all correlations in the medium are
neglected. The self-energy does not depend on frequency, that
is, it is instantaneous in time, with a vanishing imaginary part.

A full Dirac-Brueckner–Hartree-Fock (DBHF) calculation
has been performed by Fuchs and Wolter [51] and has been
compared with RMF approaches. The relation between the
T -matrix approach and the Brueckner G-matrix approach
is discussed in detail in Ref. [52]. Extended work has
been performed using sophisticated interaction potentials to
evaluate the quasiparticle energies in the DBHF approxima-
tion (for recent reviews, see Refs. [47,51,53]). There was
reasonable agreement between the RMF parametrization of
the quasiparticle energies and the DBHF results.

We can assume [18] that the density-dependent RMF
parametrization covers a large density region (which is
discussed in detail in Sec. III) and that it can be used instead of
the above Hartree-Fock shifts to determine the single-nucleon
quasiparticle energies. They result as

Equ
n,p(0) = √

[m − 
n,p(T , n, δ)]2 + k2 + 
0
n,p(T , n, δ),

(14)

where 
n,p and 
0
n,p are the scalar and the time component of

the vector self-energy, respectively. In the nonrelativistic limit,
the shifts of the quasiparticle energies are

�ESE
n,p(k) = 
0

n,p(T , n, δ) − 
n,p(T , n, δ). (15)

The effective masses for neutrons and protons are given by

m∗
n,p = m − 
n,p(T , n, δ). (16)

Approximations for the functions 
0
n,p(T , n, δ) and


n,p(T , n, δ) are given in the Appendix. These functions
reproduce the empirical values for the saturation density
nsat ≈ 0.15 fm−3 and the binding energy per nucleon B/A ≈
−16 MeV (see Sec. III D). The effective mass is somewhat
smaller than the empirical value m∗ ≈ m(1 − 0.17n/nsat) for
n < 0.2 fm−3.

C. Medium modification of cluster properties

Recent progress of the description of clusters in low-
density nuclear matter [27,54–56] enables us to evaluate the
properties of deuterons, tritons, helions, and helium nuclei in
a nonrelativistic microscopic approach, taking the influence of
the medium into account.

In addition to the δ-like nucleon quasiparticle contribution,
also the contribution of the bound and scattering states can be
included in the single-nucleon spectral function by analyzing
the imaginary part of 
(1, z). Within a cluster decomposition,
A-nucleon T matrices appear in a many-particle approach.
These T matrices describe the propagation of the A-nucleon
cluster in nuclear matter. In this way, bound states contribute
to nτ = nτ (T , µ̃n, µ̃p) (see Refs. [38,41]). Restricting the
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cluster decomposition only to the contribution of two-particle
correlations, we obtain the so-called T2G approximation. In
this approximation, the Beth-Uhlenbeck formula is obtained
for the EoS, as shown in Refs. [38,41]. In the low-density
limit, the propagation of the A-nucleon cluster is determined
by the energy eigenvalues of the corresponding nucleus, and
the simple EoS (7) results in describing the nuclear statistical
equilibrium (NSE).

For nuclei imbedded in nuclear matter, an effective wave
equation can be derived [38,56]. The A-particle wave function
ψAνK (1 . . . A) and the corresponding eigenvalues E

qu
A,ν(K)

follow from solving the in-medium Schrödinger equation[
Equ(1) + · · · + Equ(A) − E

qu
A,ν(K)

]
ψAνK (1 . . . A)

+
∑

1′...A′

∑
i<j

[1 − f̃ (i) − f̃ (j )]V (ij, i ′j ′)

×
∏
k 	=i,j

δkk′ψAνK (1′ . . . A′) = 0. (17)

This equation contains the effects of the medium in the single-
nucleon quasiparticle shifts as well as in the Pauli blocking
terms. The A-particle wave function and energy depend on the
total momentum K relative to the medium.

The in-medium Fermi distribution function f̃ (1) =
(exp{β[Equ(1) − µ̃1]} + 1)−1 contains the nonrelativistic ef-
fective chemical potential µ̃1, which is determined by the
total proton or neutron densities (i.e. including those bound
in clusters) calculated in the quasiparticle approximation,
ntot

τ = �−1 ∑
1 f̃ (1)δτ1,τ for the particles inside the volume

�. It describes the occupation of the phase space neglecting
any correlations in the medium. The solution of the in-medium
Schrödinger equation (17) can be obtained in the low-density
region by perturbation theory. In particular, the quasiparticle
energy of the A-nucleon cluster with Z protons in the ground
state follows as

E
qu
A,ν(K) = E

qu
A,Z(K) = E

(0)
A,Z + K2

2Am
+ �ESE

A,Z(K)

+�EPauli
A,Z (K) + �ECoul

A,Z (K) + . . . , (18)

with various contributions. Besides the cluster binding energy
in the vacuum E

(0)
A,Z and the kinetic term, the self-energy shift

�ESE
A,Z(K), the Pauli shift �EPauli

A,Z (K), and the Coulomb shift
�ECoul

A,Z (K) enter. The latter can be evaluated for dense matter
in the Wigner-Seitz approximation [57–59]. It is given by

�ECoul
A,Z (K) = Z2

A1/3

3

5

e2

r0

[
3

2

(
2np

nsat

) 1
3

− np

nsat

]
, (19)

with r0 = 1.2 fm. Because the values of Z are small, this
contribution is small as well and disregarded here in the
quasiparticle energy (18).

The self-energy contribution to the quasiparticle shift is
determined by the contribution of the single-nucleon shift:

�ESE
A,Z(0) = (A − Z)�ESE

n (0) + Z�ESE
p (0) + �E

SE, eff.mass
A,Z .

(20)

The contribution to the self-energy shift due to the change of
the effective nucleon mass can be calculated from perturbation
theory using the unperturbed wave function of the clusters (see
Ref. [27]), so that

�E
SE,eff.mass
A,Z =

(
1 − m∗

m

)
sA,Z. (21)

Values of sA,Z for {A,Z} = {i} = {d, t, h, α} are given in
Table I. Inserting the medium-dependent quasiparticle ener-
gies in the distribution functions (2) the first two contributions
to the quasiparticle shift in Eq. (20) can be included renormal-
izing the chemical potentials.

The most important effect in the calculation of the abun-
dances of light elements comes from the Pauli blocking terms
in Eq. (17) in connection with the interaction potential. This
contribution is restricted only to the bound states so that it
may lead to the dissolution of the nuclei if the density of
nuclear matter increases. The corresponding shift �EPauli

A,Z (K)
can be evaluated in perturbation theory provided the interaction
potential and the ground-state wave function are known. After
angular averaging where in the Fermi functions the mixed
scalar product 
k · 
K between the total momentum 
K and
the remaining Jacobian coordinates 
k is neglected, the Pauli
blocking shift can be approximated as

�EPauli
A,Z (K) ≈ �EPauli

A,Z (0) exp

(
− K2

2A2mT

)
. (22)

Avoiding angular averaging, the full solution gives the result
up to the order K2

�EPauli
A,Z (K) ≈ �EPauli

A,Z (0) exp

(
− K2

gA,Z

)
, (23)

with the dispersion that can be calculated from

gi(T , n, Yp) = gi,1 + gi,2T + hi,1n

1 + hi,2n
. (24)

The values for gi,1 and gi,2 can be calculated from perturbation
theory using the unperturbed cluster wave functions; the
density corrections hi,1 and hi,2 are fitted to variational
solutions of the in-medium wave equation Eq. (17) for given

TABLE I. Parameters for the cluster binding energy shifts.

Cluster i si ai,1 ai,2 ai,3 bi,1 bi,2 gi,1 gi,2 hi,1 hi,2

(MeV) (MeV5/2 fm3) (MeV) (fm3) (MeV fm3) (fm−2) (MeV−1 fm−2) (fm) (fm3)

d 11.147 38 386.4 22.5204 0.2223 1.048 285.7 0.85 0.223 132 17.5
t 24.575 69 516.2 7.49232 – 4.414 43.90 3.20 0.450 37 –
h 20.075 58 442.5 6.07718 – 4.414 43.90 2.638 0.434 43 –
α 49.868 16 4371 10.6701 – – – 8.236 0.772 50 –
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T , np, nn, and K . Numerical values of the parameters in
symmetric nuclear matter (Yp = 0.5) are given in Table I.

The shift of the binding energy of light clusters at zero total
momentum that is of first order in density [54,55] has been
calculated recently [56]. The light clusters of the deuteron
(d = 2H), the triton (t = 3H), the helion (h = 3He), and the α

particle (4He) have been considered. The interaction potential
and the nucleonic wave function of the few-nucleon system
have been fitted to the binding energies and the rms radii of
the corresponding nuclei.

With the neutron number Ni = Ai − Zi , it can be written
as

�EPauli
Ai,Zi

(0; np, nn, T ) = − 2

Ai

[Zinp + Ninn]δEPauli
i (T , n),

(25)

where the temperature dependence and higher density cor-
rections are contained in the functions δEPauli

i (T , n). These
functions have been obtained with different approximations
for the wave function. In the case of the deuteron, the Jastrow
approach leads to a functional form

δEPauli
i (T , n)

= ai,1

T 3/2

[
1√
yi

− √
πai,3 exp

(
a2

i,3yi

)
erfc(ai,3

√
yi)

]

× 1

1 + [bi,1 + bi,2/T ]n
, (26)

with yi = 1 + ai,2/T . For the other clusters i = t, h, α, the
Gaussian approach is used, which gives the simple form

δEPauli
i (T , n) = ai,1

T 3/2

1

y
3/2
i

1

1 + [bi,1 + bi,2/T ]n
. (27)

The parameters ai,1, ai,2, and ai,3 are determined by low-
density perturbation theory from the unperturbed cluster wave
functions. The parameters bi,1 and bi,2 are density corrections
and are fitted to the numerical solution of the in-medium
wave equation, Eq. (17), for given T , np, nn, P = 0. Values
are given in Table I.

Now, the nucleon number densities (7) can be evaluated
as in the noninteracting case, with the only difference that
the number densities of the particles are calculated with
the quasiparticle energies. In the light-cluster–quasiparticle
approximation, the total densities of neutrons

ntot
n = nn +

∑
i=d,t,h,α

Nini (28)

and of protons

ntot
p = np +

∑
i=d,t,h,α

Zini (29)

contain the densities of the free neutrons and protons, nn

and np, respectively, and the contributions from the nucleons
bound in the clusters with densities ni . The state of the
system in chemical equilibrium is completely determined
by specifying the total nucleon density n = ntot

n + ntot
p , the

asymmetry δ, and the temperature T as long as no β

equilibrium is considered.

This result is an improvement of the NSE and allows for
the smooth transition from the low-density limit up to the
region of saturation density. The bound-state contributions to
the EoS are fading with increasing density because they move
as resonances into the continuum of scattering states. This
improved NSE, however, does not contain the contribution
of scattering states explicitly. For the treatment of continuum
states in the two-nucleon case, as well as the evaluation of the
second virial coefficient, see Refs. [32,41].

The account of scattering states needs further consideration.
Investigations on the two-particle level have been performed
and extensively discussed [32,38,41]. We use the Levinson
theorem to take the contribution of scattering states into
account in the lowest-order approximation. Each bound-
state contribution to the density mus be accompanied by a
continuum contribution that partly compensates the strength
of the bound-state correlations. As a consequence, the total
proton and neutron densities are given by

ntot
p (T , µ̃p, µ̃n) = 1

�

bound∑
A,ν,K

Z
{
fA,Z

[
E

qu
A,ν(K; T , µ̃p, µ̃n)

]
− fA,Z

[
Econt

A,ν (K; T , µ̃p, µ̃n)
]}

, (30)

ntot
n (T , µ̃p, µ̃n) = 1

�

bound∑
A,ν,K

(A− Z)
{
fA,Z

[
E

qu
A,ν(K; T , µ̃p, µ̃n)

]
− fA,Z

[
Econt

A,ν (K; T , µ̃p, µ̃n)
]}

, (31)

with explicit bound and scattering terms. Econt
A,ν denotes

the edge of the continuum states that is also determined
by the single-nucleon self-energy shifts. These expressions
guarantee a smooth behavior when the bound states merge with
the continuum of scattering states. The summation over
A includes also the contribution of free nucleons, A = 1,
considered as quasiparticles with the energy dispersion given
by the RMF approach.

The summation over K and the subtraction of the con-
tinuum contribution is extended only over that region of
momentum space where bound states exist. The disappearance
of the bound states is caused by the Pauli blocking term;
the self-energy contributions to the quasiparticle shifts act on
bound as well as on scattering states. Above the so-called
Mott density, where the bound states at K = 0 disappear,
the momentum summation must be extended only over that
region K > KMott

A,ν (T , n, δ) where the bound-state energy is
lower than the continuum of scattering states. The contribution
of scattering states is necessary to obtain the second virial
coefficient according to the Beth-Uhlenbeck equation (see
Refs. [31,41]). This leads also to corrections in comparison
with the NSE that accounts only for the bound-state con-
tributions, neglecting all effects of scattering states. These
corrections become important at increasing temperatures for
weakly bound clusters. Thus, the corrections that lead to
the correct second virial coefficient are of importance for
the deuteron system when the temperature is comparable or
large compared with the binding energy per nucleon. In the
calculations for the QS model shown below, the contributions
of these continuum correlations have been taken into account.
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Solving Eqs. (30) and (31) for given T , ntot
p , and ntot

n , we
find the chemical potentials µp and µn. After integration,
see Eq. (10), the free energy is obtained, and all the other
thermodynamic functions are derived from this quantity
without any contradictions. Results are given below.

We do not consider the formation of heavy clusters here.
This limits the parameter range, ntot

n , ntot
p , and T , in the phase

diagram to that area where the abundances of heavier clusters
are small. For a more general approach to the EoS that takes
also the contribution of heavier clusters into account, see
Ref. [59]. Future work will include the contribution of the
heavier clusters.

Further approximations refer to the linear dependence on
density of the shifts of binding energies, calculated in pertur-
bation theory. A better treatment will improve these shifts, but
it can be shown that the changes are small. The approximation
of the uncorrelated medium can be improved considering
the cluster mean-field approximation [38,39,56]. Furthermore,
the formation of quantum condensates will give additional
contributions to the EoS. However, in the region considered
here the formation of quantum condensates does not appear.
This is in contrast to a recent work employing a quasiparticle
gas model [35] where Bose-Einstein condensation of deuterons
is observed because the Pauli shift of the deuteron binding
energy at high densities is not considered.

III. GENERALIZED RELATIVISTIC MEAN-FIELD
MODEL WITH LIGHT CLUSTERS

A main ingredient to construct the low-density EoS is the
proper determination of the nucleonic quasiparticle energies
that enter the single-nucleon distribution functions, Eqs. (5)
and (7), but also the cluster energies via the in-medium
Schrödinger equation (17). Recently, realistic values for the
nucleon quasiparticle shifts were obtained from sophisticated
calculations within Hamiltonian approaches, such as DBHF
calculations [51,53]. RMF approaches proved to be very
successful in interpreting properties near saturation density
(see, e.g., Refs. [18,45]). We extract the single-nucleon
quasiparticle shifts from the results of the RMF model with
density-dependent couplings and use them in our QS approach.
In the following we show how this RMF model can be
extended to include light clusters, which are considered as
quasiparticles modified by medium effects as obtained in
the QS approach. A comparison of the generalized RMF
model with the QS model will show distinct differences in the
thermodynamical properties that are related to the employed
approximations.

In a conventional RMF description [30] of homogeneous
and isotropic nuclear matter, nucleons interact by the exchange
of mesons where usually isoscalar ω and σ and isovector
ρ mesons are included. Neutrons and protons are described
by Dirac spinors ψi (i = n, p). The mesons are represented
by Lorentz vector fields ωµ and 
ρµ and by a Lorentz scalar
field σ . The electromagnetic interaction is not considered in
nuclear matter. A possible isovector, Lorentz scalar δ meson,
is not included in the present model. The mesons couple
minimally to the nucleons. In our approach, nonlinear meson

self-interactions are not introduced, but the couplings are
assumed to be functionals of the nucleon operator-valued
currents to simulate a medium dependence of the interaction.

In the generalized RMF model with light clusters, the
ground states of the deuteron (d = 2H), the triton (t = 3H),
the helion (h = 3He), and the α particle (4He) are introduced
as additional degrees of freedom with the corresponding spin 0
field φα , spin 1 field φν

d , and spin 1/2 fields ψi (i = t, h). The
clusters are treated as point-like particles and their internal
structure is not taken into account. The influence of the
medium on the cluster properties is described by density-
and temperature-dependent shifts of the binding energies as
introduced in the previous section. The Pauli shifts, cf. Eq. (25),
are taken from the nonrelativistic calculation neglecting the
dependence on the c.m. momentum K of the cluster, whereas
this is taken into account in the QS approach. However,
the self-energy shift is treated self-consistently in the RMF
description in contrast to the QS approach where it enters in
parametrized form from an independent model, namely, the
RMF model described in this section.

A. Lagrangian density and field equations

In the present approach, the model Lagrangian has the form

L =
∑

i=n,p,t,h

ψ̄i

(
γµiD

µ

i − Mi

)
ψi + 1

2

(
iDµ

α ϕα

)∗

× (iDαµϕα) − 1

2
ϕ∗

αM2
αϕα + 1

4

(
iD

µ

d ϕν
d − iDν

dϕ
µ

d

)∗

× (iDdµϕdν − iDdνϕdµ) − 1

2
ϕ

µ∗
d M2

dϕdµ

+ 1

2

(
∂µσ∂µσ − m2

σ σ 2 − 1

2
GµνGµν + m2

ωωµωµ

− 1

2

Hµν · 
Hµν + m2

ρ 
ρµ · 
ρµ

)
, (32)

with the field tensors

Gµν = ∂µων − ∂νωµ

Hµν = ∂µ 
ρν − ∂ν 
ρµ (33)

of the Lorentz vector fields. Vectors in isospin space carry
an arrow. Nucleons form an isospin doublet with τ3ψn = ψn

and τ3ψp = −ψp. Similarly, for the triton and helion one has
τ3ψt = ψt and τ3ψh = −ψh, respectively. Deuterons and α

particles are treated as isospin singlets.
The covariant derivative

iD
µ

i = i∂µ − �ωAiω
µ − �ρ |Ni − Zi |
τ · 
ρµ (34)

for a particle i contains the interaction with the Lorentz vector
mesons with a strength that is determined by the density-
dependent couplings �ω, �ρ and the mass (Ai), neutron (Ni),
and proton (Zi) numbers of a particle i. The scalar σ meson
with coupling strength �σ appears in the effective mass

Mi = mi − �σAiσ − �Bi (35)

of a particle i with vacuum rest mass mi . The vacuum rest
mass of a cluster i = d, t, h, α is given by

mi = Zimp + Nimn − B0
i , (36)
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which defines the vacuum binding energies B0
i > 0. The

medium-dependent Pauli shift �Bi appears only for clusters.
The couplings �m = �m(�) (m = ω, σ, ρ) are functionals of
the Lorentz scalar density

� = √
JµJµ, (37)

which contains the free nucleon current

Jµ = jµ
p + jµ

n , (38)

with j
µ

i = ψ̄iγ
µψi . The Pauli shifts of the binding ener-

gies were derived in the previous section as the function
�Bi(ntot

p , ntot
n , T ) depending on the total proton and neutron

densities ntot
p and ntot

n and the temperature T . In principle, the
densities must be replaced by the corresponding quantities
expressed in terms of the field operators of the nucleons and
clusters. In the case of the fermions, this poses no problem
because the currents of the triton and helion have the same
form as the currents of the nucleons. However, for the bosons,
the definition of the conserved currents contains the meson
fields and the Pauli shifts. A dependence of the Pauli shifts on
these currents leads to additional rearrangement contributions
that modify the self-energies and require a redefinition of
the conserved currents. To avoid these complications, the
dependence of the Pauli shifts on the densities is replaced
by a dependence on the vector meson fields. In this way
the Pauli shifts are treated in an equivalent way as the
usual single-particle shifts. In consequence, we replace the
dependence on the total densities

ntot
n → nps

n = 1
2 [�ω + �ρ] (39)

and

ntot
p → nps

p = 1
2 [�ω − �ρ] (40)

by pseudodensities n
ps
n and n

ps
p with the quantities

�ω = λω

√
ωµωµ (41)

and

�ρ = λρ

√

ρµ · 
ρµ. (42)

The coefficients λω = m2
ω/�ω(0) and λρ = m2

ρ/�ρ(0) are
defined such that the correct low-density limit is obtained.

The field equations for mesons, nucleons, and clusters
are derived from the Lagrangian density in the usual way.
They are solved self-consistently in the mean-field approx-
imation where the meson fields are treated as classical
fields and sea states of the fermions are not considered.
The couplings �m(m = ω, σ, ρ) become simple functions of
� = √〈Jµ〉〈Jµ〉, where the brackets 〈 〉 indicate the summation
over all occupied states of the system. The field equations
simplify considerably due to the symmetries of homogeneous
and isotropic nuclear matter at rest. The scalar meson field is
directly given by

σ = �σ

m2
σ

nσ , (43)

with the source density

nσ =
∑

i=n,p,d,t,h,α

Ain
s
i (44)

that is a sum of the scalar densities ns
i = 〈ψ̄iψi〉 of the fermions

i = n, p, t, h and the scalar densities ns
d = 〈ϕµ

d Mdϕdµ〉 of
the deuteron and ns

α = 〈ϕαMαϕα〉 of the α particle. The
nonvanishing components of the vector meson fields are

ω0 = �ω

m2
ω

nω −
∑

i=d,t,h,α

λω

2m2
ω

(
∂�Bi

∂n
ps
n

+ ∂�Bi

∂n
ps
p

)
ns

i , (45)

( 
ρ0)3 = �ρ

m2
ρ

nρ −
∑

i=d,t,h,α

λρ

2m2
ρ

(
∂�Bi

∂n
ps
n

− ∂�Bi

∂n
ps
p

)
ns

i , (46)

with two different source contributions. The regular source
densities

nω =
∑

i=n,p,d,t,h,α

Aini (47)

nρ =
∑

i=n,p,d,t,h,α

(Ni − Zi)ni (48)

depend on the vector densities ni = 〈ψ̄iγ0ψi〉 of the fermions
i = n, p, t, h and on the vector densities of the deuteron

nd = 1
2 〈(iDd0ϕdµ − iDµϕd0)∗ϕµ

d

+ϕ
µ∗
d (iDd0ϕdµ − iDdµϕd0)〉 (49)

and the α particle

nα = 1
2 〈(iDα0ϕα)∗ ϕα + ϕ∗

α (iDα0ϕα)〉. (50)

The second contribution in Eqs. (45) and (46) with the
derivatives of the binding energy shifts is proportional to the
scalar densities of the clusters.

The Dirac equation for the spin 1/2 particles (i = n, p, t, h)
assumes the form

[γ µ(i∂µ − 
iµ) − (mi − 
i)]ψi = 0, (51)

with scalar and vector self-energies 
i and 
iµ, respectively.
The field equations for the α particle and the deuteron are the
Klein-Gordon equation

−[(i∂µ − 
αµ)(i∂µ − 
αµ) + (mα − 
α)2]ϕα = 0 (52)

and the Proca equation

−(i∂µ − 
dµ)
[(

i∂µ − 

µ

d

)
ϕν

d − (
i∂ν − 
ν

d

)
ϕ

µ

d

]
+ (md − 
d )2 ϕν

d = 0, (53)

respectively. The scalar self-energies are given by


i = �σAiσ + �Bi, (54)

where the binding energy shift �Bi appears only for clusters.
The nonvanishing component of the vector self-energy is the
zero component


i0 = �ωAiω0 + �ρ (Ni − Zi) ( 
ρ0)3 + 
R
i0, (55)

with the “rearrangement” contribution


R
i0 = �′

ωω0nω + �′
ρ ( 
ρ0)3 nρ − �′

σ σnσ (56)

that appears only for nucleons. It contains contributions with
derivatives �′

m = d�m/d� of the meson-nucleon couplings.
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Because the self-energies are momentum independent in
homogeneous and isotropic nuclear matter, the field equations
of the nucleons and of the clusters are easily solved. The
solutions are plane waves with shifted masses and energies as
compared to the vacuum solution, that is, nucleons and clusters
can be considered as quasiparticles. At finite temperatures T

the relevant vector and scalar densities are easily calculated
with these solutions by integrating over all momenta with
the correct distribution functions. Thus, the vector and scalar
densities of the fermions (i = n, p, t, h) are given by

ni = gi

∫
d3k

(2π )3
[f +

i (k) − f −
i (k)] (57)

ns
i = gi

∫
d3k

(2π )3

mi − 
i

ei(k)
[f +

i (k) + f −
i (k)], (58)

with degeneracy factor gi = 2 and the energy

ei(k) =
√

k2 + (mi − 
i)2. (59)

The Fermi-Dirac distribution for the particle (η = 1) and
antiparticle (η = −1) contributions is defined by

f
η

i (k) = {
exp

[
ηβ

(
E

η

i − µi

)] + 1
}−1

, (60)

where β = 1/T and E
η

i (k) = 
i0 + ηei(k) is the quasiparticle
energy. The (relativistic) chemical potential of a particle i is
denoted by µi . The densities of the bosons (i = d, α) are
obtained from

ni = gi

∫
d3k

(2π )3
bi(k) + ñi (61)

ns
i = gi

∫
d3k

(2π )3

mi − 
i

ei(k)
bi(k) + ñs

i , (62)

with the Bose-Einstein distribution

bi(k) = {exp[β(E+
i − µi)] − 1}−1 (63)

and degeneracy factors gd = 3 and gα = 1, respectively. A
possible contribution to the densities from particles that are
condensed in the ground state is denoted by ñi and ñs

i . In
homogeneous and isotropic matter these two are actually
identical. For a system of nucleons and clusters in chemical
equilibrium, the (relativistic) chemical potential of a cluster i

is determined by

µi = Niµn + Ziµp. (64)

Thus, there are only two independent chemical potentials.
For given total baryon number density n, asymmetry δ, and

temperature T , the coupled field equations of the generalized
RMF model are solved self-consistently. This procedure yields
the chemical potentials of neutrons and protons that determine
the densities of all particles. Finally, all thermodynamical
quantities, which are specified in the following subsection,
can be calculated.

B. Thermodynamical quantities

The energy density ε and the pressure p are derived from
the energy-momentum tensor T µν with the results

ε = 〈T 00〉 =
∑

i=n,p,t,h

gi

∫
d3k

(2π )3

∑
η

f
η

i ei(k)

+
∑
i=d,α

[
gi

∫
d3k

(2π )3
biei(k) + ñi (mi − 
i)

]

+�ωω0nω + �ρρ0nρ + 1

2

[
m2

σ σ 2

−m2
ωω2

0 − m2
ρρ

2
0

]
(65)

and

p = 1

3

3∑
m=1

〈T mm〉 = 1

3

∑
i=n,p,t,h

gi

∫
d3k

(2π )3

∑
η

f
η

i

k2

ei(k)

+ 1

3

∑
i=d,α

gi

∫
d3k

(2π )3
bi

k2

ei(k)
+ (nn + np)[�′

ωω0nω

+�′
ρρ0nρ − �′

σ σnσ ] − 1

2

[
m2

σ σ 2 − m2
ωω2

0 − m2
ρρ

2
0

]
,

(66)

with ρ0 = ( 
ρ0)3. The condensed bosons do not contribute
to the pressure but to the energy density. The entropy
density s can be extracted from the grand-canonical po-
tential density ω(T ,µn, µp) = −p as s = − (∂ω/∂T )|µn,µp

.
However, it is more practical to use the thermodynamic
relation

ε = T s − p +
∑

i=n,p,d,t,h,α

µini (67)

corresponding to the Hugenholtz–van-Hove theorem. After
partial integration the standard result

s = −
∑

i=n,p,t,h

gi

∫
d3k

(2π )3

∑
η

[
f

η

i ln f
η

i

+ (
1 − f

η

i

)
ln

(
1 − f

η

i

)] −
∑
i=d,α

gi

∫
d3k

(2π )3

× [bi ln bi − (1 + bi) ln(1 + bi)] (68)

is obtained. The thermodynamical pressure

p = n2 ∂

∂n

(
f

n

)∣∣∣∣
T ,δ

(69)

calculated from the free energy density f = ε − T s is iden-
tical to the pressure (66) in the field theoretical approach.
Because the energy density in the RMF model contains the
contribution of the rest mass of the particles, it is convenient
to define the internal energy per nucleon as

EA(n, δ, T ) = 1

n

[
ε(n, δ, T ) − ntot

n mn − ntot
p mp

]
(70)

and correspondingly the free energy per nucleon as

FA(n, δ, T ) = EA − T
s

n
, (71)
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where the rest mass has been subtracted. We emphasize that
both the generalized RMF model and the QS approach are
thermodynamically consistent.

C. Dissolution of clusters

In the generalized RMF approach, the quasiparticle energy
shift of the clusters contains the self-energy shift due to
the mean fields of the mesons. The effective-mass shift is
already included in the relativistic approach and the Coulomb
shift is neglected. For the binding energy shift �Bi only the
effect of the Pauli blocking is considered. The dependence
of the Pauli shift on the cluster momentum relative to the
medium is neglected because the introduction of a momentum
dependence in the RMF Lagrangian is nontrivial [45]. With
increasing density of the medium, the linear approximation
of the Pauli shift (25) in the densities is not sufficient and
higher-order terms must be considered. In the present RMF
calculation, an empirical quadratic form

�Bi

(
ntot

p , ntot
n , T

) = −ñi

[
1 + ñi

2ñ0
i (T )

]
δBi(T ) (72)

is used, where the abbreviation

ñi = 2

Ai

[
Zin

tot
p + Nin

tot
n

]
(73)

and the density scale

ñ0
i (T ) = B0

i

δBi(T )
(74)

for the dissolution of the cluster i with the vacuum binding
energy B0

i are introduced. The quantity δBi(T ) is given by
δEPauli

i (T , 0) in Eq. (26) for deuterons and in Eq. (27) for
the other clusters. In the limit T → 0 the shifts and their
derivatives remain finite for all clusters.

The total binding energy of a cluster i is the sum
Bi = B0

i + �Bi of the experimental binding energy B0
i in

the vacuum [60] and the binding energy shift �Bi that in
general depends on the c.m. momentum K (see Sec. II C).
The dependence of the cluster binding energies on the total
nucleon density n = ntot

n + ntot
p of the medium is depicted for

symmetric nuclear matter in Fig. 1 for various temperatures T

and clusters at rest. For n → 0 the experimental binding energy
is recovered. The density where a cluster becomes unbound,
that is, Bi = 0, increases with increasing temperature. This
behavior is expected because the Pauli blocking of states is less
effective at higher temperatures. Note that both free nucleons
and nucleons bound in clusters are relevant for the Pauli
principle occupying phase space in momentum representation.
In principle, this is not described by a Fermi distribution but
by the bound-state wave functions. A more exact theory taking
this into account is given by the cluster mean-field approx-
imation [56], which, however, is very complex and has not
been solved in general so far. Here we use the approximation
of an effective Fermi distribution with an effective chemical
potential that includes both free and bound-state nucleons, as
discussed following Eq. (17). It is clearly seen that the weakly
bound deuteron dissolves in the medium at densities much
lower than those of the more tightly bound α particle.
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FIG. 1. (Color online) Change of the binding energy Bi = B0
i +

�Bi of the clusters i = d, t, h, α at rest in symmetric nuclear matter
due to the binding energy shift �Bi as used in the generalized RMF
model as a function of the total nucleon density n = ntot

n + ntot
p of the

medium for various temperatures T .

The quadratic form (72) of the binding energy shift �Bi pre-
dicts a transition of the cluster bound state to the continuum at a
transition density of ñt

i(T ) = (
√

3 − 1)ñ0
i (T ) where the cluster

binding energy Bi becomes zero; that is, there are only scat-
tering correlations remaining and the energy corresponds to
that of a resonance. In the case of the triton, the helion, and the
α particle, the resonance energy rapidly moves to larger
energies in the continuum with increasing density leading to
a strong suppression of the cluster fractions. In contrast, the
deuteron-like resonance stays closer to the threshold causing
a much weaker suppression of two-particle correlations
at high densities. The change of the binding energy from
positive to negative values allows one to describe a continuous
suppression of the cluster fraction with increasing density.
A simple neglection of the cluster contribution to the EoS as
soon the energy crosses zero would lead to an unphysical jump
in the cluster density and the thermodynamical properties.
In the QS model, the bound-state contributions are rapidly
canceled by the continuum contributions, Eqs. (30) and (31)
leading to a more rapid suppression also of the deuteron
correlations. The differences in the continuum correlations
will be seen to have large effects in the comparison of the
results from the RMF and QS models.

D. Model parameters

The generalized RMF model contains several parameters:
the masses of the particles, the couplings and binding-energy
shifts with their specific functional dependence on densi-
ties and temperature. In the present approach, experimental
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TABLE II. Masses of the nucleons and mesons in the relativistic mean-field model.

Particle i Neutron Proton ω meson σ meson ρ meson

mi (MeV) 939.56536 938.27203 783 546.212459 763

neutron and proton masses mn and mp are used instead
of an average nucleon mass mnuc = (mn + mp)/2. With the
experimental binding energies B0

i in the vacuum from Ref. [60]
the masses (36) of the clusters are also fixed. For the masses of
the ω- and ρ-meson standard values of previous RMF models
are assumed. The mass of the σ meson is determined from a
fit of the RMF parameters to properties of finite nuclei (see
below). The numerical values of the nucleon and meson masses
are given in Table II.

The functional dependence of the couplings on the density
is described by

�i(n) = �i(nsat)fi(x), (75)

with x = n/nsat where a rational function

fi(x) = ai

1 + bi(x + di)2

1 + ci(x + di)2
(76)

is used for the isoscalar mesons i = ω, σ and an exponential
function

fi(x) = exp[−ai(x − 1)] (77)

for the isovector meson i = ρ. To reduce the number of
independent parameters the conditions fi(1) = 1 and f ′′

i (0) =
0 are imposed on the rational function. These functions were
introduced in Ref. [45] and are now widely used in RMF mod-
els with density-dependent couplings. The saturation density
nsat, the mass of the σ meson mσ , the couplings �i(nsat), and the
coefficients ai , bi , ci , and di are found by fitting the properties
of finite nuclei (binding energies, spin-orbit splittings, charge
and diffraction radii, surface thicknesses, and the neutron skin
thickness of 208Pb) in the same way as for the parametrization
DD in Ref. [45]. In total, there are ten independent parameters
in the fit. Numerical values of the coupling parameters can be
found in Table III. This new parametrization is called DD2
because it is a modification of the set DD where the only
difference is the use of experimental nucleon masses.

On the basis of this fit, the saturation density of sym-
metric nuclear matter at zero temperature is obtained as
nsat = 0.149065 fm−3 with a binding energy per nucleon
of −16.02 MeV. The incompressibility turns out to be
K∞ = 242.7 MeV with a derivative K ′ = −529.8 MeV. See
Refs. [18,45] for the definition of these quantities. These
values are very reasonable and close to the results of other

TABLE III. Parameters of the couplings in the relativistic mean-
field model.

Meson i �i(nsat) ai bi ci di

ω 13.342362 1.369718 0.496475 0.817753 0.638452
σ 10.686681 1.357630 0.634442 1.005358 0.575810
ρ 3.626940 0.518903

modern RMF parametrizations. The large negative value of
K ′ is a result of the fit to the surface properties of nuclei
and leads a rather stiff EoS for symmetric nuclear matter at
high densities. The small effective Dirac mass at saturation
of 0.5625mnuc is required to get a good description of the
spin-orbit splittings. This corresponds to an effective Landau
mass of m∗ = 0.6255mnuc.

The value and the density dependence of the symmetry
energy near the nuclear saturation density nsat are usually char-
acterized by the quantities J = Esym(nsat, 0, 0) and the slope
parameter L = 3dEsym/dn|n=nsat,T =0. With the parametriza-
tion of the present RMF model, the values J = 32.73 MeV
and L = 57.94 MeV are found. The obtained symmetry energy
at saturation J is fully consistent with all modern RMF
parametrizations and expectations. The rather small slope
coefficient L is a consequence of fitting the neutron skin
thickness of 208Pb that is not known precisely so far. Similar
low values for L are found in other contemporary RMF
parametrizations with density-dependent couplings or with
extended nonlinear meson self-interactions. Older nonlinear
RMF models were not able to give a reasonable value of
the neutron skin thickness with values for L in excess of
100 MeV. They displayed a much stiffer symmetry energy
because of a restricted form for the isospin dependence of the
interaction. The symmetry energy of nuclear matter parameters
at subsaturation densities is one of the central results of this
work and is discussed in Sec. VI.

IV. PROPERTIES OF SYMMETRIC NUCLEAR MATTER
WITH LIGHT CLUSTERS

The appearance of light clusters in nuclear matter at
densities below saturation affects the composition and the
thermodynamical properties of the system. In this section we
compare the results of the QS approach with the generalized
RMF in reference to the NSE model, which gives the correct
behavior in the limit of small densities. We will start to discuss
the composition of the system, which shows most directly the
differences of the models. In all figures in this section we
consider isothermes in symmetric nuclear matter as a function
of the total baryon density for temperatures between 2 and
20 MeV in steps of 2 MeV keeping the same color code. This
representation immediately allows one to study the systematic
evolution of the various properties.

A. Composition

We start to discuss the composition of the system, that is,
the fractions Xi = Aini/n of the various particle species i as
calculated in the RMF and the QS models. We first describe
the results and then attempt to give an explanation of the
differences between the models at the end of the subsection.

In Fig. 2 the density dependence of the free proton fraction,
that is, of protons not bound in a cluster, is shown for
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FIG. 2. (Color online) Proton fraction Xp in symmetric nuclear
matter as a function of the total density n for various temperatures T

in the generalized RMF model (a) and the QS approach (b) with light
clusters (thick solid lines). The results of the NSE calculation with
light clusters are denoted by thin solid lines for low densities.

different temperatures in symmetric nuclear matter (which
in this case is nearly identical to the neutron fraction).
The two approaches are compared to the NSE model up
to densities n < 2 × 10−2 fm−3. For finite temperatures T

the free proton fraction in symmetric nuclear matter always
approaches the value 0.5 for n → 0 fm−3. It first decreases
with increasing densities because of the formation of clusters,
but then increases again because the clusters dissolve at higher
densities. Eventually the system becomes homogeneous again,
and the nucleon fractions attain the value 0.5. For densities
below n ∼ 10−4 fm−3 the fraction of free protons in both
models is very well described by the NSE result because
here mean-field effects and changes of the cluster properties
are practically negligible. With increasing density, the NSE
proton fraction approaches zero asymptotically irrespective of
the temperature; that is, all protons are predicted to be bound
in clusters. This unphysical result does not occur in both the
RMF and QS approaches. Instead, the clusters dissolve at high
densities leading to free protons and neutrons at high densities;
that is, the correct limit is obtained.

The two approaches, RMF and QS, generally show a
similar behavior. However, in the transition region where the
clusters dissolve, there are significant differences, which are
more pronounced at high temperatures. In the QS approach
the minimum of the free proton fraction increases with the
temperature monotonously, and the minimum position is
slightly shifted to higher values in density but stays close to
10−2 fm−3. Essentially all protons are free at saturation density
independent of temperature. In the RMF model the behavior
at temperatures above ≈8 MeV is different. The minimum of
Xp starts to decrease again and the minimum position moves
considerably to higher densities with increasing temperature,
such that the model predicts that some protons are still bound
in clusters even at saturation density.

The information on the fractions of the different light
clusters, deuteron to 4He, is shown in Fig. 3 for the RMF model
and in Fig. 4 for the QS model, again in comparison with NSE.
At zero temperature and density the cluster fractions are simply
determined by the binding energies. Thus in symmetric nuclear
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FIG. 3. (Color online) Cluster fractions Xi in symmetric nuclear
matter as a function of the total density n for various temperatures T

in the generalized RMF model (thick solid lines). The results of the
NSE calculation with light clusters are denoted by thin solid lines for
low densities. See Fig. 2 for the color code.

matter all nucleons are bound in α particles. With increasing
temperature the cluster fractions show the complementary
behavior compared to the free nucleon fractions, discussed
previously. At low densities and higher temperatures all cluster
fractions are small, decreasing with temperature but increasing
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FIG. 4. (Color online) Cluster fractions Xi in symmetric nuclear
matter as a function of the total density n for various temperatures T in
the QS approach (thick solid lines). The result of the NSE calculation
with light clusters is denoted by thin solid lines for low densities. See
Fig. 2 for the color code.
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with density. For a fixed temperature first the deuteron appears,
then the three-body bound states, and finally the α particle.
The distribution between the clusters changes with increasing
density of the medium such that correlations between more
and more nucleons become important. As a consequence, the
fractions of the lighter clusters decrease whereas the α-particle
fraction still increases. In the QS model (but not in the RMF
model) at higher densities the more strongly bound α particles
are formed more frequently than deuterons. The same trend
is observed for the NSE calculation. However, for densities
beyond nuclear saturation, the NSE model predicts that all
nucleons in symmetric nuclear matter would be bound in
clusters, which again is unphysical because in this model the
medium modification and the eventual disappearance of the
clusters is not taken into account.

Again there are significant differences in the two ap-
proaches. In the RMF model the cluster fractions along
isothermes rise and fall monotonously with a single maximum.
In general they stay below the fractions predicted by the NSE
calculation, because the clusters are less bound inside the
medium. In the QS approach, however, at lower temperatures,
the fractions of deuterons, tritons, and helions exhibit a sudden
drop around densities of 10−2 fm−3, which is accompanied by
an increase in the α-particle fraction as compared to the NSE
result. Generally, the range of densities where the clusters
disappear is more confined in the QS model relative to the
RMF model.

Many of the differences in the behavior of the models can
be traced back to the different treatments of the deuteron
correlations. The QS approach takes the continuum contri-
butions explicitly into account, which effectively reduces the
strength of the two-body correlations, as is, for example, seen
in Eqs. (30) and (31). In the RMF model, on the other hand,
the deuteron correlations are represented by a single state that
slowly moves to higher energies in the continuum, and thus
two-body correlations are overestimated. Also in the NSE
model, the deuteron correlations are overestimated, because
there is no continuum contribution. This has a strong effect
on the deuteron fraction and—in competition—also on the
fractions of nucleons and other clusters. We see that in the RMF
model the deuteron fractions at higher densities are generally
larger than those in the QS model, as seen by comparing the
upper-left panels of Figs. 3 and 4. This, in turn, has a strong
effect on the α fractions, which are much lower in the RMF
model as seen in the lower-right panels of these figures, but
also leads to the decrease of the free nucleon fraction at higher
densities, as seen in Fig. 2. These effects can also be seen
in the comparison with the NSE limit, where they lead to
larger deuteron fractions relative to the QS model. Only at
temperatures smaller than the deuteron binding energy is the
bound state the dominating two-body correlation. A similar
effect occurs in the virial description of matter at low densities
that is encoded in the temperature dependence of the second
virial coefficient. For heavier clusters the influence of the
continuum on the fractions is much less pronounced as a result
of their larger binding energies.

As we remarked above, the QS model shows a particularly
enhanced α-particle fraction at the higher densities, as seen
in the increase above the NSE limit at densities around

n ∼ 10−2 fm−3 in Fig. 4. This has much of the appearance of
an onset of an α-particle condensation. As a consequence, the
fractions of the other clusters show a dip around this density,
and there are also consequences in the thermodynamical
quantities, as seen in the next subsection. All these effects
are not present in the RMF model. However, mean-field
contributions from the rather substantial cluster fractions in
this density range are not taken into account in the QS model,
the effect of which needs to be further investigated. It is
important to note that the α particle is usually not the most
frequent cluster and that there are substantial contributions
from the deuteron, the triton, and the helion at intermediate
densities and temperatures that are not considered in the EoS
of Lattimer and Swesty [28] or Shen et al. [29]. Furthermore,
the excluded-volume mechanism to suppress the formation
of clusters at high densities does not take into account any
temperature dependence in this process, which is clearly
present in our more microscopic models.

B. Thermodynamical quantities

In this subsection we discuss the thermodynamical quan-
tities for symmetric nuclear matter. The essential effects of
the formation of clusters in the various models are given
by the pressure p as a function of the total baryon number
density density n. For a better representation, we depict in
Fig. 5 the ratio p/n as a function of n. The left and right
panels of the figure show the results of the RMF and the QS
models, respectively, with thick lines. The thin lines in both
panels represent a NSE calculation with neutrons, protons,
and the light clusters d, t , h, and α. They are shown only
for densities below 2 × 10−2 fm−3 because the contribution of
heavier clusters can be substantial at higher densities, at least
for low temperatures, and the NSE becomes unrealistic.

At very low densities, all models approach the ideal gas
limit with p/n = T because the cluster fraction is very small
and nuclear matter is composed primarily of neutrons and
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FIG. 5. (Color online) Ratio pressure over density p/n of
symmetric nuclear matter as a function of the total density n for
various temperatures T in the generalized RMF model (a) and the QS
approach (b) with light clusters (thick solid lines). The results of the
NSE calculation with light clusters are denoted by thin solid lines for
low densities. See Fig. 2 for the color code.
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protons (see Sec. IV A). Relativistic and mean-field effects are
not important here. With increasing density the NSE calcula-
tion exhibits a reduction of the pressure relative to the ideal gas
that is caused by the formation of light clusters. Both the RMF
and the QS models follow this trend but there are considerable
differences. The QS result stays closer to the NSE calculation
whereas RMF shows a deviation already at lower densities
around 10−3 fm. However, both models predict a stronger
decrease of the pressure stronger than the NSE, because at
these densities the changes of the cluster properties and the
mean-field effects are already effective. An exception is seen
for the RMF approach at temperatures below approximately
6 MeV where it shows an increase relative to the NSE.

In the density range from 10−2 to 2 × 10−1 fm−3 the ratio
p/n displays considerable structure and passes through at least
one minimum, eventually with negative pressure, before it rises
sharply for densities above nuclear saturation (p/n = 0) and
the matter becomes very incompressible. In this region, we
observed the most pronounced differences in the behavior of
the RMF and QS models with respect to the composition in
Sec. IV A. They are generated partly by differences in the
description of the cluster correlations and partly by a different
treatment of the mean-field effects. In the QS approach, the
strengths of the mean fields and thus the quasiparticle energies
and mass shifts are independent of the composition of the
system because they are taken in parametrized form from the
RMF calculation without clusters. In contrast, in the RMF
approach the additional contributions in the source terms
of the meson fields, see Eqs. (45) and (46), depend on the
cluster densities. They describe the back reaction of the cluster
formation on the medium (apart from the contribution of the
bound nucleons) and are inevitable for the thermodynamical
consistency of this model. In the density region where the
cluster fraction is substantial, the additional terms lead to
a sizable modification of the vector meson fields. In the
density range around n ∼ 10−2 fm−3 the pressure is lower
in the QS model relative to the RMF model. This correlates
with increased α formation (α “condensation”) in this model
relative to RMF, as is seen in Fig. 4.

The relativistic baryon chemical potentials µ = (µp +
µn)/2 of the RMF and the QS approaches are displayed
in Fig. 6 in comparision with the NSE calculation. They
reflect the behavior observed for the pressure of the various
models. At very low densities, the three calculations agree
with each other and the ideal gas dependence of the chemical
potential µ = m + T ln(nλ3/4) on temperature and density.
With increasing density, the chemical potential of both the
RMF and QS calculations are below the NSE results, except
for the RMF model at low temperatures as already seen for
the pressure. Here, the chemical potential rises above the NSE
result with increasing density and a pronounced maximum
occurs. In the QS model, the chemical potential generally stays
below the NSE result. Deviations from the NSE predictions
appear already at lower densities in the RMF model relative
to the QS model. In general, however, the differences between
the two approaches are less obvious in the chemical potential
than in the pressure. In both models the low-density and the
high-density limits are correctly described.
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FIG. 6. (Color online) Relativistic baryon chemical potential
µ = (µp + µn)/2 of symmetric nuclear matter as a function of the
total density n for various temperatures T in the generalized RMF
model (a) and the QS approach (b) with light clusters (thick solid
lines). The results of the NSE calculation with light clusters are
denoted by thin solid lines for low densities. See Fig. 2 for the color
code.

The density dependence of the free energy per nucleon
FA, Eq. (71), is shown in Fig. 7 and closely follows the
density dependence of the chemical potential. In the QS
approach, FA is obtained by a simple direct integration of the
chemical potential, cf. Eq. (10). Both models agree perfectly
with the NSE result for densities below 10−4 fm−3. At the
nuclear saturation density, the free binding energy per nucleon
approaches the local minumum at −16 MeV in the limit
T → 0 MeV as expected.

The results for the internal energy per nucleon EA are
depicted in Fig. 8. Here the differences between the RMF
and the QS results are less pronounced than in the chemical
potential µ or the free binding energy per nucleon FA. In
contrast to the latter quantities, EA increases with temperature
at a given density. For n → 0 the classical limit EA → 3T/2
of an ideal gas is approached. Slight deviations stem from the
use of relativistic dispersion relations.
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FIG. 7. (Color online) Free energy per nucleon FA of symmetric
nuclear matter as a function of the total density n for various
temperatures T in the generalized RMF model (a) and the QS
approach (b) with light clusters (thick solid lines). The results of
the NSE calculation with light clusters are denoted by thin solid lines
for low densities. See Fig. 2 for the color code.
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TYPEL, RÖPKE, KLÄHN, BLASCHKE, AND WOLTER PHYSICAL REVIEW C 81, 015803 (2010)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

density   n   [fm
-3

]

-20

-10

0

10

20

30

40

in
te

rn
al

 e
ne

rg
y 

pe
r 

nu
cl

eo
n 

  E
A

   
[M

eV
]

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

density   n   [fm
-3

]

-20

-10

0

10

20

30

40

in
te

rn
al

 e
ne

rg
y 

pe
r 

nu
cl

eo
n 

  E
A

   
[M

eV
] (b)(a)

FIG. 8. (Color online) Internal energy per nucleon EA of sym-
metric nuclear matter as a function of the total density n for various
temperatures T in the generalized RMF model (a) and the QS
approach (b) with light clusters (thick solid lines). The results of
the NSE calculation with light clusters are denoted by thin solid lines
for low densities. See Fig. 2 for the color code.

The entropy per nucleon SA = s/n, shown in Fig. 9,
generally decreases monotonously with increasing density
n except for a small range in density at low temperatures
when the light clusters suddenly dissolve in the medium. At
low densities the entropy per nucleon in the RMF and QS
models approaches the NSE result and at very low densities,
a dependence SA ∝ − ln(n) + const. is found consistent with
the behavior of an ideal gas. The occurrence of clusters is found
to lead to a reduction of the entropy per nucleon as compared
to pure neutron-proton matter.

V. LIQUID-GAS PHASE TRANSITION

In a system of given total neutron and protons number
densities, ntot

n and ntot
p , and temperature T , the corresponding

thermodynamical potential, that is, the free energy density

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

density   n   [fm
-3

]

0

2

4

6

8

10

12

en
tr

op
y 

pe
r 

nu
cl

eo
n 

  S
A

   
[k

B
]

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

density   n   [fm
-3

]

0

2

4

6

8

10

12

en
tr

op
y 

pe
r 

nu
cl

eo
n 

  S
A

   
[k

B
]

(b)(a)

FIG. 9. (Color online) Entropy per nucleon SA of symmetric
nuclear matter as a function of the total density n for various
temperatures T in the generalized RMF model (a) and the QS
approach (b) with light clusters (thick solid lines). The results of
the NSE calculation with light clusters are denoted by thin solid lines
for low densities. See Fig. 2 for the color code.

f (ntot
n , ntot

p , T ), should be minimized. However, this proce-
dure does not necessarily give the correct equilibrium state.
Thermodynamic laws require that the free energy density
is a convex function in the variables ntot

n , ntot
p , and T to

assure the stability of the system. This condition leads to the
occurrence of phase transitions. The coexistence region of
different phases in thermodynamical equilibrium is separated
from the region of a single phase by the so-called binodal
surface. It can be obtained for a given temperature by a general
Gibbs construction where the values of the intensive variables
pressure p and the chemical potentials of protons µp and
neutrons µn in the two phases must be identical (see, for
example, Refs [61,62]). Thus, the binodal surface is found
from a global criterion in contrast to the spinodal surface
that defines the boundary of local instability of the system,
which occurs, for example, when the compressibilities of the
system become negative. In general, the spinodal is enclosed
by the binodal and both become identical along critical
lines. In the case of symmetric nuclear matter, the problem
becomes one-dimensional and a usual Maxwell construction
for the phase transition is sufficient with constant pressure
p and baryon chemical potential µ for densities inside the
coexistence region. In the general case of asymmetric matter,
the pressure and chemical potentials do not stay constant.
In addition, the low-density phase has an isospin asymmetry
larger than that of the coexisting high-density phase.

Nuclear matter as considered here is an idealized physical
system where the Coulomb interaction is neglected and charge
neutrality is not demanded. The phase transition boundary
as constructed by the aforementioned standard procedure
only gives a first indication of where the formation of
inhomogeneities and heavy nuclei occurs. In more realistic
calculations with Coulomb interaction the system must be
globally charge neutral and at least the contribution of electrons
must be considered, for example, in applications of the EoS
to astrophysics. We do not follow up on this issue in the
present work. For references to work in this direction, see
our discussion of pasta phases in the Introduction.

The results for the pressure p, Fig. 5, and the baryon
chemical potential µ, Fig. 6, allow one to construct the phase
transition in symmetric nuclear matter from the gas phase
with nucleons and light clusters at small densities to the liquid
phase of pure nucleon matter at high densities. In the following
we consider the example of the RMF model. In Fig. 10 the
pressure p and the chemical potential µ with phase transition
are shown for the cases without and with light clusters.
Inside the coexistence region of the two phases pressure
and chemical potential stay constant as characteristic for a
Maxwell construction. As the temperature approaches zero,
the density range of this region becomes larger with the limits
p → 0 MeV fm−3 and µ → m − 16 MeV. The differences
between the calculations without and with clusters increase at
higher temperatures with a larger coexistence pressure in the
latter case. Finally, the critical temperature is reached beyond
which no phase transition occurs any more.

At low temperatures the binodal line at the lower boundary
of the coexistence region is reached already at very small
densities. At this point the cluster fraction is still rather small,
and, consequently, the appearance of clusters has little effect on
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FIG. 10. (Color online) Pressure (a) and relativistic baryon
chemical potential (b) of symmetric nuclear matter as a function
of the baryon number density in the generalized RMF model with
clusters (solid lines) and without clusters (dashed line) taking the
phase transition into account. See Fig. 2 for the color code.

the determination of the phase boundary for low temperatures.
Larger effects of the clusters on the phase transition are
observed only at higher temperatures where the cluster fraction
at the lower density boundary reaches larger values. The
binodal on the high-density side of the phase coexistence
region is hardly affected when clusters are considered in the
calculation because here the matter is essentially composed of
free nucleons.

Results such as in Fig. 10 can be used to extract the binodal
line enclosing the phase coexistence region in the p-n diagram
and the phase transition line in the T -µ diagram. These are
shown in the left and right panels of Fig. 11, respectively, for
the RMF model without and with clusters and the QS approach.
The occurrence of light clusters in the system narrows the
width of the coexistence region and shifts the maximum to a
higher density and larger pressure in the generalized RMF
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FIG. 11. (Color online) Binodal line enclosing the liquid-gas
coexistence region in the pressure-density diagram (a) and phase
transition line in the temperature-chemical potential diagram (b) for
symmetric nuclear matter in the RMF model without light clusters
(blue lines), with light clusters (red lines), and in the QS approach
(green lines). The corresponding critical points are denoted by solid
circles.

model as compared to the calculation without clusters. In
the RMF model the critical temperature Tc increases from
13.72 MeV without clusters to 15.12 MeV with clusters. The
corresponding values of the critical density nc are 0.0452 and
0.1018 fm−3 and of the critical pressure pc are 0.1781 and
0.9029 MeV fm−3, respectively. Thus, in the RMF model the
position of the critical point shifts rather drastically when light
clusters are considered. There is also a marked effect on the
phase transition line in the T -µ diagram. In RMF without
clusters, the chemical potential decreases monotonously with
increasing temperature until it reaches the critial point at
a critical chemical potential of µc = 914.48 MeV. At low
temperatures the phase transition line with clusters follows
closely the line without clusters. However, toward the critical
point the transition line with light clusters has as S shape.
At temperatures T above ≈8 MeV the curve finally bends to
higher chemical potentials ending at the critical point with
µc = 918.9 MeV.

In the QS approach a very different trend is found. The
binodal line exhibits a characteristic dip on the low-density
side that is related to the enhancement of the α-particle fraction
(cf. Fig. 4). The critical point moves to a smaller temperature
of Tc = 12.1 MeV and a slightly higher chemical potential
of µc = 915.61 MeV as compared to the RMF calculation
without clusters. The critical pressure hardly changes. The
observed differences between the RMF and the QS approaches
are again related to the fact that many-body correlations at high
temperatures, especially of the deuteron, are overestimated
in the former. The behavior of the RMF approach must be
considered unphysical in this respect, because one would
expect that correlations decrease the chemical potential and
the pressure of the phase transition. In an improved version
of the generalized RMF approach that takes the continuum
contributions explicitly into account, it is expected that the
critical point moves to lower temperatures.

VI. SYMMETRY ENERGY

The internal energy per nucleon EA of asymmetric nuclear
matter, as defined in Eq. (70), can be expanded for given
density n and temperature T in powers of the asymmetry δ:

EA(n, δ, T ) = EA(n, 0, T ) + Esym(n, T )δ2 + . . . . (78)

The symmetry energy is the coefficient of the first term in
the expansion that depends on the asymmetry δ quadratically.
Thus, it is defined as the second derivative

Esym(n, T ) = 1

2

∂2EA

∂δ2

∣∣∣∣
δ=0

. (79)

Usually, the dependence of EA(n, δ, T ) for the complete range
of asymmetries is quite well approximated by a quadratic
function. In this case the symmetry energy also represents the
difference between the binding energy per nucleon of neutron
matter and of symmetric nuclear matter. At finite temperatures
one must distinguish between the internal symmetry energy
Esym(n, T ) and the free symmetry energy Fsym(n, T ) that is
similarly defined.
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FIG. 12. (Color online) Free energy per nucleon FA (left) and
internal energy per nucleon EA (right) as a function of the asymmetry
δ for constant total density n = 0.001 fm−3 for various temperatures
T without light clusters (dashed lines) and with light clusters (solid
lines). See Fig 2 for the color code.

However, the quadratic approximation is not valid in
general, especially for a system with cluster correlations at
densities n below the nuclear saturation density. This is clearly
seen for our models in the dependence of EA and FA on δ

for given n and T . In Fig. 12 the free binding energy per
nucleon (left) and the internal binding energy per nucleon
(right) are shown as a function of the asymmetry for a fixed
density n = 0.001 fm−3 and different temperatures. Without
clusters, the dependence on δ is rather weak and can be
well described by a parabolic function irrespective of the
temperature. With clusters, the binding energies per nucleon
are substantially lowered around δ = 0, that is, symmetric
nuclear matter, particularly for low temperatures. The system
gains additional binding energy by forming clusters. Large
deviations from a global quadratic dependence develop and
especially at low temperatures the parabola changes to a
triangular shape, most obviously seen for the internal energy
per nucleon. This behavior leads to a very large and thus not
very meaningful symmetry energy in the limit T → 0 MeV
when the conventional definition (79) is used. Hence, a
more appropriate characterization for the symmetry energy is
required. A reasonable choice is given by the finite difference
formula

Esym(n, T ) = 1
2 [EA(n, 1, T ) − 2EA(n, 0, T )

+EA(n,−1, T )], (80)

which is identical to Eq. (79) for an exact quadratic dependence
of the internal binding energy per nucleon on δ. This modified
definition gives a good measure of the binding energy
differences between neutrons, protons, and symmetric nuclear
matter. A corresponding equation defines the free symmetry
energy Fsym(n, T ).

The density dependence of the internal symmetry energy
Esym and of the free symmetry energy Fsym as defined
previously is presented in Figs. 13 and 14, respectively, as a
function of density for various temperatures. In these figures,
the results of the RMF and QS approaches with clusters are
compared to the RMF result without clusters. Just as for the
free energy, Fig. 7, and the internal energy, Fig. 8, of symmetric
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FIG. 13. (Color online) Internal symmetry energy Esym as a
function of the total density n for various temperatures T in the
generalized RMF model (a) and the QS approach (b) with light
clusters (thick solid lines). The results of the RMF calculation without
clusters are denoted by thin solid lines for low densities. See Fig. 2
for the color code.

nuclear matter, the free and internal symmetry energies exhibit
a different behavior for n → 0. In all models, Esym approaches
zero in this limit, but Fsym converges to T ln 2.

In the RMF model without clusters both internal and free
symmetry energies rise continuously with increasing density,
and Esym is almost independent of T . When the formation of
clusters is taken into account, the internal symmetry energy
increases substantially at low densities (see Fig. 13). This
behavior is caused by the additional binding of symmetric
nuclear matter, which was already seen in Fig. 12, that is
particularly pronounced at low temperatures with a large
cluster fraction. The density dependence of the internal
symmetry energy is rather different for the for the RMF and
QS approaches in a region near 10−2 fm−3. As discussed in
Sec. IV A, in the RMF calculation the fraction of deuterons is
enhanced in the transition region whereas three- and four-body
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FIG. 14. (Color online) Free symmetry energy Fsym as a function
of the total density n for various temperatures T in the generalized
RMF model (a) and the QS approach (b) with light clusters (thick
solid lines). The results of the RMF calculation without clusters are
denoted by thin solid lines for low densities. See Fig. 2 for the color
code.
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correlations are suppressed as compared to the QS approach.
Correspondingly, symmetric nuclear matter is less bound
here and the symmetry energy is reduced relative to the QS
approach. Because two-body correlations survive in the RMF
model to too high densities for larger temperatures, the internal
symmetry energy is also lowered considerably when the total
baryon number density approaches the saturation density. In
the QS approach, EA is much closer to the RMF result without
clusters with increasing density. The free symmetry energy,
see Fig. 14, shows essentially the same features as the internal
symmetry. However, they are less pronounced because of the
different low-temperature limit.

VII. COMPARISON WITH OTHER APPROACHES

We discuss light cluster abundances obtained from our
approaches in comparison with results from other models,
which appear in the literature and which have been discussed in
this article. These are the EoS of Shen et al. [29], an EoS based
on a virial expansion as presented in Ref. [32], and a nuclear
statistical equilibrium calculation that takes into account the
ground states of all nuclei in the atomic mass evaluation
(AME 2003) [60]. Figure 15 shows the α-particle fraction
in symmetric nuclear matter at four different temperatures as a
function of density. We have not explicitly included the results
of the model of Lattimer and Swesty [28] in this comparison.
They use the same excluded volume prescription as Shen
et al. [29] to take into account the medium dependence of
the α-particle fraction. Therefore, the behavior with density of
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FIG. 15. (Color online) Comparison of α-particle fractions in
symmetric nuclear matter as a function of the density at four
temperatures for the virial expansion (black dashed-dotted lines),
NSE (green dotted lines), the EoS of Shen et al. [29] (blue dashed
lines), the generalized RMF model (red solid lines), and the QS
approach (orange dashed lines). Note the different scales on the x

axes.

their results is similar to that of Shen et al. [29], even though
absolutely there are differences due to a different treatment of
the heavy particle fraction. A direct comparison of Xα of Shen
et al. [29] and Lattimer et al. [28] can be found in Ref. [31].

At low densities all models show a decreasing α-particle
fraction with decreasing total baryon number density. How-
ever, there are some subtle differences. The virial expansion
(black dash-dotted lines) takes scattering contributions to the
second virial coefficient into account. These are important at
higher temperatures and cause a slightly higher prediction for
Xα at small n. The effect of cluster dissociation is absent
in this model and results in a monotonic increase of the
cluster fraction with increasing density, which is unphysical
because one does not expect to see clusters in nuclear matter
at saturation density.

The NSE approach (green dotted lines) compared to the
virial approach shows a reduction of the α-particle fraction
at all densities, due to the formation of heavier clusters. The
α-particles survive even beyond the nuclear saturation density,
because medium modification and dissolution of clusters are
absent in this model, which also fails to describe the transition
from clusterized matter to cluster-free nuclear matter at high
densities.

The Shen et al. [29] EoS (blue dashed lines) neglects the
contribution of deuteron, triton, and helion clusters. This leads
to an overestimation of the α-particle fraction at low densities
where actually lighter clusters dominate the composition. In
contrast to the aforementioned two approaches, there is a steep
decrease of the α-cluster abundance when approaching the
saturation density. However, one notes some irregularities that
are understood as an effect of the excluded volume approach
when the closest packing is reached.

The generalized RMF model (red solid lines) developed in
this work describes the decrease of the α-particle fraction at
high densities by a reduction of their binding energy due to
the Pauli blocking that leads to the Mott effect for vanishing
binding. The maximum cluster density is reached around the
Mott density. Because of the presence of strong correlations in
the scattering state continuum that are effectively represented
by one resonance, there is a nonvanishing cluster fraction
above the Mott density. Among all models presented in the
comparison of Fig. 15, the generalized RMF approach shows
the strongest reduction of the α-cluster fraction.

In the QS approach the behavior of the density dependence
of Xα is similar to that of the generalized RMF model, but
has for all densities a higher α-cluster fraction, which is ac-
companied by smaller light cluster abundances. As discussed
in Sec. IV A the difference in Xα between the two models is
mainly due to the overemphasis of the deuteron correlations
in the RMF model, which suppresses the α-particle fraction.
On the other hand, the RMF model takes into account the
back reaction of the cluster formation on the mean field that is
missing in the QS approach.

The difference between the two approaches of this ar-
ticle, shown in Fig. 15, in direct comparison, also gives
an indication of the effects of possible improvements in
the models, apart, of course, from the inclusion of heavier
clusters, i.e. nuclei embedded in a clusterized gas. However, the
synopsis of Fig. 15 demonstrates the advantage of systematic
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many-body approaches to the description of cluster formation
over alternative approaches that lack a microphysical mecha-
nism to account for the cluster breakup, but that are extensively
used, for examle, in astrophysical applications.

VIII. CONCLUSIONS

Up to now there exist different strategies to model the
EoS of nuclear matter and, in particular, to extract the
symmetry energy: (1) phenomenological density functional
methods, such as nonrelativistic Skyrme or relativistic RMF
functionals, (2) effective-field theory approaches based on
density functional or chiral perturbation theory, or (3) ab
initio approaches, such as Brueckner-type methods, variational
calculations, or Green function methods. A recent overview
of these methods with references can be found, for example,
in Ref. [51]. These methods are developed to obtain reliable
equations of state for nuclear matter for a range of densities and
asymmetries. In particular, the density-dependent RMF model
can be considered phenomenologically a very useful approach
in this respect because it has been applied with great success
in the simultaneous description of cold nuclear matter in finite
nuclei and compact stars as well as of hot nuclear matter
in heavy-ion collisions and supernova explosions. However,
all these approaches fail in the low-density limit, where
cluster formation becomes essential. In this region, simple
approaches that take clusters into account, such as the NSE or
the Beth-Uhlenbeck formula of the virial expansion, show that
clusters give a substantial contribution to the composition and
the thermodynamic properties. However, models like the NSE
or the virial expansion fail at higher densities where in-medium
effects become important leading to a dissolution of clusters
and the transition to cluster-free nuclear matter.

Here we propose, for the first time, a unified treatment that
takes both limits into account describing the smooth transition
from clusterized matter at low densities to pure nucleonic mat-
ter at high densities. We thus suggest a symbiotic framework
that combines the merits of a QS approach in describing cluster
properties in a medium with those of the RMF approach to
model nucleonic self-energy effects, resulting in two hybrid
approaches to the problem of cluster formation and dissolution.
On the one hand we use a microscopic QS approach to
describe the medium modification of cluster binding energies
due to Pauli blocking. In this approach we employ nucleon
self-energies taken in parametrized form from a very recent
version of the density-dependent RMF model. On the other
hand, the results of the QS approach for the cluster properties
inside the medium are incorporated into an effective hadronic
field theory using a Lagrangian formulation. Such a theory
already has the correct high-density behavior as deduced
from comparisons to heavy-ion collision experiments. We
improve the low-density behavior by explicitly including light
clusters, such as deuterons, tritons, helions, and α-particles, as
explicit degrees of freedom taking into account the medium
modification of their binding energies from the results of the
QS approach.

In the numerical evaluation of both hybrid approaches
developed in this work, we find that well-defined clusters

appear only for densities below approximately 1/10 to 1/100
of the saturation density and get dissolved at higher densities. A
direct confirmation of the given approach can be obtained from
a comparison with recent results from heavy-ion collisions at
low energies [8]. These investigations indicate larger values
for the symmetry energy in comparison with the mean-field
results at low densities, which seem to be in agreement with
our findings [63].

Realistic approaches to the clustering in low-density nu-
clear matter should include excited states such as resonances
and also the contribution of the continuum of scattering
states. This can be done for the second virial coefficient, as
demonstrated by the generalized Beth-Uhlenbeck approach
[41]. In this way one can also reach the exact low-density limit
of the virial approach [31–33]. Compared with the approaches
of Lattimer and Swesty [28] and Shen et al. [29], who employ
phenomenological concepts such as the excluded volume, we
have given in this work a description of medium effects on
the clusters and of their breakup as a result of the fundamental
Pauli principle.

The extension of the present framework to larger clusters
beyond the α particle is straightforward along the lines given in
this work. For the evaluation of self-energies and Pauli shifts
of A-particle clusters in nuclear matter, see Ref. [59]. The
generalization of the given approach to account for clusters of
arbitrary size would lead to an improvement in the low-density
limit when comparing the nuclear statistical equilibrium as
used, for example, in multifragmentation models [64,65].
One can alternatively also introduce the formation of heavier
nuclei [59] in the presence of a nucleon and cluster gas, in a
manner similar to the way it was done in the Thomas-Fermi
approximation in the Shen et al. [29] approach. This will be
relegated to a subsequent article. We restricted our present
work to that region of the phase diagram where heavier clusters
with A > 4 are not relevant.

In our models, we constructed the phase transition from
clusterized, gaseous low-density matter to a cluster-free
nuclear liquid at high densities. The coexistence region gives
a hint about the range in temperature and density where the
occurrence of inhomogeneities and the formation of heavy
clusters become relevant. An issue for future investigations
is an improved description near the phase transition taking
into account effects of the Coulomb interaction and charge
screening.

We are able to give the composition and the thermodynamic
quantities in a large region of densities, temperatures, and
asymmetries as they are required, for example, in supernova
simulations. We did not consider contributions from, for exam-
ple, electrons, neutrinos, or photons, to the thermodynamical
quantities. In astrophysical applications of the EoS, they must
be included. They will modify the properties of the system and
affect, in particular, the occurrence of inhomogeneities and of
the liquid-gas phase transition.

As a long-range objective, we aim at a unified description
of nuclear matter from very low density to, eventually, the
deconfinement phase transition that is based on a more
microscopic and self-contained description than previous
approaches to the EoS that have been used up to now in
astrophysical models.
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APPNDIX: LOW-DENSITY EXPANSION

A density-dependent RMF model was considered in
Ref. [45]. The following low-density expansions are derived
from this model and reproduce the DD-RMF results below
the baryon density n � 0.2 fm−3 within 0.1 %; variables are
the total baryon density n = ntot

p + ntot
n in units of fm−3, the

asymmetry δ = (ntot
p − ntot

n )/(ntot
p + ntot

n ), and the temperature

T in MeV. The scalar field in MeV is given by


n,p(T , n, δ) = nB[(4524.13 − 6.926T ) − 14.5157 δ2/4

+ 0.833943 δ4/16 − 9.00693 δ6/64]

+ n2[−19190.7−2426.57 δ2/4−317.732 δ4/16

− 1547.38 δ6/64] + n3[62169.5 +2521.29 δ2/4

+ 3470.28 δ4/16] + n4[−91005.1

+ 3984.82 δ2/4 − 9148.6 δ4/16], (A1)

and the vector field in MeV by


0
p(T , n, δ) = 
0

n(T , n,−δ) = n[3462.24 + 946.705 δ/2

− 0.334508 δ2/4] + n2[−11312.4 − 6246.21 δ/2

− 6353.53 δ2/4 − 0.099478 δ3/8] + n3[20806.1

+ 18717.6 δ/2 + 29298 δ2/4 − 0.490543 δ3/8]

+ n4[352.371 − 24887.2 δ/2 − 39807.4 δ2/4

− 0.346218 δ3/8]. (A2)

The vector field is nearly independent of temperature, and the
scalar field has a weak temperature dependence.
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[16] M. Warda, X. Viñas, X. Roca-Maza, and M. Centelles, Phys.

Rev. C 80, 024316 (2009).
[17] C. J. Horowitz, S. J. Pollock, P. A. Souder, and R. Michaels,

Phys. Rev. C 63, 025501 (2001); http://hallaweb.jlab.org/
parity/prex.
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TYPEL, RÖPKE, KLÄHN, BLASCHKE, AND WOLTER PHYSICAL REVIEW C 81, 015803 (2010)
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Phys. Rev. C 53, 2181 (1996); H. J. Schulze, A. Schnell,
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[59] G. Röpke, M. Schmidt, and H. Schulz, Nucl. Phys. A424, 594

(1984).
[60] G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A729, 337

(2002).
[61] M. Barranco and J. R. Buchler, Phys. Rev. C 22, 1729 (1980).
[62] H. Müller and B. D. Serot, Phys. Rev. C 52, 2072 (1995).
[63] J. B. Natowicz, arXiv:1001.1102 [nucl-th].
[64] J. P. Bondorf, A. S. Botvina, A. S. Ilinov, I. N. Mishustin, and

K. Sneppen, Phys. Rep. 257, 133 (1995).
[65] D. H. E. Gross, Rep. Prog. Phys. 53, 605 (1990).

015803-22


