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A three-neutrino analysis of oscillation data is performed using the recent, more finely binned Super-K
oscillation data, together with the CHOOZ, K2K, and MINOS data. The solar parameters �21 and θ12 are fixed
from a recent analysis and �32, θ13, and θ23 are varied. We utilize the full three-neutrino oscillation probability
and an exact treatment of Earth’s Mikheyev-Smirnov-Wolfenstein (MSW) effect with a castle-wall density. By
including terms linear in θ13 and ε := θ23 − π/4, we find asymmetric errors for these parameters θ13 = −0.07+0.18

−0.11

and ε = 0.03+0.09
−0.15. For θ13, we see that the lower bound is primarily set by the CHOOZ experiment while the

upper bound is determined by the low energy e-like events in the Super-K atmospheric data. We find that the
parameters θ13 and ε are correlated—the preferred negative value of θ13 permits the preferred value of θ23 to be
in the second octant, and the true value of θ13 affects the allowed region for θ23.

DOI: 10.1103/PhysRevC.81.015501 PACS number(s): 14.60.Pq

I. INTRODUCTION

The experimental observation of neutrino oscillations im-
plies that at least two of the three neutrinos have mass and
the mass eigenstates differ from the flavor eigenstates. The
vast majority of oscillation experiments [1–20], including the
null result from the CHOOZ reactor experiment [21], can
be globally understood in terms of three mixing angles θjk

with j = 1, 2, 3 and j < k; one phase δ; and two independent
mass-squared differences �kj := m2

k − m2
j . The separation

between two of the mass-squared differences is sufficiently
large so that the data from a given experiment, which
may span some range of baselines and neutrino energies,
can be approximately understood within the context of an
effective two-flavor theory. Experiments detecting solar neu-
trinos [1–10] and the long baseline (LBL) reactor experiment
KamLAND [11,12] are particularly sensitive to the mixing
angle θ12 and the mass-squared difference �21 assuming the
standard representation of the neutrino mixing matrix [22,23].
A three-neutrino analysis [24] gives a value for the mixing
angle sin2 θ12 = 0.304+0.046

−0.034 (2 σ error), with a precision of
8% at 3σ . The solar mass-squared difference is determined
predominantly by the KamLAND data [12] and is found to
be �21 = 7.65+0.47

−0.40 × 10−5 eV2. Atmospheric and accelerator
beam-stop neutrinos provide experimentalists with a good
source with which to measure θ23 and �32. MINOS [19,20]
predominantly determines �32 while the mixing angle θ23 is
determined mainly by the Super-K atmospheric data [13–16].
Present values for these parameters [24] are �32 = 2.40+0.24

−0.22 ×
10−3 eV2 and sin2 θ23 = 0.50+0.13

−0.11. The remaining mixing
angle θ13 mixes the two scales. This same analysis gives
sin2 θ13 � 0.040; recent analyses hint at a value of θ13 differing
from zero [25–29]. Recent review articles can be found at
Refs. [30,31].

As we enter the era of precision measurements, global
analyses of neutrino data must employ a full three-neutrino
framework to correctly assess the neutrino mixing parameters.

This will become evident herein as we consider various
experiments’ impact upon the small parameters θ13 and
ε := θ23 − π/4, the deviation of θ23 from maximal mixing.
The quantitative knowledge of θ13 is a particularly important
part of neutrino oscillation phenomenology because it sets
the magnitude of possible CP-violating effects as well as
the size of effects that might be used to determine the
neutrino mass hierarchy. There are presently three new reactor
experiments planned or under construction which are designed
to measure θ13: Daya Bay [32], Double CHOOZ [33], and
RENO [34]; an LBL experiment has just started running,
T2K [35]. The subsequent generation of experiments, which
will be designed to ascertain the level of CP violation, cannot
proceed until the current generation better determines the
value of θ13. In addition, a more quantitative knowledge of
the mixing angles, and particularly of θ13, can help discern
between models and symmetries of the physics that underlies
neutrino mixing. If θ13 = 0, then the data are consistent with
tribimaximal mixing [36,37]; however, if this mixing angle
differs appreciably from zero then other models [38–41] will
need to be considered. The mixing matrix can then signify
an underlying symmetry that may lead to an understanding
of the origin of neutrino mass [42,43]. The deviation of θ23

from maximal mixing is also important in model building
as it might indicate the presence of a broken symmetry. At
short baselines, the oscillation probabilities that might probe
the mixing angle θ13 are quadratic in this small parameter;
however, we previously showed that there are terms in the
oscillation probability linear in θ13 that are appreciable at very
long baselines (VLBL) [44–48] and arise from interference
between the oscillations driven by the two mass-squared
differences. This is also a region of the parameter space
where one can look [45,49] for CP-violating effects. The
sub-GeV data set of the Super-K atmospheric experiments is
potentially sensitive to such effects. Furthermore, it was shown
in Ref. [48] that there is a nontrivial relation between ε and
θ13 for sub-GeV neutrinos at VLBL’s. As such, the extraction
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of these parameters from the atmospheric data requires a full
three neutrino treatment since approximations overly simplify
the correlations among the parameters. A number of possible
future experiments have been proposed so that the value of
θ13, the octant of θ23 (i.e., the value of ε), the size of the
CP-violating phase δ, and the mass hierarchy question can be
disentangled. How to do this with future atmospheric neutrino
detectors can be found in Refs. [50–57].

We here investigate atmospheric neutrino oscillations with
the full three-neutrino oscillation probabilities. Since we do not
use truncated expansions, all terms linear in θ13 and ε will be
considered as well as higher order contributions. We do not ex-
pect a large change in the extracted parameters as only a limited
number of the Super-K data bins lie in the region where linear
terms will be significant. On the other hand, in the context of
atmospheric data, θ13 is itself a small effect as is the octant of
θ23. Small effects can sometimes have a proportionally larger
impact on something that is inherently small. In keeping with
the use of the full three-neutrino oscillation probabilities, we
also utilize the method proposed in Refs. [58,59] to treat
the Mikheyev-Smirnov-Wolfenstein (MSW) effect [60,61]
with a castle-wall density profile of Earth. This treatment
of the MSW effect is exact so that approximate expressions
for the oscillation probabilities are not needed. This also
means that the effects of parametric resonances are fully
included.

II. ANALYSIS

In vacuo, the probability that a neutrino of flavor α and
energy Eν will be detected as a neutrino of flavor β after
traveling a distance L is given by

Pαβ(L/Eν) = δαβ − 4
3∑

k<j,

j,k=1

(UαjUαkUβkUβj ) sin2 ϕjk, (1)

with ϕjk := 1.27 �jk L/Eν , where L is measured in kilome-
ters, Eν in GeV, and the mass eigenvalues mi in eV. The matrix
Uαi is the unitary matrix that relates the mass basis i to the
flavor basis α. We assume CP conservation so that the Uαi are
real. Neutrinos that propagate long distances through matter
of sufficient densities can incur significant interactions that are
diagonal in flavor. For matters of constant density, the upshot
of these interactions is a modification of the effective mixing
angles and mass-squared differences so that an oscillation
formula similar to Eq. (1) holds. The density of Earth may
be approximated as a piecewise constant [62]. In addition,
for certain energies and densities, the neutrinos can undergo
parametric resonances [63–73] in regions of varying densities.
To account for these interactions, we employ a simple model
of Earth: a mantle of density 4.5 gm/cm3 and a core of density
11.5 gm/cm3 with a radius of 3486 km. Using the methods
in Refs. [58,59], we are able to fully incorporate an exact
three-neutrino model of the neutrino-matter interactions such
that parametric resonances are automatically included.

Our interest is to study and extract the following parameters
from the experimental data: θ13, θ23, and �32. As such,
we fix the solar mixing parameters from a recent analysis

[30], θ12 = 0.58 and �21 = 8.0 × 10−5 eV2. We use these
parameters, which differ a small amount from those in
Ref. [24], to be consistent with our earlier work [29]. Since
the solar mass scale and atmospheric mass scale analyses are
nearly independent, we find that the small differences in the
choice of these parameters affects the results presented here at
a level that is less than a line width on our curves. Given that
there is no evidence to indicate CP violation, we assume CP
conservation. In the standard parameterization of the neutrino
mixing matrix, CP is conserved whenever the Dirac phase takes
the values δ = 0, π ; alternatively, this convention is equivalent
to setting δ = 0 and allowing negative values for the mixing
angle θ13. We choose the latter bounds on these parameters
as it produces a connected parameter space. We include the
details of our analyses of the relevant experiments in the
Appendix. We comment on them briefly here. The Super-K
atmospheric data are statistically the most significant data set,
and it covers a range of over 4 orders of magnitude in L/E.
Our analysis employs the most recent, more finely binned
data [16], a necessity for studying the small parameters θ13

and ε. We also include a model of the multiring events in
the Super-K experiment, a subset that is often neglected. In
addition, we include the most recent MINOS results [20], the
K2K results [18], and the CHOOZ results [21].

To ascertain the importance of the linear and higher order
terms in θ13 (and also ε), we compare our results with those
generated by the often used subdominant approximation,
which arises from an expansion in the ratio of the mass-squared
differences, α ≡ �12/�32. In this approximation, the leading
order oscillation probabilities are given by

Pee = 1 − sin2 2θ13 sin2(ϕ32),

Peµ = sin2 θ23 sin2 2θ13 sin2(ϕ32),

Pµµ =1 − 4 cos2 θ13 sin2 θ23 (1 − cos2 θ13 sin2 θ23) sin2(ϕ32).

(2)

Additional correction terms [30,31,74] can then be added. The
results for the subdominant approximation when compared to
the results for the full three-neutrino oscillation probabilities
will inform us of the size of the correction terms.

We begin by examining the mass-squared difference �32.
We plot �χ2 versus �32 using both the subdominant ap-
proximation, Fig. 1(a), and the full three-neutrino calculation,
Fig. 1(b), with θ13 and θ23 as varied parameters. The (black)
solid curves are obtained from the Super-K atmospheric data
alone. The (red) dash-dot curves employ the K2K, MINOS,
and CHOOZ data, omitting the Super-K atmospheric data.
These curves are largely determined by the recent MINOS
data, which constrain the mass-squared difference more so
than Super-K, as is well known. The analysis utilizing all of
the data sets (atmospheric, K2K, MINOS, and CHOOZ) is
depicted by the (blue) dashed curves. Notice that, although
the Super-K atmospheric data are not as constraining as
MINOS, it combines with MINOS to produce a reduced bound,
particularly from above. In comparing the approximation,
Fig. 1(a), with the full calculation, Fig. 1(b), we see that
the subdominant approximation is useful for determining the
mass-squared difference �32. A very careful inspection will
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FIG. 1. (Color online) �χ 2 versus mass-squared difference �32

for the (a) subdominant approximation and (b) full three-neutrino
calculation. The (black) solid curves utilize only atmospheric data;
the (red) dot-dash curves utilize K2K, MINOS, and CHOOZ data;
the (blue) dashed curves utilize all the data sets: atmospheric, K2K,
MINOS, and CHOOZ.

reveal that the full three-neutrino analysis produces a slightly
larger bound than does the subdominant approximation. Our
results are �32 = 2.45+0.20

−0.15 × 10−3 eV2 at the 90% confidence
level. (The errors quoted for our calculations will be for
�χ2 = 6.25, the 90% confidence level for a three-parameter
fit.)

We next present �χ2 versus ε = θ23 − π/4 using the
subdominant approximation, Fig. 2(a), and the full three-
neutrino calculation, Fig. 2(b), with θ13 and �32 as varied
parameters. We express our result in terms of θ23 rather than
sin2 2 θ23 or sin2 θ23 because the oscillation probabilities truly
are a function of θ23. The (black) solid curve again represents
the Super-K atmospheric data alone. The (blue) dashed curve
represents the results from all data sets: Super-K atmospheric,
K2K, MINOS, and CHOOZ. Adding K2K, MINOS, and
CHOOZ hardly alters the Super-K result. We do not present
the results for K2K, MINOS, and CHOOZ alone because
these data do not yield a reasonable constraint on θ23 when
treated as a linear variable with a varied θ13 included in the
analysis. Only in a two-neutrino analysis do K2K and MINOS
restrict the then appropriate variable sin2 2θ23. Comparing the
subdominant approximation with the full calculation, we see
that the full three-neutrino probabilities produce an allowed
region, which is much more asymmetric about ε = 0. In fact,
we find a statistically insignificant indication that θ23 is greater
than π/4, maximal mixing. The ability of atmospheric data to
determine the octant of θ23 was also investigated in Ref. [75].
We find the value at 90% CL is ε = 0.03+0.09

−0.15.
In Fig. 3(a), we present �χ2 versus θ13 calculated in the sub-

dominant approximation and full three-neutrino formulation
with θ23 and �32 as varied parameters. Previously, it was shown
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FIG. 2. (Color online) �χ 2 versus ε for the (a) subdominant
approximation and (b) full three-neutrino calculation. The (black)
solid curve utilizes only atmospheric data; the (blue) dashed curve
utilizes all the data sets: atmospheric, K2K, MINOS, and CHOOZ.

[16] that in the subdominant approximation the atmospheric
data alone restrict θ13. Focusing upon our subdominant
calculation, Fig. 3(a), the (black) solid curve depicts the
corresponding result from our analysis. As noted in the
Appendix, our analysis quantitatively reproduces the results
in Ref. [16]; for �χ2 < 4.6, we both find sin2 θ13 < 0.14
(or |θ13| < 0.38). This is a very important calibration of our
analysis tool. The effect of θ13 on atmospheric oscillations is
small and obtaining the same result implies we are reproducing
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FIG. 3. (Color online) The same as Fig. 1 except �χ 2 versus θ13

is presented.
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small effects, not just the global features of the analysis. The
(red) dash-dot curve in Fig. 3(a) is the result of analyzing
the K2K, MINOS, and CHOOZ data, neglecting the Super-K
atmospheric data. This curve is mainly determined by the
CHOOZ data. We see that CHOOZ data are more constraining
on θ13 than are the Super-K atmospheric data. However, the
(blue) dashed curve presents the results utilizing all of the data
sets and shows that the Super-K data do somewhat reduce
the error on θ13; this is due to the indirect effect arising
from Super-K further constraining the mass-squared difference
�23. To obtain the constraints on θ13 implied by the Super-K
atmospheric data, it is important to use the data from Ref. [16],
which are more finely binned than earlier Super-K work [15].
Note that the curves in the subdominant approximation are
symmetric about θ13 = 0 as is manifest from the approximate
oscillation formulas, Eq. (2). In Refs. [25,26,28], it was
observed that recent data imply a statistically insignificant
nonzero value for θ13; our results are likewise consistent.

Turning to the full three-neutrino calculation, Fig. 3(b), we
find �χ2 to be very asymmetric with a strong preference for
negative θ13 when using only Super-K data, the (black) solid
curve. The (red) dash-dot curve employs only K2K, MINOS,
and CHOOZ data; it is symmetric about the origin so that
the asymmetry present when all data are included, the (blue)
dashed curve is due to the Super-K data. What is more, we
see the novel result [29] that θ13 is constrained from above
by the Super-K atmospheric data not by CHOOZ, while it is
constrained from below primarily by CHOOZ.

This conclusion is further reinforced by looking at the
allowed region for the parameters θ13 and θ23 as depicted in
Fig. 4. We plot the �χ2 = 4.61 contour, minimizing with
respect to the third parameter �32 in calculating these curves.
The (green) dash-dot curve depicts the results for Super-K
atmospheric data alone in the subdominant approximation. We
compare this with the (red) dashed curve, which also utilizes
only the Super-K atmospheric data alone, but incorporates the
full three-neutrino probabilities. Again, we see the significant
change brought about by incorporating the linear and higher
order terms in θ13. The allowed region grows, favoring negative
θ13. The (blue) dash-dot-dot curve utilizes all the data in
the subdominant approximation. It is similar to the (green)
dash-dot curve because the mass-squared difference �32 is
fixed when calculating the curves; the main effect of the
MINOS experiment is to restrict �32. Finally, the (black)
solid curve utilizes all the data and the full three-neutrino
oscillation probabilities. Note that the upper bound on θ13 is
similar to that from the (red) dashed curve, that is, the curve
also utilizing the full three-neutrino oscillation probabilities
with only the Super-K data. For the lower bound on θ13,
however, we find similarities to the (blue) dash-dot-dot curve
where the restriction on θ13 originates primarily from the
CHOOZ experiment. Thus, we again see that the upper bound
on θ13 no longer arises from the CHOOZ experiment, but is
determined by the Super-K atmospheric experiment, while the
lower bound continues to come from the CHOOZ experiment.
Our final result for this mixing angle is θ13 = −0.07+0.18

−0.11.
(As before, the errors quoted for our calculations are for
�χ2 = 6.25, the 90% confidence level for a three-parameter
fit.)
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FIG. 4. (Color online) The �χ 2 = 4.61 contours for the param-
eters θ13 and θ23. The (black) solid curve uses the full three-neutrino
oscillation probabilities and all the data sets: CHOOZ, K2K, MINOS,
and Super-K atmospheric. The (blue) dash-dot-dot curve represents
the use of the subdominant approximation and all the data sets. The
(red) dashed curve depicts the use of the full three-neutrino oscillation
probabilities and only the Super-K data. The (green) dash-dot curve
depicts the use of the subdominant approximation and the Super-K
data alone. The vertical (horizontal) straight line marks θ13 = 0.0
(θ23 = π/4). The (violet) star indicates the location of the minimum
for the analysis that includes all the data sets and the use of the full
three-neutrino oscillation probabilities.

The principle effect of utilizing the full three-neutrino
oscillation probabilities is the alteration of the shape of the
allowed region for θ13, particularly the introduction of the
asymmetry about zero. The absolute minimum for χ2 is
lowered by only 1.3 [29]. This is because the minima are
very close to θ13 = 0, where the linear and higher order terms
contribute little.

III. DISCUSSION

The most striking differences between the subdominant
approximation and the full three-neutrino probabilities are
seen in the determination of the mixing angle θ13 in Fig. 3.
Additionally, the deviation of θ23 from maximal mixing
also produces noticeable features, though less striking in
Fig. 2. Clearly, the two features are nontrivially linked, as
demonstrated in the allowed regions depicted in Fig. 4. In
fact, we see from Fig. 3 that the Super-K data are the source
of the asymmetry about θ13 = 0 in the full three-neutrino
model. To flesh out which subset of the Super-K data results
in these asymmetries, we examine the various contributions
of the data to χ2 for a fixed positive and negative value of
the mixing angle θ13 taken to be ±0.15. The total difference
in �χ2 for θ13 = +0.15 and θ13 = −0.15 is ∼7.0. Focusing
on the fully contained events, we find that two-thirds of this
change in �χ2 between the positive and negative values of the
mixing angle comes from the sub-GeV electron-like events.
Half of the total change in �χ2 (3.5) arises from a single
angular bin within this subset of data, namely the bin for e-like
events in which the detected charged lepton has zenith angle
ϑ satisfying −0.8 < cos ϑ < −0.6 and momentum less than
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250 MeV/c. The detected leptons in this bin are produced
by neutrinos that travel along a VLBL upward through the
Earth. Such neutrinos fall into the region of L/E where effects
linear in θ13 are significant in the oscillation probabilities
Peµ and Pµµ [44–48]; such effects occur in a region where
the subdominant approximation is the leading term in an
expansion that is not convergent. For VLBL’s, the oscillation
phase ϕ21 = 1.27 �21 L/Eν due to the solar mass-squared
difference �21 is near π/2. In this case, one cannot treat α, the
ratio of the mass-squared differences, as a small correction.
Analytic expressions for the oscillation probabilities valid in
this region can be found in Ref. [76]. Terms linear in θ13 can be
even more significant [77] should an atmospheric oscillation
experiment be able to take data at energies below 100 MeV.
We comment that the angular bin −1.0 < cos ϑ < −0.8 is also
in this L/E region for the low-energy neutrinos; however, a
typical neutrino that produces leptons in this bin passes through
Earth’s higher density core. We find that the core suppresses
the oscillations, and thus this angular bin is not as sensitive to
the effects linear in θ13.

The preference of the data for negative θ13 can be linked to
the excess of e-like events in the sub-GeV data set [45]. This
excess is not present in the µ-like data or in the multi-GeV
data so that an overall renormalization of the atmospheric
flux cannot account for the excess. To understand the role of
the data in extracting θ13 and θ23, we examine the relevant
oscillation probabilities in the limit of a constant density
mantle and sub-GeV neutrino energies, keeping only terms
linear in θ13 and ε and averaging over the �32 oscillations; these
approximations were discussed previously [45,48]. As detailed
in the Appendix, the electron-like events at the Super-K
detector are related to the νe survival probability and the
νµ conversion probability via Re = Pee + rPeµ, where r is
the ratio of the νµ to νe flux at the source. This yields the
approximate expression

Re ≈ 1 + r sin2 2θm
12

[
1

2
− 1

r
+ cot

(
2θm

12

)
θ13 − ε

]
sin2 ϕm

21.

(3)

Here, θm
12 is the effective mixing angle in matter; additionally,

the phase ϕm
21 employs the effective mass-squared difference

in matter corresponding to �21. In this approximation, we can
understand how to effect an excess of electron-like events for
sub-GeV neutrinos over a LBL,

1

2
− 1

r
+ cot

(
2θm

12

)
θ13 − ε > 0. (4)

Using the same approximations, we can simply express the
MSW resonant energy

ER = �21 cos 2θ12

2V cos2 θ13
, (5)

with V ≈ 1.7 × 10−13 eV in the mantle; this yields ER on the
order of 100 MeV. This resonance is apparent when we plot
the eigenvalues of the effective mass-squared matrix in the
mantle, Fig. 5; the “resonance” is indicated by the slight
bowing in the curves toward each other and is located at the
point where the effective mass-squared difference is minimal.
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FIG. 5. (Color online) The two lowest eigenvalues of the effective
mass matrix in a constant density mantle as a function of neutrino
energy Eν . The (red) solid curve is (m1)2(Eν), and the (blue) dashed
curve is (m2)2(Eν).

At the resonant energy, one has θm
12 = π/4; for neutrino

energies above the resonance, the effective mixing angle in
matter increases up to π/2. As a consequence, for neutrino
energies above 100 MeV in the mantle, the function cot(2θm

12)
is negative; to reiterate, the coefficient of the θ13 term in the
inequality found in Eq. (4), is negative. We note that for these
low-energy atmospheric neutrinos r ∼ 2 so that the first two
terms of the inequality approximately sum to zero. If θ13 is
restricted to positive values, then the mixing angle θ23 must
lie in the first octant (ε < 0) to account for the excess in Re.
However, if we allow θ13 to run the full range of allowed
parameter space in a CP-conserving theory, then a negative
value of this mixing angle can easily accommodate the excess
in Re, even permitting θ23 to lie in the second octant, as is the
case in our analysis.

To demonstrate the point regarding the effect of terms linear
in θ13, we plot Re in Fig. 6 for sub-GeV neutrinos in angular
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1/Eν(GeV
-1
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R
e

FIG. 6. (Color online) The experimentally measured quantity Re

versus the inverse neutrino energy E−1
ν in the sub-GeV region for an-

gular bin −0.8 < cos ϑ < −0.6. The (black) solid curve is the result
for the best fit parameters, the (red) dash-dot curve is for θ13 = −0.15,
and the (blue) dashed curve is the result for θ13 = +0.15.
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bin −0.8 < cos ϑ < −0.6. The (black) solid curve employs
our best fit parameters. To show the effect of θ13, we also plot
the e-like events for θ13 = ±0.15 with �23 and θ23 unchanged.
The (red) dash-dot curve has negative θ13, and the (blue) dashed
curve has positive θ13. It is clear that a negative value of this
mixing angle permits an excess of e-like events for sub-GeV
neutrinos.

Returning to Fig. 4, we see how the full three-neutrino
oscillation probabilities jointly affect the allowed region for
the two mixing angles θ23 and θ13. Using the subdominant
approximation, the (blue) dash-dot-dot curve represents the
allowed region when all the data are employed. As expected,
the region is symmetric about θ13 = 0, and we note that the
actual value of θ13 has little impact upon the allowed values
of θ23, save the neighborhood immediately around θ13 = 0.
Inclusion of the higher order terms in the oscillation probability
dramatically alters this picture. As discussed previously, the
data now favor negative θ13, with the atmospheric Super-K data
shrinking the contour, the (black) solid curve, for positive θ13.
No longer is the contour symmetric about a particular value
of θ13; hence, the true value of this mixing angle will impact
the allowed region for the θ23 mixing angle. In particular,
the allowed region for θ23 shrinks as θ13 approaches positive
values. In the future, should a reactor neutrino experiment
confirm a nonzero value for |θ13|, it will have interesting
consequences for the allowed value of θ23. With such a
measurement, we will perhaps see two true local minima in the
�χ2 versus θ13 plot in Fig. 3. The impact upon Fig. 4 will be
to separate the jointly allowed regions into two disconnected
curves with the limit on θ23 more tightly constrained for
positive values of θ13.

IV. CONCLUSIONS

As we enter into the era of precision neutrino experiments,
small effects, such as those arising from θ13 or the octant of
θ23, require a careful treatment in the analysis. Future reactor
experiments [32–34] are sensitive to θ2

13 and thus can determine
the magnitude of θ13, but not its sign. LBL experiments, for
example, [35], will contain small effects that are linear in θ13,
while an upgraded Super-K will produce additional data in
the region where we find significant effects linear in θ13. How
these different data interplay with each other in determining
θ13, including its sign, and the octant of θ23 will be most
interesting.

In Ref. [78], it was shown that the constancy of Re imposes
an upper bound on |θ13| as well as constrains θ23 to be near
maximal mixing. We find that present atmospheric data restrict
the value of θ13 from above, while the limit from below
remains as determined by CHOOZ. We find θ13 = −0.07+0.18

−0.11,
assuming no CP violation. We investigate which data points
lead to the asymmetry in θ13 and find that it is the atmospheric
data in the VLBL region previously noted [44–48] to have
significant terms linear in θ13. We further find that Earth’s
MSW effect plays an important role as it increases the
effective value of θm

12 in matter such that the atmospheric
data provide a strict upper bound on θ13. Further, the data
producing the preference for a negative θ13 are data with an

excess of e-like events, Re > 1. Allowing θ13 to be negative
supports this excess and permits θ23 to be in the second octant.
The parameters θ13 and θ23 are found to be correlated; the
statistically insignificant negative value for the minimum of θ13

relates to the minimum for θ23 being statistically insignificantly
in the second octant, and the error in θ23 is dependent on
the value of θ13. Future measurements of θ13 will impact the
allowed value for θ23.

For �32 and θ23 we find �32 = 2.45+0.20
−0.15 × 10−3 eV2 and

θ23 − π/4 = 0.03+0.09
−0.15, where the use of the full three-neutrino

oscillation probabilities leads to the asymmetry in the errors.
We find that a quantitative analysis requires utilizing the more
finely binned atmospheric data of Ref. [16], the use of the full
three-neutrino oscillation probabilities, and the inclusion of
the full three-neutrino MSW effect.
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APPENDIX A: EXPERIMENTAL SIMULATION

In this appendix, we present the computational tools we
use to analyze the Super-K atmospheric, CHOOZ, K2K,
and MINOS experiments. The analysis tool for the Super-K
atmospheric data is similar to that being used by others
[24,30,31]; however, it is distinct in that we employ a full three-
neutrino oscillation probability rather than an approximate
expansion, use a full three-neutrino treatment of Earth’s MSW
effect, and include a model of the multiring data. The analysis
of CHOOZ, K2K, and MINOS data is standard. Additional
details can be found in Ref. [79]. Also, in this appendix, we
demonstrate the efficacy of our analysis tools by comparing
our results with others when appropriate.

The Appendix is organized as follows. We first discuss
the Super-K atmospheric experiment, beginning with the
contained events followed by the upgoing muon events. Then
we discuss our statistical treatment of this experiment. Finally,
we include a similar discussion for the CHOOZ, K2K, and
MINOS experiments.

1. Super-K contained events

To observe atmospheric neutrinos at Super-K, the neutrinos
must interact with matter in either the detector or the sur-
rounding environ to produce charged particles. The direction
and energy of these charged particles can be deduced from
the Cherenkov light they emit while traveling through the
water-filled detector; from this data one can infer, on average,
the direction and energy of the initial neutrino. The Super-K
experiment classifies the various detections in terms of the
production point of the charged lepton, the number of charged
particles produced, and their subsequent motion through the
detector.
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Contained events refer to events in which the charged lepton
is produced by the neutrino within the detector. These events
are subdivided into fully contained and partially contained
events. If an event is fully contained, then the charged
lepton(s) produced within the detector do not escape the
detector. An event is partially contained if the charged lepton(s)
exits the detector. Finally, these two data sets are further
separated into single-ring and multiring events according to
the number of charged particles produced by the neutrino;
if only one charged lepton is observed in the detector, it is
termed a single-ring event. We first discuss the fully contained
single-ring events and then extend this analysis to the other
classes of data. The fully contained single-ring events are
statistically the most significant subset of the data and the
cleanest to analyze. Preliminary discussions of the analysis
technique utilized for the fully contained events can be found in
Refs. [80,81].

The Super-K detector distinguishes between electrons and
muons by the fuzziness of the Cherenkov ring generated by
the charged lepton; however, the detector cannot differentiate
an electron e− from a positron e+ or a µ− from a µ+.
Given flavor and charge conservation, the detector can only
determine if an event is e-like, originating from either a νe

or νe interaction, or µ-like, originating from either a νµ or
νµ interaction. Thus, the detector counts charged leptons of
flavor α in energy bin m and zenith angular bin n over the run
time T

Nnm
α =

∑
ν,ν

(
dNnm

α→α

dt
+ dNnm

β→α

dt

)
T , (A1)

where the quantity dNnm
β→α/dt represents the rate at which

a neutrino, created in the atmosphere with flavor β, will be
detected as an α-like event in the appropriate energy and
angular bins within the detector.

This rate depends upon the atmospheric neutrino flux, the
neutrino oscillation probability from source to detector, the
kinematics of the charged lepton production, and the detector
efficiencies. We may write it as

dNnm
α→β

dt
= N

∫ Em,max
vis

E
m,min
vis

dEvis

∫
d cos θν

∫
dEν

∫
d cos θs

∫
dφs

× ε(Evis)
d2 �α(Eν, cos θν)

dEν d cos θν

P̃αβ(Eν, cos θν)

× d3σβ(Eν ; E�, cos θs)

dE� d cos θs dφs

×�(cos ϑn,max − cos ϑ) �(cos ϑ − cos ϑn,min).

(A2)

We define the variables in Eq. (A2). N represents the number of
target protons. Evis is the energy measured by the detector (this
quantity is defined differently depending on the data sample);
Em,max

vis (Em,min
vis ) is the maximum (minimum) value of Evis for

bin m. (For single-ring fully contained events, Evis is simply
the energy of the created lepton, Evis = E�.) ϑ is the zenith
angle of the detected charged lepton with cos ϑ = 1 indicating
the vertically downward direction. The relative angle between
the incident neutrino and the produced charged lepton are
described by the θs scattering angle and the φs azimuthal

angle. The energy of the incident neutrino is Eν with zenith
angle θν . The azimuthally averaged atmospheric neutrino flux
for a neutrino of flavor α is d2 �α(Eν, cos θν)/dEν d cos θν ,
which we take from Ref. [82]. ε(Evis) corresponds to the
detection efficiency. d3σβ(Eν ; E�, cos θs)/dE� d cos θs dφs is
the differential cross section for a neutrino of energy Eν and
flavor β to produce a charged lepton of flavor β with energy
E� through a scattering angle θs . Although the differential
cross section that occurs in Eq. (A2) does not depend on the
azimuthal angle φs , the geometry that determines in which
angular bin an event lies does depend on φs . This is because
the zenith angle ϑ of the charged lepton is given in terms of
the neutrino zenith angle θν and the scattering angles θs and
φs by

cos ϑ = cos θs cos θν − sin θs sin θν cos φs. (A3)

The energy range for atmospheric neutrinos as measured at
Super-K requires the use of several cross sections. At low
energies, below 1 GeV, the dominant process is charged-
current quasielastic scattering from the proton and the nucleons
in the oxygen nucleus in H2O, for example, νe + p+ →
e+ + n and νe + n → e− + p+. At intermediate energies,
peaking around 1.5 GeV, the dominant process is a single-pion
resonance production, that is, να + N → �α + N∗ followed
by N∗ → N ′ + π . At higher energies, starting at 1 GeV and
dominating above 10 GeV, deeply inelastic scattering occurs,
να + N → �α + X. We utilize the same set of cross sections
as was used in Ref. [15]. The Heaviside functions are inserted
into Eq. (A2) to restrict the values of θν , θs , and φs to values
that produce a value for ϑ that lies within bin n.

The incident neutrino’s zenith angle θν does not uniquely
determine the path length L, as neutrinos are produced at
a variety of vertical heights, h, in the atmosphere. We thus
introduce the oscillation probability P̃αβ(Eν, cos θν) averaged
over this production height in the atmosphere

P̃αβ(Eν, cos θν) =
∫ ∞

0
dh Pα(h,Eν)Pαβ(L(h, cos θν)/Eν),

(A4)

where L is related to h and cos θν by

L =
√

R2 cos2 θν + h (2R + h) − R cos θν, (A5)

with R the radius of Earth. Pα(h,Eν) is the normalized
probability for a neutrino of flavor α to be created at a height
h, a quantity we take from Ref. [83].

The neutrino oscillation probability in vacuum Pαβ(L/Eν)
is given in Eq. (1); however, the coherent forward scatter-
ing of neutrinos on matter alters the probability for those
neutrinos which pass through Earth [60,61]. Neutral current
interactions between the neutrinos and matter are not flavor
dependent, leaving the oscillation probabilities unaffected;
however, charged current interactions will introduce into the
Hamiltonian a flavor-dependent potential. In the flavor basis,
we may write [84–86] the neutrino evolution equation as

i∂tνf =
(

1

2Eν

UMU † + V
)

νf , (A6)
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where M = diag (0,�21,�31) and the operator V operates on
only the electron flavor with a magnitude V = √

2GF Ne(x)
in which Ne(x) is the electron number density of the mat-
ter. We note that for antineutrinos, this potential has the
opposite algebraic sign. In matter of constant density, one
may diagonalize the Hamiltonian to determine the effective
mass-squared differences in a new propagation basis; this
basis is related to the flavor states by a modified effective
mixing matrix in the matter. The density of the Earth may be
approximated as a piecewise constant [62] so that neutrinos
that travel through the Earth may traverse regions of varying
density. For certain energies and mixing angles, neutrinos can
undergo parametric resonances when passing through regions
of different densities [63–73]. For a piecewise constant density
profile, we may use the the methods of Refs. [58,59] to exactly
determine the neutrino oscillation probability. This method is
computationally efficient as it merely involves finding the local
effective mass-squared differences and mixing angles, and its
exactness accurately accounts for effects that depend on small
parameters or effects due to parametric resonances.

The full calculation represented by Eq. (A2) is a numer-
ically intensive five-dimensional integration. We desire an
analysis tool that is both numerically accurate and sufficiently
computationally efficient so that we can scan a large swath of
parameter space in a reasonable amount of time. To effect this,
we make approximations in Eq. (A2) regarding the scattering
angle and efficiency terms. First, we fix the scattering angle
θs to its average value θs as a function of Evis = E� for each
energy and angular bin as calculated by the Monte Carlo simu-
lations in Ref. [87]. This eliminates the integral over cos θs . We
are justified in doing so because, if this integral is done last, the
integrand is quite smooth and nearly linear over each bin, par-
ticularly for the finer binning of the most recent data. Thus, we
expect this approximation to be quantitatively accurate and this
is what we find. With this approximation, Eq. (A2) becomes

dNnm
α→β

dt
= N

∫ ∞

0
dEν

∫ Em,max
vis

E
m,min
vis

dEvis

∫
d cos θν

∫
dφs

× ε(Evis)
d2 �α(Eν, cos θν)

dEν d cos θν

P̃αβ(Eν, cos θν)

× d2σβ[Eν ; E�, cos θs(Evis)]

dE� dφs

×�(cos ϑn,max − cos ϑ) �(cos ϑ − cos ϑn,min),

(A7)

where the differential cross section and the angle ϑ are
evaluated at cos(θs) = cos(θs).

Finally, we must determine the detector efficiency ε(Evis),
which was not furnished by the experimentalists. We can, how-
ever, extract it from information provided. For no oscillations,
Eq. (A2) becomes, utilizing our assumptions,

dNm
α

dt
= ε(m) N

∫ ∞

0
dEν

∫ Em,max
vis

E
m,min
vis

dEvis

∫
d cos θν

∫
dφs

× d �α(Eν, cos θν)

dEνd cos θν

d3σβ[Eν ; E�, cos θs(Evis)]

dE� d cos θs dφs

,

(A8)

where we assume that the efficiency is primarily dependent
on the lepton energy, ε(Evis). Further, taking it as a constant
ε(m) over each energy bin m, we pull it out of the integral.
The Monte Carlo calculation of dNm

α /dt appears in Ref. [88].
Performing the integrals on the right-hand side of Eq. (A8),
we can use the Monte Carlo result to determine the average
efficiency ε(m) for each energy bin. This average is then used
in Eq. (A7).

To conclude the discussion of the single-ring fully contained
analysis, we note that there are ten angular bins of equal size
in cos ϑ , going from +1 (downward) to −1 (upward); ten
energy bins for e-like events; and eight energy bins for µ-like
events. In total, this subset of the data consists of 180 data
points.

Within the fully contained data set, we also have multiring
events. These data correspond to neutrinos that interact inside
the detector to produce more than one detected particle in
the final state. We can calculate the multiring event rate in
a manner similar to the single-ring event rate provided we
modify the visible energy and neutrino event direction. In a
multiring event, the visible energy depends on the number of
particles in the final state, their momenta, and their scattering
angles. There is no simple and reliable way of determining
Evis; as such, we must make an approximation. We use
the results of Monte Carlo simulations given in Ref. [87]
to estimate the average value of Eν/Evis for each energy
bin.

To determine the angular distribution of these events, we
follow the experimentalists and assign a single scattering angle
to the final state particles. To model the angular distribution of
the multiring sample, we define an average multiring scattering
angle for all particles in energy bin m as θmr(m). To match with
the no oscillation results of the experimentalists and include
this average scattering angle, we adjust θmr(m) for each angular
bin and each energy bin such that our no-oscillation calculation
reproduces the corresponding experimentalists’ Monte Carlo
no-oscillation results [88]. The multiring calculation now has
the same numerical structure as the single-ring calculation.
This allows us to obtain the efficiencies just as we did for
the single-ring events. Our analysis then uses Eqs. (A1), (A2),
and (A3) to calculate the event rate for the multiring events.
Given the limited information provided by the experimen-
talists, we believe that this approach, which buries many
unknowns into matching the no-oscillation calculation with
the experimentalists’ Monte Carlo calculation and uses an
effective Evis taken from the experimentalists’ Monte Carlo
calculation, is as good as is possible. It does reproduce the
results found in [87,88].

The next data set consists of the partially contained events.
In these, the charged lepton is created within the detector,
but has sufficient energy to escape the inner detector and be
detected by the outer detector. If the energy deposited in the
outer detector appears to be less than that needed for a muon
to traverse the outer detector, the event is classified as an
outer detector stopped event; those depositing more energy are
termed outer detector through-going. We alter the definition of
the visible energy

Evis = Einner + Edead + Eanti, (A9)
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with Einner the total energy of the charged particle observed
in the inner detector, Edead the energy deposited in the region
between the inner detector and the outer detector, and Eanti

the energy observed in the outer detector. The charged lepton
energy is then a function of this visible energy; we set
E�(Evis) to its average value as taken from the Monte Carlo
calculations from Ref. [87]. The efficiencies are similarly taken
for each data bin from the same Monte Carlo no-oscillation
calculations as described previously. For these single-ring
partially contained events, the same ten angular bins are used
and there are four energy bins each for both the outer detector
stopped and through-going events, giving a total of 80 data
points.

2. Upgoing muons

A second major subset of the atmospheric data arises
from detecting muons created by atmospheric neutrinos
and antineutrinos interacting with the rock surrounding the
detector. These muons can then either stop in the detector,
called “stopping muons,” or pass through the detector, called
“through-going muons.” Typically the stopping muons have
an O(10 GeV) energy while the through-going muons have an
O(100 GeV) energy. Although statistically not as significant as
the contained events, these data provide important information
in this higher energy range.

Our analysis of these events exactly follows that given in
Refs. [89,90]. We do not include the effects of the muon energy
fluctuations as was recently done in Ref. [30]. The detection
rate for stopping muons, S, and through-going muons, T , is
given by

dNn
µ,S,T

dt
= NA

∫ ∞

0
dEν

∫ θn,max

θn,min
d cos θν

∫ Eν

0
dEµ

× d2 �α(Eν, cos θν)

dEν d cos θν

P̃αµ(Eν, cos θν)

× dσµ(Eν ; Eµ)

dEµ

R(Eµ,Eth) AS,T (Eth, cos θν).

(A10)

We assume, appropriate for these high energies, that the
scattering is forward. This allows us to replace the charged
lepton angle ϑ with the neutrino angle θν ; we may also
perform the integration over the scattering angles θs and φs

in the cross section. NA is Avogadro’s number. The function
R(Eµ,Eth) is the average distance that a muon of energy
Eµ will travel until its energy reaches the value Eth, the
amount of energy needed to traverse the detector; this quantity
is expressed in the natural units for range, distance times
Earth’s density. AT (Eth, cos θν) is the area projected onto a
plane perpendicular to the muon direction such that a muon
of energy Eth or greater can pass through this part of the
detector. The details for calculating AT (Eth, cos θν) can be
found in Ref. [91]. For the stopping muons, AS(Eth, cos θν) =
A(�min, cos θν) − AT (Eth, cos θν), where A(�min, cos θν) is the
projected area of the detector with a path length greater than
�min taken to be 7 m by the experimentalists. Note that there
are only muon data as electrons/positrons produced in the

rock are unable to travel to the detector. The data cover the
angular region from cos θν = 0 to cos θν = −1, directions
where muon production from the rock exceeds the cosmic
ray background. Since the neutrinos can originate as either
electron or muon neutrinos, we sum over the two neutrino
flavors α as in Eq. (A10). The upgoing muon data are binned
in ten angular bins and not binned in energy, resulting in a total
of 20 data points.

Analysis of these events is not as computationally intensive
as the calculation of the contained events since the forward
scattering allows the integration over the scattering angles
and the muon energy Eµ to be performed outside the
fitting program. The parameters being fit are contained in
P̃αµ(Eν, cos θν), which is independent of the muon energy and
scattering angle. We find it efficient to change the integration
over these variables to the Feynman scaling variables x and y,
as is natural for the deeply inelastic region.

3. Super-K statistical analysis

We use the most recent experimental data from Ref. [16],
which includes 180 data points for fully contained single-ring
events, 90 for fully contained multiring events, 80 for partially
contained events, ten for upward through-going muons, and ten
for upward stopping muons; in all, this constitutes 370 data
points. To determine the neutrino oscillation parameters, we
construct a χ2 based upon a Poisson distribution, following the
same procedure used in Ref. [16]. We incorporate systematic
errors by utilizing the “pull” approach as described in
Ref. [92], which allows us to incorporate systematic errors
in the analysis without adding adjustable parameters. The
approach is based upon allowing linear corrections to the
theoretical predictions for each systematic error. Our χ2

function is

χ2 =
370∑
n=1

{
2[N the(n) − Nobs(n)]

+ 2Nobs(n) ln

(
Nobs(n)

N the(n)

)}
+

43∑
i=1

(
ξi

σi

)2

.

(A11)

Nobs(n) is the number of observed events in the bin n; Nthe(n)
is the theoretical prediction of the number of events in that bin;
ξi is the systematic error pull for the systematic error i; and σi

is the one-σ value for the systematic error i. N the(n) represents
a modified prediction of the expected number of events due
to the inclusion of systematic errors; the systematic errors
adjust this quantity through an assumed linear dependence on
the pulls ξi . Here we use 45 systematic errors arising from
different inputs into the data analysis as described in Tables 7
through 10 taken from Ref. [15]. For these 45 errors, all of them
contributed to the χ2 except the overall flux normalization and
the normalization for the multi-GeV multiring sample, which
are floated freely. During each fit, these 45 ξi are varied to
minimize χ2 for a given set of oscillation parameters. The
minimization of χ2 with respect to ξi ( ∂χ2

∂ξj
= 0) is equivalent

in the pull method to numerically solving for ξi in the 45
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FIG. 7. Allowed region at �χ 2 = 4.61 for �32 and sin2 2θ23 in the
subdominant approximation using only Super-K atmospheric data.

coupled equations of the form

∂χ2

∂ξj

=
370∑
n=1

f n
j

(
Nth(n) − Nobs(n)

1 + ∑45
i=1 f n

i · ξi

)

+
43∑
i=1

ξi

σ 2
i

δij = 0, (A12)

where f n
i is the ith systematic error for bin n. These equations

are linearized and solved as a set of coupled linear equations.
We compare our analysis with that performed by the

experimentalists in Ref. [16]. To do this, we utilize the sub-
dominant approximation in Eq. (2) and minimize the above χ2.
Our best fit oscillation parameters are (�32, sin2 θ23, θ13) =
(2.5 × 10−3 eV2, 0.51, 0.01) with an overall χ2 of 416 for the
370 data points. In Fig. 1(a), the (black) solid curve represents
�χ2 versus �32 for the subdominant approximation, using
only atmospheric data. In Fig. 7, we present the allowed region
for �32 and sin2 2θ23 corresponding to �χ2 = 4.61. We also
present �χ2 versus sin2 θ23 in Fig. 8.
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FIG. 8. �χ 2 versus sin2 2θ23 for our analysis of the recent Super-
K atmospheric data in the subdominant approximation. Both �32 and
θ13 are varied in obtaining this curve.
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FIG. 9. (Color online) The top two graphs depict the number of
events for the sub-GeV data as a function of the angular bin in cos ϑ ,
the middle two graphs are the same except for the multi-GeV data, and
the bottom two graphs are for the multiring events. The (black) solid
curves represent the results from our best fit parameters, the (red)
dashed curves represent the data, and the (blue) dot-dashed curves
represent the Monte Carlo no-oscillation predictions.

For �χ2 = 4.61, we find the allowed parameter val-
ues 2.1 × 10−3 eV2 < �32 < 3.1 × 10−3 eV2 and 0.938 <

sin2 2θ23. Additionally, we extract the allowed value for θ13

from the (black) solid curve in Fig. 3(a), −0.38 < θ13 < 0.38.
This is exactly the result of Ref. [16] and our other results are in
excellent agreement with that analysis. As noted previously,
our reproduction of the allowed region for θ13, which has a
nonzero but small effect on the atmospheric data, is a very
strong test of our analysis.

Finally, in Figs. 9 and 10, we compare the predicted number
of neutrino events corresponding to our best fit parameters
with the experimental data as a function of the zenith angle.
We also present the Monte Carlo predictions for the expected
number of events in the absence of neutrino oscillations. Each
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FIG. 10. (Color online) The same as Fig. 9 except the data sets are
now the partially contained stopping events (upper left), the partially
contained through-going events (upper right), the upward stopping
muon events (lower left), and the upward through-going muon events
(lower right).
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of the different Super-K atmospheric data sets are depicted.
The results are a good fit to the data, comparable to that found
in Ref. [16].

4. CHOOZ experiment

For the CHOOZ reactor experiment, we follow a standard
procedure as described in Ref. [21]. In our analysis, we use
experimental data that consist of seven positron energy bins for
each of the two reactors, giving a total of 14 bins. We include a
14 × 14 covariance matrix, V −1

ij , to account for the correlation
between the energy bins, and we include the systematic error
from the overall normalization and energy calibration. We
write the expected positron yield for the kth reactor and the
j th energy spectrum bin as

X(Ej ,Lk, θ,�32)

= X̃(Ej )P (Ej ,Lk, θ,�32), (j = 1, . . . , 7, k = 1, 2),

(A13)

where X̃(Ej ) is the distance-independent positron yield in
the absence of neutrino oscillations, Lk is the reactor-detector
distance, and P (Ej ,Lk, θ,�32) is the oscillation probability
averaged over the energy bin and the detector and reactor core
sizes. In our fitting routine, we minimize the following χ2

function with respect to the neutrino oscillation parameters

χ2(θ,�32, α, g) =
14∑
i=1

14∑
j=1

[Xi − αX(gEi, Li, θ,�32)]

×V −1
ij [Xj − αX(gEj , Lj , θ,�32)]

+
(

α − 1

σα

)2

+
(

g − 1

σg

)2

, (A14)

with the absolute normalization constant α and the energy-
scale calibration factor g.

5. K2K experiment

For the K2K experiment [17,18], we employ the method
developed in Ref. [18] to estimate the expected no-oscillation
neutrino spectrum, S(Eν), in the relevant energy range of ∼0.2
to ∼3.0 GeV. The expected number of neutrino events for
oscillating neutrinos is then

N theo
n =

∫ Emax(n)

Emin(n)
S(Eν)Pµµ(L/Eν), (A15)

where Pµµ(L/Eν) is the muon neutrino survival probability
and Emax(n) (Emin(n)) are the maximum (minimum) energy
values for the energy bin n. For the statistical analysis, we
follow the procedure described in Ref. [93]. We only use the
single-ring subsample, which consists of 58 neutrino events.
The signature for neutrino oscillations from νµ to ντ in a
two-neutrino analysis are both a reduction in the total number
of observed neutrino events and a distortion in the neutrino
energy spectrum. The χ2 function is divided into two terms:
the observed total number of events detected at the Super-
K detector, χ2

norm, and the shape of the spectrum included
in χ2

shape. We use the “pull” method [92] to account for 31

systematic uncertainties by adding a third term χ2
syst:

χ2
K2K = χ2

norm + χ2
shape + χ2

syst. (A16)

The best fit oscillation parameters, �32 and θ23, are obtained
by minimizing χ2

K2K.
The systematic parameters included in χ2

syst arise from the
neutrino energy spectrum at the near detector site, the flux
ratio, the neutrino-nucleus cross section, the efficiency and
the energy scale of the Super-K detector, and the overall
normalization. The kth systematic error is represented by the
coefficient Ck

n and modifies the expected number of neutrino
events, Eq. (A15), in a linear manner according to the “pull”
method

Ñ theo
n = N theo(n) +

31∑
k=1

Ck
nξk,

(A17)

Ñ theo
total =

8∑
n=1

Ñ theo
n ,

with ξk the pull corresponding to systematic error k.
Due to the low statistics, we employ a Poisson distribution;

hence, the expressions for χ2
norm and χ2

shape are given by

χ2
norm = 2

(
Ñ theo

total − Ndata
total − Ndata

total ln
Ñ theo

total

Ndata
total

)
,

(A18)

χ2
shape = 2

8∑
n=1

(
Ñ theo

n − Ndata
n − Ndata

n ln
Ñ theo

n

Ndata
n

)
,

where Ndata
n is the experimental data provided by the K2K

collaboration [18] and the superscript “total” implies a sum
over n. The contribution to χ2 from the systematic errors is

χ2
syst =

31∑
j,k=1

ξk M−1
kj ξj , (A19)

where we use an error matrix Mkj constructed from Tables 8.1
and 8.2 provided in Ref. [93].

In Fig. 11, we depict �χ2 versus �32 for an analysis that
utilizes only the K2K data in the subdominant approximation;
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FIG. 11. �χ 2 versus �32 for our analysis of the K2K experiment
in the subdominant approximation.
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FIG. 12. (Color online) �32 versus sin2 2θ23 allowed region at
�χ 2 = 4.61 for a two parameter fit in the subdominant approximation
for the K2K, (red) dashed line, and the MINOS, (blue) solid line,
experiments.

also, Fig. 12 shows the allowed region corresponding to
�χ2 = 4.61 in the (red) dashed contour for �32 and sin2 2θ23

in the subdominant approximation. The absolute minimum in
our fit is (�32, sin2 2θ23) = (2.78 × 10−3 eV2, 0.998). We find
2.2 × 10−3 eV2 < �32 < 3.2 × 10−3 eV2. The total number
of observed events, 58, is in agreement with the 56 events
found from the model. All of these results are consistent
with the analysis performed by the experimentalists in
Ref. [18].

6. MINOS experiment

The MINOS experiment is quite similar to the K2K
experiment and thus we apply a similar analysis technique.
For the no-oscillation spectrum, we use the Monte Carlo
simulation provided by the MINOS collaboration [20]. We
normalized this spectrum to measurements made at the near
detector. A total of 1065 events were expected in the absence
of neutrino oscillations. With the no-oscillation spectrum and
Eq. (A15), we calculate the expected number of neutrino events
in the presence of neutrino oscillations. We use the MINOS
data [20] corresponding to two years of beam operation in
which 884 νµ neutrino events are observed. The data consist
of 15 energy bins along with three systematic errors: the
relative normalization between the far and near detectors with
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FIG. 13. The same as Fig. 11 except the data are from MINOS.

a 4% uncertainty; the absolute hadronic energy scale with a
11% uncertainty; and a 50% uncertainty in the neutral-current
background rate. For the definition of χ2, we use the Poisson
distribution function

χ2
MINOS = 2

15∑
n=1

(
Ñ theo

n − Ndata
n − Ndata

n ln
Ñ theo

n

Ndata
n

)

+
3∑

j=1

(
ξj

σj

)2

, (A20)

where the symbols are analogously defined to those in the K2K
section.

In Fig. 13 we plot �χ2 versus �32 for the K2K data
in the subdominant approximation; likewise, in Fig. 12, we
present the allowed region corresponding to �χ2 = 4.61,
the blue solid curve, for �32 and sin2 2θ23. The minimum
of χ2 is located at �32 = 2.41 × 10−3 eV2 and sin2 2θ23 =
0.9990. The allowed intervals of these parameters are 2.25 ×
10−3 eV2 < �32 < 2.8 × 10−3 eV2 and 0.86 < sin2 2θ23. All
of these results are consistent with the analysis performed by
the experimentalists in Ref. [20].

Results that combine CHOOZ, K2K, and MINOS are
presented in the main body of this work. This ap-
pendix provides details of the analysis tools we use
throughout this work; additional details may be found in
Ref. [79].
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