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Stability of the pentaquark in a naive string model
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2Institut de Physique Nucléaire de Lyon, Université de Lyon, IN2P3-Centre National de la Recherche Scientifique,
43, rue du 11 Novembre 1918, F-69622 Villeurbanne, France

(Received 21 August 2009; revised manuscript received 23 December 2009; published 19 January 2010)

The pentaquark is studied in a simple model of confinement in which the quarks and the antiquark are linked
by flux tubes of minimal cumulated length and the Coulomb-like interaction, the spin-dependent terms, and
the antisymmetrization constraints are neglected. The ground state is found to be stable against spontaneous
dissociation into a meson and a baryon, both in the case of five equal-mass constituents and for a static quark or
antiquark surrounded by four equal masses.
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I. INTRODUCTION

In the 1960s, some indications came up of a possible Z

baryon resonance with strangeness S = +1, but the data on
the kaon-nucleon interaction did not confirm the existence of
this state (for references, see early issues of the Review of
Particle Properties, as cited in Ref. [1]). In modern language,
such a Z resonance would be a (s̄nnnn) state, where n denotes
a light quark u or d.

In the 1970s, some excitement arose over baryonium
candidates, tentatively interpreted as (nn-n̄n̄) states with a
separation between the (nn) diquark and the (n̄n̄) antidiquark
and, possibly, an exotic color charge for these diquarks (see,
e.g., Ref. [2]). It was then suggested that multiquark baryons
could exist as well, with a structure (qq̄-qqq) and, again, a
possible orbital barrier between the clusters, perhaps with a
color-octet content of each cluster, this preventing immediate
rearrangement and subsequent decay into two color-singlet
hadrons [3,4]. This work was abandoned when the evidence
for baryonium faded away.

In 1977, Jaffe [5] suggested that the dibaryon H (uuddss)
could be bound below the lowest threshold �(uds) + �(uds)
because of a coherence in the chromomagnetic interaction. In
1987, Lipkin [6] and, independently, Gignoux et al. [7] pointed
out that the same mechanism would bind a heavy pentaquark
(the word was invented in these circumstances) such as P =
(c̄uuds), (c̄udds), or (c̄udss). This pentaquark was searched
for in an experiment at Fermilab [8], which turned out to
be inconclusive. Further work indicated that the stability of
H and P hardly survives a more consistent treatment of the
short-range correlations that enter the chromomagnetic matrix
elements and the breaking of the SU (3) flavor symmetry in
the light quark sector [9–11].

More recently, it was shown [12] that in some models of
chiral dynamics, new baryons are predicted, in particular, an
antidecuplet above the usual octet (N,�, . . .) and a decuplet
(�, . . . , �−). This triggered a search by Nakano et al. (LEPS
Collaboration) [13], who found evidence for a baryon with
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strangeness S = +1. Much confusion followed, as stressed
in Ref. [1], where a critical review can be found, with
skeptical remarks not so much on the pioneering theoretical
speculation and experimental search as on the followers (see
also Ref. [14]). Indeed, custom models were quickly designed,
in which the pentaquark was found with either positive
or negative parity, made of ad hoc quark clusters. Several
experimenters discovered the potential of their setup and stored
data for looking at exotics and hastily constructed mass spectra
that could have been investigated much earlier. Eventually, ex-
periments with high statistics and good particle identification
found no confirmation of the pentaquark candidates [1]. There
is now reasonable consensus that the light pentaquark does
not exist, though some puzzling positive indications are still
reported [15] (for a recent discussion, see, e.g., Ref. [16]).

Nevertheless, the question of multiquarks remains im-
portant. On the experimental side, several states have been
discovered in the hidden-charm sector [1], whose properties
suggest large (cqc̄q̄) components, where q is light or strange.
On the theoretical side, multiquark states are now studied with
the QCD sum rules [17,18] and the lattice QCD [19]. In the
past, the issue of multiquark states was mostly the field of
constituent models: In principle, the basic ingredients can be
tuned by fitting the spectrum of ordinary mesons and baryons
and then applying these to tentative multiquark configurations.
But the main difficulty lies in extrapolating the potential from
the meson sector to larger systems. For the Coulomb-like part,
in particular, one-gluon exchange, the color additive rule

V = − 3

16

∑
i<j

λ̃
(c)
i · λ̃

(c)
j v(rij ) (1)

is probably justified. Here λ̃
(c)
i denotes the eight-vector color

generator of the ith quark (with a suitable change for the
antiquark), and the normalization is such that v(r) holds for a
color-singlet quark-antiquark meson.

However, there is no reason to use additive rule Eq. (1)
for the confining part, although it has often been adopted as a
tentative approximation. For baryons, a Y -shaped interaction
was suggested years ago [20] and is often rediscovered either in
models or in attempts to solve the QCD in the strong coupling
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FIG. 1. (Color online) Confinement of mesons and baryons. The
minimum over the quark permutations gives the flip-flop potential.

limit [21–26]. This interaction is now confirmed by lattice
QCD [27] (for further references, see, e.g., Ref. [28]). It reads

VY = σ min
J

3∑
i=1

riJ , (2)

where each quark is linked to a junction J whose location is
optimized, as in the famous problem of Fermat and Torricelli
(see Fig. 1). Instead, Eq. (1) with v(r) = σr would give a
potential

V3 = σ

2
(r12 + r23 + r31), (3)

which is smaller but very close to VY so that the phenomenol-
ogy hardly distinguishes between the two potentials VY and
V3 [29].

In the case of tetraquarks (two quarks and two antiquarks),
however, it was shown that the color-additive rule of Eq. (1)
and the generalization of the Y -shaped potential lead to rather
different spectra. In the former case, the stability of the
tetraquarks (qqQ̄Q̄) requires a large mass ratio for the quarks
and antiquarks. The latter potential, if alone and acting without
any antisymmetrization constraint (e.g., with quarks and
antiquarks of different flavors), gives stable tetraquarks [30].
The tetraquark potential was taken as the minimum energy of
two separate quark-antiquark flux tubes (the so-called flip-flop
interaction) and a connected double-Y Steiner tree linking
the quarks to the antiquarks, a model of confinement that is
supported by lattice QCD [31].

Our aim is to extend the study of Vijande et al. [30]
to pentaquark states. For simplicity, we assume that the
constituents have the same mass but remain distinguishable
through their spin and flavor degrees of freedom so that the
orbital wave function can contain a symmetric component.
We also consider the case in which one of the constituents is
infinitely massive. This article is organized as follows: The
model is described in Sec. II, the results are shown in Sec. III,
and some further investigations are suggested in Sec. IV.

II. THE MODEL

We focus on the role of confining forces and hence disregard
the Coulomb-like contributions and spin-dependent forces. For
(q̄q) mesons, the Hamiltonian of the relative motion reads

H2 = p2

m
+ σr, (4)

where p is conjugate to the quark-antiquark separation r , r =
|r|, and m is the constituent mass. For this system and the
ones considered later, it is possible to set m = σ = 1 without
loss of generality because departing from these values results
in a simple scale factor m−1/3σ 2/3 of all the eigenvalues. The
ground state (q̄q) of Eq. (4) can be expressed in terms of the
Airy function, and its energy is E2 � 2.33811. For (Qq) or
(q̄Q) with a static quark or antiquark and a constituent of
mass m = 1, the reduced mass is twice larger, and by scaling,
the ground state energy is E′

2 � 1.8558.
For (qqq) baryons, we consider first the additive model

[Eq. (3)],

H3 = p2
x + p2

y + 1
2 (r12 + r23 + r31), (5)

where x = r2 − r1 and y = (2r3 − r2 − r1)/
√

3 are Jacobi
variables suited for equal masses, and px and py are their
conjugate momenta. We also study the more realistic Y -shaped
interaction [Eq. (2)], schematically pictured in Fig. 1, with the
Hamiltonian

HY = p2
x + p2

y + VY (r1, r2, r3). (6)

For (Qqq), the kinetic-energy part is replaced by ( p2
1 + p2

2)/2.
For the five-body problem with equal masses, we start, as

in Ref. [32], from a symmetrized model:

H5 =
4∑

i=1

p2
i + 1

4

∑
i<j

rij , (7)

where the cumulated strength encountered in a meson and
in a baryon within the additive model is spread over the 10
interacting pairs. Here the relative motion is described by four
Jacobi variables xi , to be specified shortly, and the pi are their
conjugate momenta. Up to an irrelevant factor, the potential
in Eq. (7) is identical to the confining interaction adopted in
Ref. [33].

Note that in the additive model, the threshold can be
understood as another five-body problem:

Hth =
4∑

i=1

p2
i + (1 − ε)r12 +

[
1

2
− ε

] ∑
3�i<j

rij

+ 2ε

3

∑
3�i

(r1i + r2i), (8)

in the limit where ε → 0. Then the variational principle
applied to Hth with the symmetric ground state of H5 as trial
function immediately indicates that the lowest energy of H5 is
above the threshold. In other words, in the color-additive model
[Eq. (1)], the most asymmetric distribution of couplings is
encountered in a threshold made of two separate color singlets,
and this asymmetry benefits the threshold and penalizes
tentative multiquarks. This is confirmed by the results of
Hiyama et al. [34,35]. To build stable multiquarks, one can
either introduce a competing asymmetry by using different
constituent masses, as done for the tetraquark (QQq̄q̄), or
modify the color-additive model [36].

For the pentaquark, we consider the natural extension of the
minimal-path model already used for the tetraquark [30,37,38]
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FIG. 2. (Color online) Example of connected Steiner tree (planar
for simplicity) linking the antiquark 1 to the quarks {i, j, l, �}. The
Steiner points are S, sij , and sk�.

and supported by lattice studies [31]. It reads

HP =
4∑

i=1

p2
i + VP , VP = min(Vff, VSt), (9)

where

Vff = min
i

[r1i + VY (rj , rk, r�)], (10)

with {i, j, k, �} being any permutation of {2, 3, 4, 5}; this is
the so-called flip-flop potential. It corresponds to the most
economical configuration in Fig. 1. The second term, VSt,
corresponds to a connected Steiner tree, as pictured in Fig. 2.
This Steiner tree generalizes the Fermat-Torricelli problem
for more than three points. The quarks (i, j ) are linked to
the central Steiner point S as three quarks in an ordinary
baryon, through an intermediate Steiner point sij . Similarly,
(S, k, �) form a baryon-like structure with Steiner point skl .
Then, the antiquark and the two intermediate Steiner points
sij and skl form an antibaryon-like configuration. Of course,
the potential VSt is optimized by varying the permutation
{i, j, k, �} of the quarks (see, e.g., Refs. [38,39] for references
on the Steiner problem and its application to the multiquark
potential). Note that the long-range part of the pentaquark
potential, as estimated in lattice QCD, has been found to be
fully compatible with this multi-Y term [40].

An obvious consequence of the minimization of Eq. (9)
is that

VP � r12 + VY (r3, r4, r5), (11)

indicating that the pentaquark potential is smaller than the
cumulated confinement energy of the threshold, that is, that
the effective potential between the meson (1, 2) and the baryon
(3, 4, 5) is attractive. However, in three space dimensions, an
attractive potential does not automatically lead to binding,
if this potential is short-ranged. Hence one should solve the
five-body problem to determine whether this model supports
a stable pentaquark.

In the case of the tetraquark, it was noticed [30] that
the connected Steiner tree configuration, though the most
interesting, plays a minor role, and that the binding is obtained
from the flip-flop term alone. Similarly, a survey with randomly

generated coordinates for the antiquark and the four quarks
shows that in Eq. (9), the Steiner tree gives the minimum in
less than 3% of the cases. Hence we shall neglect this term and
compute an upper bound with the flip-flop interaction alone.
This is opposite to the choice made in Ref. [32], where only
the connected Steiner tree term is adopted and the flip-flop
term is omitted.

III. RESULTS

The ground state meson can be described by a simple
expansion:

�2 =
∑

i

γi exp(−αir
2/2), (12)

or, in short, |�2〉 = ∑
i γi |αi〉, and the energy E2 � 2.33811

can be reproduced with just a few terms. The relevant
matrix elements 〈α′|α〉, 〈α′| p2|α〉, and 〈α′|r|α〉 are known
analytically and are basic ingredients for more complicated
systems.

For the ground state of H3, a generalization reads

�3 =
∑

i

γi exp[−(ai x2 + bi y2 + 2ci x. y)/2], (13)

and again, the matrix elements are known analytically. For a
given choice of range parameters, the weights γi are given
by a generalized eigenvalue equation. To avoid ambiguities
and simplify the minimization, one can restrict the Gaussians
to scalar (a = b, c = 0) or diagonal (a �= b, c = 0) matrices
and those given by permutation of the quarks; furthermore,
the parameters ai and bi can be taken from a single set
{α, α + δ, α + 2δ, . . .}, with minimization only over the two
extreme values [41]. One reaches E3 � 3.863. If only scalar
matrices are allowed, the expansion Eq. (13) converges toward
the best function of the hyperradius given by ρ2 = x2 + y2.
In this approximation, u(ρ) = ρ5/2� is given by the radial
equation

−u′′(ρ) + 15

4ρ2
u(ρ) + V00ρu(ρ) = E

(0)
3 u(ρ), (14)

with suitable boundary conditions, which leads to the upper
bound E

(0)
3 � 3.865. The hyperscalar projection, including the

strength factor 1/2 and the number of pairs, is

V00 = 16

5π
� 1.019. (15)

A similar strategy can be used for the Y -shaped potential,
except that the matrix elements have to be calculated nu-
merically. The hyperscalar coefficient becomes V00 = 1.115.
By scaling from Eq. (15), this corresponds to an energy
E

(0)
Y � 4.105. The Gaussian expansion, if not restricted to

scalar matrices, gives a better energy EY � 4.095. This means
that in our simple string model, the threshold for the stability
of light pentaquark states is

Eth(q̄qqqq) � 6.433. (16)

If a static quark Q or antiquark Q is introduced, for (Qqqqq),
the threshold consists of (Qq) + (qqq), and for (q̄qqqQ), it
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is the lowest of (q̄Q) + (qqq) and (q̄q) + (Qqq), which turns
out to be the latter by a small margin, and the thresholds are

Eth(Qqqqq) � 5.950, Eth(q̄qqqQ) � 5.944. (17)

We now turn to the five-body problem, first for (q̄qqqq).
A possible choice of Jacobi variables, besides the center of
mass, is

x1 = 4r1 − (r2 + r3 + r4 + r5)√
10

,

x2 = r2 − r3 + r4 + r5

2
,

(18)
x3 = r2 + r3 − r4 + r5

2
,

x4 = r2 + r3 + r4 − r5

2
,

which is convenient for expressing the permutations of the
quarks. With a Gaussian expansion, one obtains for the symm-
etric toy model H5 an energy E5 � 6.850. In the hyperscalar
approximation, the radial equation is similar to Eq. (14),
now with a centrifugal coefficient 99/4, instead of 15/4,
and a strength V00 = 2560/(693π ) � 1.176, and a very
similar energy is found. This model H5 thus has energies
well above the threshold E2 + E3, which includes pair-
wise forces for the baryon, and even above the threshold
Eth = E2 + EY , when the baryon is bound by the Y -shaped
interaction.

If now one switches to the flip-flop interaction, the
coefficient of the hyperscalar potential V00ρ is found to
be V00 = 1.031, by numerical integration of Vff over the
hyperscalar variables, for given ρ. By scaling, this gives an
energy

E
(0)
ff (q̄qqqq) � 6.276 (19)

in the hyperscalar approximation, which is clearly below the
dissociation threshold of Eq. (16). This is confirmed by the
Gaussian expansion. As these two methods are variational,
the flip-flop model gives a bound state, and this is a fortiori
the case if the connected Steiner trees are also included in
evaluating the potential of Eq. (9).

If the calculation is repeated in the case of four unit masses
and an infinitely massive antiquark or quark, the kinetic energy
in Eq. (9) is replaced by

∑
p2

i /2, where pi is conjugate to the
position r i of a finite-mass constituent. The pairwise model of
Eq. (7) gives an energy of about 6.305 for both (Qqqqq) and
(q̄qqqQ) in the hyperscalar approximation, that is, well above
the threshold, and also with the Gaussian expansion, no state is
found below the threshold. In contrast, the flip-flop potential,
treated in the hyperscalar approximation, gives

E
(0)
ff (Qqqqq) � 5.836, E

(0)
ff (q̄qqqQ) � 5.667, (20)

which is sufficient to demonstrate the stability of (Qqqqq)
and (q̄qqqQ) with respect to their respective thresholds
[Eq. (17)].

IV. CONCLUSIONS AND OUTLOOK

A simple string model of linear confinement gives a
pentaquark that is stable against spontaneous dissociation into
a meson and an isolated baryon. This is at variance with most of
the earlier constituent-model calculations. There are, however,
severe limitations in our approach, as follows:

(i) The nonrelativistic kinematics for the quarks and the
Born-Oppenheimer treatment of the gluon field, which
supposedly readjusts itself immediately when the con-
stituents move, call for an application to heavy quarks.
However, the short-range central corrections should be
incorporated for heavy quarks. For the Coulomb-like
interaction, the color-additive rule [Eq. (1)] probably
holds. If alone, a Coulomb interaction with color factors
will not bind. Our pure confining model binds. What
occurs for a superposition would be a matter of detailed
phenomenology beyond the scope of the present article.

(ii) The quark wave function is assumed to be compatible
with an overall s wave and is symmetric under per-
mutations. Thus it should be associated with enough
spin and flavor degrees of freedom in the quark sector.
A proper treatment of the Fermi statistics of quarks is
rather delicate in the flip-flop or Steiner tree model as
different flux tube topologies correspond to different
color couplings and thus different constraints for the
spin, flavor, and space parts of the wave function.

(iii) The calculation has been restricted to five equal and
finite masses or to one infinitely massive constituent
surrounded by four equal masses. The property of
stability was found to survive for both (Qqqqq) and
(q̄qqqQ). The investigation should be extended with
better variational wave functions and a larger variety
of mass distributions for the constituents. Clearly the
configuration (c̄uuds) and its analogs, by permuting the
light quarks or by replacing c with b, would deserve a
refined treatment, including the spin-spin forces, which
are favorable [6,7].

(iv) The pentaquark states with two or more heavy con-
stituents would deserve specific study. For (QQq)
baryons, the dynamics can be studied in the Born-
Oppenheimer approximation, in which the two heavy
quarks experience an effective interaction resulting
from their direct interaction modified by the light quark
[42–44]. Similarly, the (QQq̄q̄) tetraquarks and the
(QQqqq̄) or (qqqQQ̄) pentaquarks could be studied
in the adiabatic limit.

It remains that our conclusion, based on the flip-flop
dynamics, is drastically different from the one obtained from
the connected Steiner tree alone [32]. Studies within the lattice
QCD [31] or, more recently, the anti-de-Sitter space/QCD
correspondence (AdS/QCD) [45] have analyzed the interplay
between flip-flop and connected multi-Y configurations for
tetraquarks. It would be desirable to have more information
about the analog for pentaquarks.
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