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Effect of a logarithmic mesonic potential on nucleon properties in the coherent-pair approximation
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A logarithmic mesonic potential is proposed for determining nucleon properties that have been recently
calculated in the mean-field approximation. The field equations have been solved in the coherent-pair
approximation in which the variational method is used. The obtained nucleon properties have been compared
with previous calculations and other models. The results indicate that the use of the logarithmic mesonic potential
in the coherent-pair approximation provides good agreement with data for the axial-vector coupling constant
gA(0), pion-nucleon coupling constant gπNN (0), and sigma commutator σ (πN ).
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I. INTRODUCTION

Quantum chromodynamics (QCD) is the fundamental
theory underlying a strong interaction. This theory includes the
properties confinement, asymptotic freedom, and spontaneous
broken chiral symmetry [1]. The theory’s non-Abelian color
and flavor structures as well as its strong coupling constants
[2], which lead to the processes involving strong interactions
(mainly at low and intermediate energies) are difficult. Thus, it
may be valuable to develop effective models based on hadronic
degrees of freedom which incorporate relevant properties of
QCD. The effective models, such as the Skyrme chiral soliton
model, chiral perturbative quark model, and chiral quark sigma
model, are formulated on the basis of the chiral symmetry and
its spontaneous breakdown.

Decades ago, Skyrme formulated the topological soliton
model, in which a conserved topological charge is identified
with the baryonic number. The real existence of minimum
energy configurations in this model is discussed in Ref. [3]. The
model has chiral symmetry with its spontaneous breakdown
and has further deeper motivation based on the large Nc

QCD analysis [4,5]. Some modifications have been recently
introduced as in Refs. [2,6]. In the recently introduced model,
Braghin and Cavalcante [2] investigated the effect of coupling
a classical scalar-isoscalar field to the usual Skyrmion model
as a degree of freedom whose corresponding quantum would
be the chiral partner of the pion. The dependence of the
observables on the values of the scalar field mass mσ and on
the fourth-order coupling term e were also considered. Smaller
values of the σ mass favor better agreement for most of the
nucleon static properties.

The perturbative chiral quark model (PCQM) [7–11] is
applied for the study of the low-energy nucleonic properties.
This model contains several new features: (i) the generalization
of the phenomenological confining potential; (ii) the SU (3)
extension of chiral symmetry to include the kaon and η-
meson cloud contributions; (iii) the consistent formulation of
perturbation theory both on the quark and baryon level by using
renormalization techniques and allowing excited quark states
to be depicted in the meson loop diagrams; (iv) the fulfillment

of the constraints imposed by chiral symmetry (low-energy
theorems), including the current quark mass expansion of
the matrix elements; and (v) the possible consistency with
chiral perturbation theory. The PCQM [7] is based on an
effective chiral Lagrangian describing quarks as relativistic
fermions moving in a self-consistent field (static potential).
The latter is described by a scalar potential S providing
confinement of quarks and the time component of a vector
potential γ 0V responsible for short-range fluctuations of
the gluon field configurations. The model potential defines
unperturbed wave functions of quarks which are subsequently
used in the calculation of baryon properties. The PCQM
has been successfully applied to the charge and magnetic
form factors of baryons, σ terms, ground state masses of
baryons, the electromagnetic N -� transition, meson-nucleon
σ terms, and other baryon properties (including exotic baryon
states—pentaquarks); see Refs. [7–11] for reviews.

One of the effective theories in describing baryon properties
is the linear σ model, which was previously suggested by
Gell-Mann and Levy [12] to describe nucleons interacting
via sigma (σ ) and pion (π ) exchanges. The linear σ model
proposed a nucleonic structure that respected the constraints
imposed by chiral symmetry. Spontaneous and explicit chiral
symmetry breaking require the existence of the pion, whose
mass vanishes in the limit as the current mass approaches zero.
A few solutions for the Lagrangian of the chiral linear σ model
as applied to the nucleon and δ have already been suggested.
Birse and Banerjee [1] solved the linear chiral σ model in
the mean-field approximation using the hedgehog ansatz for
the pion field. After the variation, they performed an approx-
imate projection on angular momentum and isospin, ignoring
the contribution of the pions in this procedure. Birse [13]
and Golli and Rosina [14] evaluated this model further by
performing proper projections even before the variation in
the hedgehog approximation. Fiolhais et al. [15] generalized
the hedgehog and performed spin and isospin projections as
well. Goeke et al. [16] obtained the static solitonic solution
of the linear σ model using a coherent-pair trial Fock state
with proper spin and isospin quantum numbers. The work of
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Goeke et al. [16] has been re-examined by Aly et al. [17] and
they have made some corrections.

In recent years, there has been growing interest in studying
nucleon properties, resulting in modifications being suggested
for the linear σ model within the framework of some aspects
of QCD. Broniowski and Golli [18] analyzed a particular
extension of the linear σ model coupled to valence quarks
containing an additional term with two ingredients of the
chiral fields and they investigated the dynamic consequences
of this term and its relevance to the phenomenology of soliton
models of the nucleons. In addition, this model is investigated
in the mean-field approximation [19] and the coherent-pair
approximation [20] for hadron properties. Dmitrasinovic and
Myhrer [21] used an extended linear σ model [22] in which
a pair of extra terms are added to the original linear σ model
in order to improve pion-nucleon scattering and the nucleon σ

term. Furthermore, Korchin [23] calculated the properties of
the nucleon in a nonlocal σ model where conserved electro-
magnetic and vector currents and partially conserved axial vec-
tor currents are obtained. Along the same lines, Rashdan et al.
[24–26] considered higher-order mesonic interactions in the
linear σ model using mean-field approximation to get a better
description of the nucleon properties.

The chiral logarithmic quark model, which is one of the
most important ingredients in the chiral models, dynamically
breaks the chiral symmetry, and the finite expectation value
of σ generates the constituent quark and hadron masses. The
logarithmic potential does not have any instability at any σ field
value. Thus, the model is a good starting point to describe cold
nuclear matter; see Ref. [27] for a review. Further, this model
considers some aspects of QCD to get a better description
of hadron properties in the mean-field approximation in
Refs. [28,29].

The aim of this paper is to estimate the effect of the
logarithmic mesonic potential on the hadron properties in the
coherent-pair approximations using the logarithmic mesonic
potential which was suggested for calculating nucleon proper-
ties in the mean-field approximation in Ref. [29].

This paper is organized as follows. In Sec. II, the logarith-
mic mesonic potential is explained briefly. The Fock state in
the coherent-pair approximation and the variational principle
are presented in Secs. III and IV, respectively. The derived
nucleon properties are explained in Sec. V. The numerical
calculations and discussion of the results are presented in
Sec. VI.

II. LOGARITHMIC MESONIC POTENTIAL AND
PHYSICAL SITUATION

We begin with the logarithmic σ model [28,29], in which the
Lagrangian density of the logarithmic σ model that describes
the interactions between quarks via the σ and π mesons is
written as [29]

L (x) = i�∂µγ µ�̂ + 1

2
(∂µσ̂ ∂µσ̂ + ∂µπ̂ · ∂µπ̂)

+ g�̂(σ̂ + iγ5τ̂ .π̂ )�̂ − U (σ̂ , π̂ ) (1)

with

U (σ̂ , π̂ ) = λ2
1(σ̂ 2 + π̂2) − λ2

2 ln(σ̂ 2 + π̂2) − fπm2
π σ̂ , (2)

λ2
1 = 1

4

(
m2

σ + m2
π

)
, (3)

λ2
2 = f 2

π

4

(
m2

σ − m2
π

)
, (4)

where fπ is the pion decay constant, mπ is the pion mass,
and mσ and g are constants to be determined. The quark, σ ,
and π mesons are quantum fields denoted by (ˆ). Spontaneous
symmetry breaking generates mass for the quark, which breaks
the chiral symmetry and generates the small pion mass which
would otherwise be zero, unlike the Goldstone boson from the
theory in Refs. [27,29].

In the case of a massless pion (mπ � 0), the minimum
value for the logarithmic potential occurs at a finite value of σ

mass (σ � fπ ), thus the logarithmic potential is shifted from
the singularity which comes from the logarithmic term.

Now, we can rewrite the Hamiltonian density as in Ref. [17]:

Ĥ (r) = 1
2 {P̂σ (r)2 + [∇σ̂ (r)]2 + P̂π (r)2 + [∇π (r)]2}
+U (σ̂ , π̂ ) + �̂†(r) × (−iα∇)�̂(r)

− g(r)�̂†(r)[βσ̂ (r) + iβγ5τ̂ · π̂ ]�̂(r), (5)

where α and β are the usual Dirac matrices. In the above

expression �̂, σ̂ , and π̂ are quantized field operators with the
appropriate static angular momentum expansion [17],

σ̂ (r) =
∫ ∞

0

d3k

[2(2π )3Wσ (k)]
1
2

[ĉ†(k)e−ik.r + ĉ(k)e+ik.x], (6)

π̂ (r) =
[

2

π

] 1
2
∫ ∞

0
dkk2

[
1

2Wπ (k)

] 1
2 ∑

lmw

jl(kr)Y ∗
lm (r )

× [
â

1w†
lm (k) + (−)m+wâ1−w

l−m (k)
]
, (7)

�̂(r) =
∑
njmw

(〈r�njmw〉d̂
1
2 w

njm + 〈r�njmw〉 d̂
1
2 w†
njm

)
, (8)

where the |njmw〉 and |njmw〉 form a complete set of
quark and antiquark spinors with angular momentum quantum
numbers and spin-isospin quantum numbers j,m, and w,

respectively. The corresponding conjugate momentum fields
have the expansion [17]

P̂σ (r) = i

∫ ∞

0
d3k

[
Wσ (k)

2 (2π )3

] 1
2

[ĉ†(k)e−k.r − ĉ(k)e
+k.r

], (9)

P̂π (r) = i

[
2

π

] 1
2
∫ ∞

0
dkk2

[
Wπ (k)

2

] 1
2 ∑

lmw

jl (kr) Y ∗
lm (r )

× [
â

1w†
lm (k) − (−)m+wâ1−w

l−m (k)
]
. (10)

Here ĉ(k) destroys a σ quantum with momentum k and
frequency Wσ (k) = (k2 + m2

σ )
1
2 and â1w

lm (k) destroys a pion
with momentum k and corresponding Wπ (k) = (k2 + m2

π )
1
2 in

the isospin-angular momentum state {lm; tw}.
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III. THE FOCK STATE

For convenience, one constructs the configuration space
pion field functions needed for the subsequent variational
treatment by defining the alternative basis operators,

b̂1w
lm =

∫
dkk2ζl(k)â1w

lm (k), (11)

where â1w
lm (k) are basis operators which create a free massive

pion with isospin component w and orbital angular momentum
(l, m), and ζl(k) is the variational function. Considering this in
configuration space, the pion field function [17] is defined as

�l = 1

2π

∫ ∞

0
dkk2 ζl(k)

Wπ (k)
1
2

jl(r). (12)

In the following, only the l = 1 value is used and the
angular momentum label will be dropped. The Fock state for
the nucleon is taken to be [17]

|NT3Jz〉 = [α(|n〉 ⊗ |P 00〉)T3Jz
+ β(|n〉 ⊗ |P 11〉)T3Jz

+ γ (δ ·> ⊗|P 11〉T3Jz
)|0〉]

∣∣∣∑〉
, (13)

where |∑〉 is the coherent sigma field state with the property
〈∑ |σ̂ (r)|∑〉 = σ̂ (r), and |P 00〉(|P 1w

1m 〉) are pion coherent-pair
states to be determined. The normalization of the nucleon state
requires α2 + β2 + γ 2 = 1. The permutation symmetric form
of the SU (2) × SU (2) × SU (2) quark wave functions imply
that the source terms in the pion field equations will induce an
angular momentum isospin correlation for the pion field (for
details, see Ref. [17]).

IV. THE VARIATIONAL PRINCIPLE

The objective of this section is to seek the minimum of the
total baryon energy, which is given by

EB = 〈BT3Jz|
∫ ∞

0
d3r : H (r) : |BT3Jz〉 , (14)

where B = N or �. The field equations are obtained by
minimizing the total energy of the baryon with respect to
the variation of the fields, {u(r), v(r), σ (r),�(r)}, as well
as the Fock-space parameters, {α, β, γ }, subjected to the
normalization conditions. The total energy of the system is
written as

EB = 4π

∫ ∞

0
drr2εB(r). (15)

Writing the quark Dirac spinor as

�
1
2 w
1
2 m

(r) =
(

u(r)

v(r)σ · r̂

)
χ 1

2 mζ
1
2 w, (16)

the energy density is given by

εB(r) = 1

2

(
dσ

dr

)2

+ λ2
1σ

2(r) − m2
πfπσ (r) + U0

+ 3

{
u(r)

[
dv

dr
+ 2

r
υ(r)

]
− υ(r)

du

dr

+ gσ (r)[u2(r) − υ2(r)]

}
+ (Nπ + x)

×
[(

d�

dr

)2

+ 2

r2
�2(r)

]
+ (Nπ − x)�2

p(r)

−αδg(a + b)u(r)v(r)�(r)

+ λ2
2 ln[σ 2 + 2(Nπ + x)�2(r)], (17)

where Nπ is the average pion number

Nπ = 9
[
α2a2 + (

β2 + γ 2
)
c2

]
, (18)

and where δ takes the following values for nucleon or delta
quantum numbers:

δN = (5β + 4
√

2γ )/
√

3, δ� = (2
√

2β + 5γ )/
√

3.

(19)

The function �p(r) is obtained from �(r) by double folding:

�p(r) =
∫ ∞

0
w(r, ŕ)�(r)r2dŕ, (20)

w(r, ŕ) = 2

π

∫ ∞

0
dkk2w(k)j1(kr)j1(kr ′). (21)

For fixed α, β, and γ, the stationary functional variations are
expressed by

δ

[∫ ∞

0
drr2{εB(r)−3ε[u2(r) + v2(r)]−2k��p(r)}

]
= 0,

(22)

where the parameter k enforces the pion normalization
condition,

8π

∫ ∞

0
�(r)�p(r)r2dr = 1, (23)

and ε fixes the quark normalization,

4π

∫ ∞

0
[u2(r) + v2(r)]r2dr = 1. (24)

Minimizing the Hamiltonian yields the four nonlinear
coupled differential equations:

du

dr
= −2(gσ + ε)v(r) − 1

3
αδ (a + b) g�(r)u(r), (25)

dv

dr
= −2

r
v(r) − 2[gσ (r) − ε]u(r) + 1

3
αδ (a + b)

× g� (r) u(r), (26)

d2σ

dr2
= −2

r

dσ

dr
+ 2λ2

1σ (r) − m2
πfπ + 3g[u2(r) − v2(r)]

+ 2λ2
2σ (r)

σ 2 + 2 (Nπ + x) �2(r)
, (27)

d2�

dr2
= −2

r

d�

dr
+ 2

r2
�(r) + 1

2

(
1 − x

Nπ

)
m2

π�2

− α

4Nπ

(a + b) gδu(r)v(r) +
λ2

2(1 + x
Nπ

)�

[σ 2 + 2�2(Nπ + x)]
,

(28)

with eigenvalue ε and k. These consist of two quark equations
for u and v where σ (r) and �(r) appear as potentials and two
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Klein-Gordon equations with u(r)v(r) and [u2(r) − v2(r)] as
source terms. The boundary conditions are for r −→ 0,

v = dσ

dr
= � = du

dr
= 0, (29)

and for r −→ ∞,

[r(gfπ − ε)
1
2 + (gfπ + ε)−

1
2 ]u(r) − r(gfπ + ε)

1
2 v(r) = 0,

(30)(
2 + 2mπr + m2

πr2
)
�(r) + r(1 + mπr)�(r) = 0,

(31)

rσ (r) + [σ (r) − fπ ](1 + mσr) = 0.

(32)

The field equations are solved for the fixed coherence param-
eter (x) and the fixed Fock-space parameters (α, β, γ ) as in
Ref. [17].

V. THE NUCLEON PROPERTIES

The expectation value of the energy is minimized with
respect to (α, β, γ ) by diagonalizing the energy matrix⎡

⎢⎣
Hαα Hαβ Hαγ

Hαβ Hββ Hβγ

Hαβ Hβγ Hγγ

⎤
⎥⎦

⎡
⎢⎣

α

β

γ

⎤
⎥⎦ = E

⎡
⎢⎣

α

β

γ

⎤
⎥⎦ , (33)

each H entry of the matrix is related to a corresponding density
as follows:

Hαβ = 4π

∫
r2Eαβ(r)dr, (34)

and analogously for the other entries. The functions for a
nucleon are

Eαα = E0(r) + 9a2

[(
d�

dr

)2

+ 2

r2
�2

]
+ 9a2�2

p(r), (35)

Eββ = E0(r) + 9c2

[(
d�

dr

)2

+ 2

r2
�2

]
+ 9c2�2

p(r), (36)

Eγγ = E0(r) + 9c2

[(
d�

dr

)2

+ 2

r2
�2

]
+ 9c2�2

p(r), (37)

Eαβ = −2g(a + b)�(r)u(r)v(r)
2
√

2√
3

, (38)

Eαγ = −2g(a + b)�(r)u(r)v(r)
5√
3
, (39)

where

E0(r) = 1

2

(
dσ

dr

)2

+ λ2
1σ

2(r) − m2
πfπσ (r) + U0

+ 3

{
u(r)

[
dv

dr
+ 2

r
υ(r)

]
− υ(r)

du

dr

+ gσ (r)[u2(r) − υ2(r)]

}

+ x

[(
d�

dr

)2

+ 2

r2
�2(r)

]
+ x�2

p(r)

−+λ2
2 ln[σ 2 + 2(Nπ + x)�2(r)]. (40)

A. Mass of the nucleon

In this subsection, we calculate the total energy of the
nucleon, which consists of quark, σ , pion, quark-σ interaction,
quark-pion interaction, and meson static energy contributions.
We derive the nucleon mass as in Ref. [17]. We obtain

(K.E.)quark =
∫ ∞

0
[gσρs(r) + ερw(r) + gπρp(r)]r2dr, (41)

where ρs, ρp, and ρw are the quark scalar density, pseudoscalar
density, and vector density, respectively. Similarly, we find the
meson kinetic contribution:

(K.E.)σ = 1

2

∫ ∞

0
σ (r)

{
2λ2

1σ (r) − m2
πfπ + 3g[u2(r)

− v2(r)] + 2λ2
2σ (r)

σ 2 + 2(Nπ + x)�2(r)

}
r2dr, (42)

(K.E.)pion = 1

2

∫ ∞

0
�(r)

{
2

r2
�(r) + 1

2

(
1 − x

Nπ

)
m2

π�2

− α

4Nπ

(a + b)gδu(r)v(r)

+
λ2

2

(
1 + x

Nπ

)
�

[σ 2 + 2�2(Nπ + x)]

}
r2dr. (43)

The quark-meson interaction energy is

Eq-σ = −
∫ ∞

0
gσρs(r)r2dr, (44)

Eq-pion = −
∫ ∞

0
gσρp(r)r2dr. (45)

The meson-meson interaction energy is

Emeson-meson =
∫ ∞

0

[
λ2

1(σ̂ 2 + π̂2) − λ2
2 ln(σ̂ 2 + π̂2)

− fπm2
π σ̂ − U0

]
r2dr, (46)

U0 is the minimum of potential U at (σ = fπ, π = 0.0).

B. Magnetic moment, axial-vector coupling constant ( gA
gv

),
pion-nucleon coupling constant gπ N N (0), and

σ commutator σ (π N)

The magnetic moments of the proton and neutron are given
by as in Ref. [17]:

µp(r)

4πe
= ruv

81
(54α2 + 2β2 + γ 2 + 32

√
2βγ )

+ x

729a2
(9a2 + x)(4β2 + γ 2)�2, (47)

µn(r)

4πe
= ruv

81
(−36α2 − 8β2 + γ 2 − 32

√
2βγ )

− x

729a2
(9a2 + x)(4β2 + γ 2)�2. (48)
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The axial-vector coupling constant, measured in neutron
β decay, is a matrix element of the space part of the isovector-
axial vector current. Explicitly, one is interested in gA

gv
, where

gv is the corresponding matrix element of the isovector-vector
current

JV
µ = 1

2�γ µ�̂ + π̂ × ∂µπ̂ . (49)

The values of gA and gv are taken from the z component in
space and the third component in isospace. Since the vector
part yields 1

2 , one obtains [17]

gA

gv

= 4π

∫ ∞

0
drr2

[(
5

3
α2+ 5

27
β2+ 25

27
γ 2+ 32

√
2

27
βγ

)

×
(

u2(r)− υ2(r)

3

)
+ 8

3
√

3
αβ(a+b)

dσ

dr
�

]
, (50)

σ (πN ) = 4πfπm2
π

∫ ∞

0
drr2[σ (r) − fπ ]. (51)

The change in the magnetic moments, coupling constant
( gA

gv
), and σ commutator σ (πN ) is induced by the dynamics of

the fields in Eqs. (25)–(28).

VI. DISCUSSION OF RESULTS

The set of nonlinear differential equations have been solved
in the same manner as Aly et al. [17]. The iteration procedure
is implemented in the following calculations. As to the fixed
values α, β, and γ, the set of differential equations with the
corresponding boundary conditions are solved by using the
modified numerical package (COLSYS) as used in Ref. [17].
The solutions of the system are mixed and repeated until self-
consistency is achieved. The present work contains two free
parameters: the coupling constant g and the σ mass as in
Refs. [12,16,17].

The corresponding fields for a typical solution are shown in
Fig. 1. They agree with those obtained by the original work of
Aly et al. [17] and the results in the mean-field approximation
model in Ref. [29], where the pion field takes the P -wave and
so it rises linearly from zero at the center of the soliton and
takes its maximum value at the radius of soliton (r = 0.57).
In addition, the sigma wave function its takes maximum value
at r = 0.0. From Fig. 2, we note that the kinetic energy of a
quark is greater than the kinetic energy reported in the original
work [17]. The kinetic energy of the mesons is slightly less
than that of the original work [17]. The effect of meson-quark
interactions is investigated and is shown in Fig. 3. The behavior
is the same in the two models, but the logarithmic mesonic
potential has greater values for quark-meson interactions in
comparison with the original work of Aly et al. [17]. The
largest values for the delta and nucleon masses are obtained,
wherever the masses are increasing with increasing coherence
parameter x; thus, the best results for the nucleon and delta
masses (MN = 1175,M� = 1231) are obtained for x = 2.64
and the δ mass is in good agreement with the data (see Fig. 4).

Next consider the nucleon properties. Table I shows the
results for several nucleon properties compared with the pre-
vious calculation [17] and data. The values of the observables

FIG. 1. Components of the quark fields, σ and π fields as
functions of r . The calculations are performed for the pion-coupling
constant g = 5.0, mσ = 550 MeV, and x = 4.

to the nucleon are improved. Comparing the predictions of the
logarithmic quark model to those of the work Aly et al. [17],
we find that the quark contributions to each observable are
different; however, the coherence parameter x is increased up
to 4, which is not possible in the previous calculation of [17]

FIG. 2. Comparison of the kinetic energy for the logarithmic
quark model and the original quark model using a coherence
parameter of x = 4 with g = 5 and mσ = 550 MeV.
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FIG. 3. Comparison of the quark-meson interaction energies for
the logarithmic quark model and the original quark model using a
coherence parameter of x = 4 with g = 5 and mσ = 550 MeV.

wherever the largest values in ( gA

gv
), gπNN (0), and σ (πN ) are

obtained and conflicts with the data.
Considering the square nucleon-charge radius, we find

that the quark and meson contributions are greater than the
contributions in Ref. [17]. However, the proton radius is
improved so that the relative error is about 14% compared
to the data. Also, the square of the neutron radius is corrected
so that the relative error is about 97% compared to the data in
Ref. [17]; therefore this error has been reduced by 25% in our
approach. The situation is similar for the magnetic moments.
The quark contribution and mesonic contribution are increased
due to the increase pionic degrees by increasing the coherence
parameter x leading to an increase in the nucleon magnetic
moments of about 9%.

The problems in the linear σ model are the greater values of
the axial-vector coupling constant ( gA

gv
), pion-nucleon coupling

FIG. 4. The dependence of the δ and nucleon masses on the
coherence parameter x where solid curves represent the logarithmic
quark model and dashed curves represent the original quark model.

constant gπNN (0), and σ commutator σ (πN ) in comparison
with the data. With our approach, we were able to successfully
predict these quantities since the logarithmic potential did not
include the higher-order mesonic contributions of σ 2 and π2,
which leads to a reduction in the mesonic contribution in these
quantities.

The axial-vector coupling constant is in good agreement
with the data. This is an important property, in particular, for
a chiral model such as the present one. The result obtained
is gA

gv
= 1.23, which is the ratio of the axial-vector coupling

constant to the vector coupling constant. If one uses the
Goldberger-Treiman relation and evaluates gπNN (0) equal to
Mn( gA

gV
)f −1

π as obtained in Table I, the value of gπNN (0) is
found to be equal to 0.92, which is in good agreement with the
data.

TABLE I. Observables for the coherent-pair nucleon with a coherence parameter of x = 4 with
mσ = 441 MeV and g = 5. The magnetic moments are in nuclear magnetons. The charge radius is
in fm. For comparison, the results from the coherent-pair approximation model of Aly et al. [17] are
also presented.

Quantity Present approach Aly et al. [17] Expt.

Quark Meson Total Quark Meson Total

〈r2〉p 0.71 0.17 0.88 0.533 0.023 0.556 0.70
〈r2〉n 0.02 −0.17 −0.15 0.019 −0.023 −0.004 −0.12
〈µp〉 1.710 0.1396 1.850 1.53 0.18 1.71 2.79
〈µn〉 −1.263 −0.139 −1.402 −1.13 −0.18 −1.31 −1.91
gA(0)
gV (0) 1.13 0.0896 1.227 1.07 0.39 1.46 1.25
gπNN (0) mπ

2MN
0.848 0.067 0.92 1.11 0.24 1.35 1.0
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The σ commutator σ (πN ) is the fundamental parameter of
low-energy hadron physics since it provides a direct measure
of the scalar quark condensates in baryons and constitutes a test
for the mechanism of chiral symmetry breaking [30]. We ob-
tain a good value for the σ commutator, 45 MeV when x = 4,

mσ = 680, and g = 5. Our result for the σ (πN ) is in perfect
agreement with the value obtained by Gasser, Leutwyler, and
Sainio [31] and with the results of other theoretical approaches
such as the cloudy bag model [32], chiral quark soliton
model [33], lattice QCD [34], and the perturbative chiral quark
model [30] where the pion cloud contribution was properly
taken into account.

Finally, from Table II, the σ commutator σ (πN ) has been
improved by about 49% with respect to the original model
[17] and by, 35% compared to the result in the mean-field
approximation [29].

VII. COMPARISON WITH OTHER MODELS

It is interesting to compare the nucleon properties in the
present approach with other models. Here we consider three
models: the perturbative chiral quark model [7–11], the mean-
field model [29], and the extended Skyrme model [2]. The per-
turbative chiral quark model is an effective model of baryons
based on chiral symmetry. The baryon is described as a state
of three localized relativistic quarks supplemented by a pseu-
doscalar meson cloud as dictated by chiral symmetry require-
ments. In this model, the effect of the meson cloud is evaluated
perturbatively in a systematic fashion. The model has been
successfully applied to the nucleon properties (see Table II).
We obtained reasonable results in comparison with the
perturbative chiral quark model which is based on a nonlinear
σ model Lagrangian and provides a good description of the
nucleon properties. In particular, the axial-vector coupling
constant ( gA

gv
), pion-nucleon coupling constant gπNN (0), and

σ commutator σ (πN ) have been improved. The original
Skyrme model Lagrangian [35] consists of the nonlinear
σ model term and the fourth-order derivative term, which
guarantees the stabilization of the soliton so that the degree
of freedom of the σ field may be replaced by a variable
chiral radius, which becomes the new dynamical degree of
freedom and plays an important role in the modified Skyrmion
Lagrangian density [2], leading to a better description of

nucleon properties. In comparison with the extended Skyrme
model [2], the results obtained for the nucleon and δ masses
and the axial-vector coupling constant ( gA

gv
), pion-nucleon

coupling constant gπNN (0), and σ commutator σ (πN ) have
been improved (see Table II).

The mean-field approximation model has been introduced
in Ref. [29]. In this model, the meson fields are treated as
time-independent classical fields. This means that we replace
the powers and products of the (MFT) by the corresponding
powers and products of their expectation values [1]. In [29],
it is argued that spontaneous symmetry breaking of the
quantum chromodynamics (QCD) Lagrangian gives rise to
an effective chiral Lagrangian of Gell-Mann–Levy σ model
by involving explicit quark, scalar-isoscalar σ -meson, and
pseudoscalar-isovector pion-meson degrees of freedom. There
is no confinement in this model, and nucleons appear as
bound states of a three-quark system. The bound states of
the model have been solved in the mean field using the hedge-
hog ansatz [1] which assumes a configuration-space-isospin
correlation for the pion field, π = π r̂ and for the quarks. One
drawback of this ansatz is that it breaks both rotational J

and isospin invariance I (although the grand spin G = I + J

remains conserved) requiring some projection onto physical
states at the end. In spite of this drawback, the model is
successful at predicting baryon properties (see Table II).
Another weakness of their approach (MFT) was the use of
semiclassical mean-field approximation to describe the very
light pion. Logarithmic mesonic potential is investigated in the
mean-field approximation, which gives a good description for
hadron properties as in Refs. [28,29], but has the greatest values
for the axial-vector coupling constant ( gA

gv
) and pion-nucleon

coupling constant gπNN (0) compared with the data (see
Table II). By considering the quantum effects in our approach,
we obtain a good description of these values which closely
agrees with the data. In addition, the results of Ref. [29] were
successfully applied to the study of σ -term physics, which
results in a σ (πN ) term equal to 70 MeV, but it still has a
large value in comparison with the value (45 ± 5) in Ref. [34].
We successfully predicted the value of σ (πN ) = 45 MeV for
(x = 4, g = 5,mσ = 680), which is one of the advantages
of this approach. Also, we have calculated the radius of the
proton and neutron in this approach, which is not calculated in
the mean-field approximation model [29].

TABLE II. Observables of the nucleon with the logarithmic σ model [29], modified Skyrme
model [2], and perturbative chiral quark model [7–11].

Quantity Present work [17] [29] [2] [7–11] Expt.

MN 1175 1073 966 1436 828.5 938
M� 1231 1224 1348 1722 1124.9 1232
〈r2〉p 0.88 0.556 – 0.71 – 0.7
〈r2〉n −0.15 −0.004 – −0.18 – −0.12
µp 1.85 1.71 2.77 2.9 2.62 ± 0.02 2.79
µn −1.40 −1.31 −2.11 −2.1 −2.0 ± 0.02 −1.91
σ (πN ) 45 88.9 70 54 54.7 45 ± 5
gA(0) 1.23 1.35 1.76 0.78 1.19 1.25
gπNN (0) mπ

2MN
0.921 1.46 1.44 0.61 – 1.0
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VIII. SUMMARY AND CONCLUSION

In the present work, we examine the effect of coherent-
pair approximation on hadron properties in the logarith-
mic quark model [29]. The coherent-pair approximation
(CPA) has some advantages in comparison with the mean-
field approximation and provides a systematic expansion
method for the description of a boson field. In addition,
it avoids assumptions like the hedgehog structure of the
quark and pion fields [16]. The CPA is too restrictive for
the pionic degree of freedom [16]. The average number
of pions in the nucleon is calculated to be about one-
half, whereas the mean-field approximation yields twice as
much [17].

From the results, we have obtained a good description for
nucleon properties. In particular, the axial-vector coupling

constant ( gA

gv
), pion-nucleon coupling constant gπNN (0), σ

commutator σ (πN ), and the squared neutron radius 〈r2〉n are
in good agreement with the data.

The best results for nucleon and δ masses (MN = 1175,

M� = 1231) are obtained for x = 2.64, with a δ mass that
is in good agreement with data and a relative error in the
nucleon mass of about 9% compared to original model [17]
and a relative error of 25% with respect to the data due to
the increase in the kinetic energies of the σ and pion mesons,
so we need to extend the chiral symmetry to include the kaon
and η-meson cloud contributions to improve this quantity as in
the perturbative chiral quark model [7]. The second solution
is to increase the higher-order mesonic contributions in the
framework of the chiral symmetry without introducing more
parameters in our approach.
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