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Nuclear suppression factor for PT increasing towards the kinematic limit
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The suppression of high-transverse-momentum (PT ) hadron production in ultrarelativistic heavy-ion (A-A)
collisions as compared to the scaled expectation from proton-proton (p-p) collisions expressed as the nuclear
modification factor RAA is experimentally well established and can be traced back to interactions between the
hard parton shower and the soft bulk matter. Intuition suggests that the medium modification should cease to
be important when the hard scale of parton production is much larger than the typical momentum scale in the
medium (e.g., the temperature T ) and that consequently RAA(PT ) → 1 for PT � T . However, RAA is not a
“simple” observable but rather results from many different mechanisms that influence what happens when PT

increases. In particular, RAA does not necessarily approach unity even if the hadron momentum is probed at the
kinematic limit of the reaction. The aim of this work is to identify and discuss such mechanisms, to present
different model expectations of what one would find if one could measure suppression to the kinematic limit for
hard hadron production, and to predict the PT dependence at both Relativistic Heavy-Ion Collider (RHIC) and
Large Hadron Collider (LHC).

DOI: 10.1103/PhysRevC.81.014906 PACS number(s): 25.75.Gz

I. INTRODUCTION

Jet quenching [i.e., the energy loss of hard partons created
in the first moments of an ultrarelativistic heavy-ion (A-A)
collision resulting from interactions with the surrounding
soft medium] has long been regarded a promising tool to
study properties of the soft bulk medium created along
with the hard process [1–6]. The effect of the medium is
apparent from a comparison of high-transverse-momentum PT

hadron observables measured in A-A collisions with the same
observables in proton-proton (p-p) collisions. The current
range of such observables includes the suppression in single
inclusive hard hadron spectra RAA [7], the suppression of
back-to-back correlations [8,9] and single hadron suppression
as a function of the emission angle with the reaction plane [10].
Recently, preliminary measurements of fully reconstructed jets
also have become available [11].

Single hadron observables and back-to-back correlations
above 6 GeV (where hadron production is dominated by hard
processes) are well described in detailed model calculations
using the concept of energy loss [12–14], that is, under the
assumption that the process can be described by a medium-
induced shift of the leading parton energy by an amount �E

where the probability of energy loss is governed by a dis-
tribution P (�E), followed by a fragmentation process using
vacuum fragmentation of a parton with the reduced energy.
This can be cast into the form of a modified fragmentation
function (MMFF). If the vacuum fragmentation function, that
is, the distribution of hadrons produced from a parton at
fractional momentum z given a hadronization scale µ2, is
D(z, µ2), then the MMFF given the medium-induced energy
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loss probability P (�E) can be written as

D̃(z, µ2) =
∫ E

0
d�EP (�E)

D{[z/(1 − �E/E)], µ2}
1 − �E/E

. (1)

Beyond the leading parton approximation in which energy
loss and fragmentation factorize, one has to solve the full
partonic shower evolution equations in the medium while
assuming that the nonperturbative hadronization takes place
outside the medium. At least for light subleading hadrons in a
shower, factorizing hadronization from the medium-modified
parton shower is a reasonable assumption at both Relativistic
Heavy-Ion Collider (RHIC) and Large Hadron Collider (LHC)
kinematics. There are several calculations that utilize such
medium-modified showers analytically [15–17]. Recently,
Monte Carlo (MC) codes for in-medium shower evolution,
which are based on MC shower simulations developed for
hadronic collisions such as PYTHIA [18] and HERWIG [19],
also have become available [20–25]. Unlike current analytical
computations, these have full energy-momentum conservation
enforced at each branching vertex. In these calculations, the
MMFF is obtained directly rather than from an expression such
as Eq. (1).

So far, the different pictures for the parton-medium in-
teraction have been explored and compared with data over
a finite kinematical window where PT < 20 GeV. There
is a widespread expectation that if the PT range of the
measurement could be extended, at either RHIC or LHC, the
medium effect would eventually disappear. This expectation
is based on the idea that the medium is able to modify the
hard-parton kinematics at a typical scale set by its temperature
T , whereas the parton dynamics takes place at a partonic hard
scale pT , and if pT � T , then the hard kinematics should be
essentially unchanged, which can be realized for large hadronic
PT . For example, in the case of the nuclear suppression factor,
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this expectation would imply that RAA(PT ) approaches unity
for PT � T . It is our aim in this article to discuss the physics
contained in the shape of RAA(PT ) and to present which
current models, based on both the energy-loss concept and
the in-medium parton shower concept, predict for the shape of
RAA at very large momenta at both RHIC and LHC.

II. NUCLEAR SUPPRESSION IN THE ENERGY-LOSS
PICTURE

A. Qualitative estimates

A qualitative argument for why RAA should increase with
PT can be made as follows: parton spectra can be approximated
by a power law as dN/dpT = const./pn

T where n ≈ 7. Assume
that one can approximate the effect of the medium by the
mean value energy loss 〈�E〉 (for realistic energy-loss models,
this is not a good approximation because fluctuations around
the mean are large). In this case, the energy loss shifts
the spectrum. This can be described by the replacement
pT → pT + 〈�E〉 in the expression for the parton spectrum.
RAA(pT ) can then be approximated by the ratio of the parton
spectra before and after energy loss as

RAA(pT ) ≈
(

pT

pT + 〈�E〉
)n

=
(

1 − 〈�E〉
pT + 〈�E〉

)n

, (2)

and it is easily seen that this expression approaches unity
for pT � 〈�E〉. However, it is not readily obvious under
which conditions the limit is reached even if the medium
properties are known. Parametrically, the medium temperature
T governs both the medium density and the typical medium
momentum scale, but the total energy loss represents the
cumulative effect of the medium (i.e., a line integral of medium
properties along the path of the partons), and furthermore the
physics of medium-induced radiation is rather complicated
because interference between different radiation graphs plays
a significant role and therefore the mean energy loss is not
simply ∼T . Thus, in realistic calculations, the mean energy
loss at RHIC conditions is 〈�E〉 ≈ O(10) GeV even for
T < 0.35 GeV [14], and hence it current data are relatively
far from the limit.

There are five main points that may be raised against the
approximation in Eq. (2).

(i) The estimate holds for partons and does not take into
account fragmentation.

However, this is not a crucial issue for the question
at hand. The fragmentation function D(z, µ2) is steeply
falling with z, and as a result, fragmentation processes
at low z are preferred. However, for a given momentum
scale of the hadron spectrum, low z implies high parton
momentum, and this is suppressed because the parton
spectrum is also falling steeply with pT . As a result,
there is some typical intermediate 〈z〉 (dependent on
hadron and parton type) that relates hadron and parton
momentum for quarks fragmenting into light hadrons
at RHIC kinematics 〈z〉 ≈ 0.5–0.7. This means that
hadronic RAA is to first approximation simply scaled by
this factor as compared to partonic RAA. Fluctuations
around the average tend to smear out structures in the

partonic RAA through the hadronization process but
do not alter the shape of RAA(PT ) beyond that. Thus,
qualitatively Eq. (2) holds also on the hadronic level.

(ii) The estimate does not distinguish between quarks and
gluons.

This is moderately important because energy loss
is expected to be stronger for gluons by a factor of
9/4 (the ratio of the Casimir color factors). At low
PT , hadron production is driven by gluonic processes
because gluons are copiously available in the low-x
region in parton distribution functions (PDFs) [26–30].
However, hadron production at higher PT probes more
in the high-x region in the parton distributions and
eventually valence quark scattering dominates. The
hadronic RAA should therefore show a rise from gluonic
RAA to the larger value of quark RAA that corresponds to
the transition from gluon- to quark-dominated hadron
production. As shown in Ref. [31], this is likely to be the
mechanism underlying the rising trend observed in RAA

at RHIC. However, for asymptotically high energies,
the mechanism is not relevant, because this is always a
quark-dominated regime.

(iii) The estimate neglects fluctuations around the average
energy loss.

In the presence of fluctuations, P (�E) can be written
as the sum of three terms, corresponding to transmission
without energy loss, shift of the parton energy by finite
energy loss, or parton absorption, as

P (�E) = T̃ δ(�E) + S̃ · P̃ (�E) + Ã · δ(�E − E),

(3)

where P̃ (�E) is a normalized probability distribution
such that T̃ + S̃ + Ã = 1. By inserting this form to
average over Eq. (2) with the proper weights, one finds

RAA ≈ T̃ +
∫

d�E · S̃ · P̃ (�E)

(
1 − �E

pT + �E

)n

.

(4)

It follows that RAA obtained with this expression is
always bounded by T̃ from below (if a fraction of
partons escapes unmodified, no amount of modification
to the rest will alter this) and by (1 − Ã) from above
(if partons are absorbed independent of their energy,
RAA will never approach unity). In many calculations,
Ã is determined by the condition that a parton is
absorbed whenever its calculated energy loss exceeds
its energy, that is, Ã and S̃ are dependent on the initial
parton energy. In particular, in the Armesto-Salgado-
Wiedemann (ASW) formalism [32], the energy loss can
be formally larger than the initial energy, because the
formalism is derived for asymptotically high energies
E → ∞ and small energy of radiated gluons �E � E

but is commonly applied to kinematic situations in
which these conditions are not fulfilled. RAA at given
pT is then equal to the transmission term T̃ plus
a contribution that is proportional to the integral of
P̃ (�E) from zero up to the energy scale Emax of the
parton, seen through the filter of the steeply falling
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FIG. 1. (Color online) The leading-order (LO) pQCD parton
spectrum for

√
s = 200 GeV compared with a power law fit to the

region from 20 to 50 GeV.

parton spectrum. Thus, in the presence of fluctuations,
RAA is dominated by fluctuations toward the low
�E, and RAA grows with pT because Emax grows
linearly with pT . If P (�E) includes fluctuations up to
a maximal energy loss �Emax, then for pT � �Emax

the original argument made for constant energy loss
applies and RAA approaches unity. In practice, this
may not be observable; the energy loss probability for
RHIC kinematics may be substantial up to scales of
O(100) GeV [14], that is, of the order of the kinematic
limit.

(iv) The perturbative quantum chromodynamics (pQCD)
parton spectrum is not a power law.

Although the pQCD parton spectrum is approxi-
mated well by a power law in a limited kinematic
range, at about

√
s/4 the power law fit becomes a

bad description of the spectrum. This is shown in
Fig. 1. Close to the kinematic limit at

√
s/2, the parton

spectrum falls very steeply. If one would attempt a
local power law fit in this region, the region of validity
for the fit would be small and n would be very large.
One can readily see from Eq. (2) that even for pT �
〈�E〉 RAA does not approach unity when at the same
time n → ∞. In other words, close to the kinematic
limit, even a small �E causes a massive suppression
simply because there are no partons available higher
up in the spectrum that could be shifted down. For
this reason, close to the kinematic limit, RAA → 1
cannot be expected, and instead (dependent on the
details of modeling) something like RAA → T̃ should
be expected. However, note also that the validity of
factorization into a hard process and a fragmentation
function has been assumed for hadron production up
to the kinematic limit. This may not be true; higher
twist mechanisms such as direct hadron production
in the hard subprocess (in the context of heavy-ion
collisions; see, e.g., [33]) may represent a different
contribution that, due to color transparency, remains
unaffected by the medium at all PT and that may be
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FIG. 2. (Color online) RAA(PT ) calculated with nuclear initial-
state effects only, obtained from the nuclear PDF set [28] and the
EKS98 set [29] of nuclear parton distributions calculated for the
whole kinematic range at RHIC.

significantly stronger than fragmentation close to the
kinematic limit. This could be effectively absorbed into
a modified coefficient T̃ , which, however, ceases to
have a probabilistic interpretation.

(v) The nuclear initial state effects have not been taken into
account.

The initial-state nuclear effects, that is, the difference
in nucleon [26,27] and nuclear [28–30] PDFs, are
often thought to be a small correction to the final-state
medium effects. Over a large kinematic range, that is
quite true. However, as one approaches the kinematic
limit and forces the distributions into the x → 1 valence
quark distributions, one probes the Fermi motion region
in the nuclear parton distributions where the difference
to nucleon PDFs is sizable.

In Fig. 2, RAA(PT ) is shown for RHIC kinematics,
taking into account only the nuclear initial-state effects
with two different sets of nuclear PDFs but no final-state
medium-induced energy loss. It is readily apparent that
over most of the kinematic range RAA(PT ) ≈ 1, but that
there is a strong enhancement visible beyond 80 GeV.

B. Detailed calculation

The detailed calculation of RAA in the energy-loss models
presented here follows the Baier-Dokshitzer-Mueller-Peigne-
Schiff (BDMPS) formalism for radiative energy loss [2] using
quenching weights as introduced by Salgado and Wiedemann
[32], commonly referred to as the ASW formalism.

The probability density P (x0, y0) for finding a hard vertex
at the transverse position r0 = (x0, y0) and impact parameter
b is given by the product of the nuclear profile functions as

P (x0, y0) = TA(r0 + b/2)TA(r0 − b/2)

TAA(b)
, (5)

where the thickness function is given in terms of Woods-Saxon,
the nuclear density ρA(r, z) is TA(r) = ∫

dzρA(r, z), and
TAA(b) is the standard nuclear overlap function TAA(b) =
d2s TA(s)TA(s − b).
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If the angle between outgoing parton and the reaction plane
is φ, the path of a given parton through the medium ζ (τ ) (i.e., its
trajectory ζ as a function of proper medium evolution time τ ) is
determined in an eikonal approximation by its initial position
r0 and the angle φ as ζ (τ ) = [x0 + τ cos(φ), y0 + τ sin(φ)]
where the parton is assumed to move with the speed of light
c = 1 and the x direction is chosen to be in the reaction plane.
The energy-loss probability P (�E)path for this path can be
obtained by evaluating the line integrals along the eikonal
parton path

ωc(r0, φ) =
∫ ∞

0
dζζ q̂(ζ ) and 〈q̂L〉(r0, φ) =

∫ ∞

0
dζ q̂(ζ ),

(6)

with the relation

q̂(ζ ) = K · 2 · ε3/4(ζ )(cosh ρ − sinh ρ cos α) (7)

assumed between the local transport coefficient q̂(ζ ) (specify-
ing the quenching power of the medium), the energy density
ε, and the local flow rapidity ρ with angle α between flow
and parton trajectory [34,35]. The medium parameters ε and
ρ are obtained from a 2 + 1 − d hydrodynamical simulation
of bulk-matter evolution [36], chosen to have the RHIC and
the LHC media described within the same framework. The
ωc is the characteristic gluon frequency, setting the scale of
the energy-loss probability distribution, and 〈q̂L〉 is a measure
of the path length weighted by the local quenching power.
The parameter K is a tool to account for the uncertainty
in the selection of the strong coupling αs and possible
nonperturbative effects that increase the quenching power of
the medium (see the discussion in Ref. [9]) and adjusted such
that pionic RAA for central Au-Au collisions is described at
one value of PT .

By using the numerical results of [32] and the previous
definitions, we can now obtain the energy-loss probability
distribution given a parton trajectory as a function of the initial
vertex and direction (r0, φ) as P [�E; ωc(r, φ), R(r, φ)]path ≡
P (�E)path for ωc and R = 2ω2

c/〈q̂L〉. From the energy-loss
distribution given a single path, one can define the averaged
energy-loss probability distribution P (�E)〉TAA as

〈P (�E)〉TAA

= 1

2π

∫ 2π

0
dφ

∫ ∞

−∞
dx0

∫ ∞

−∞
dy0P (x0, y0)P (�E)path.

(8)

The energy-loss probability P (�E)path is derived in the
limit of infinite parton energy [32]; however, in the following
the formalism is applied to finite kinematics. To account for
the finite energy E of the partons 〈P (�E)〉TAA is truncated at
�E = E, and δ(�E − E)

∫ ∞
E

d�E P (�E) is added to the
truncated distribution to ensure proper normalization. The
meaning of this correction is that all partons are considered
absorbed if their energy loss is formally larger than their
initial energy. The momentum spectrum of hard partons
is calculated in LO pQCD (explicit expressions are given
in Ref. [9] and references therein). The medium-modified
perturbative production of hadrons can then be computed from

the expression

dσ AA→h+X
med =

∑
f

dσ AA→f +X
vac ⊗〈P (�E)〉TAA ⊗Df →h(z, µ2),

(9)

where dσ
AA→f +X
vac is the partonic cross section for the inclusive

production of a parton f and Df →h(z, µ2) is the vacuum
fragmentation function for the hadronization of a parton f

into a hadron h with momentum fraction z and hadronization
scale µ. From this, the nuclear modification factor RAA follows
as

RAA(pT , y) = dNh
AA/dpT dy

TAA(b)dσpp/dpT dy
. (10)

III. NUCLEAR SUPPRESSION
IN THE MEDIUM-MODIFIED SHOWER PICTURE

A. Qualitative arguments

In a medium-modified (MM) shower picture, the whole
partonic in-medium evolution of a parton shower following
a hard process is studied, leading to a modification of the
fragmentation function (FF) that is more general than Eq. (1).
In this framework, RAA → 1 is realized if the MMFF becomes
sufficiently similar to the vacuum FF. A qualitative argument
for why the MMFF should approach the vacuum FF for PT �
T can be made by considering, for example, the RAD (radiative
energy loss) scenario of the MC code YaJEM (yet another
jet energy-loss model). This model is described in detail in
Refs. [21,22].

The parton shower developing from a highly virtual initial
hard parton in this model is described as a series of 1 →
2 splittings, a → bc, where the virtuality scale decreases in
each splitting (i.e., Qa > Qb,Qc) and the energy is shared
among the daughter partons b, c as Eb = zEa and Ec =
(1 − z)Ea . The splitting probabilities for a parton a in terms
of Qa,Ea are calculable in pQCD, and the resulting shower is
computed event by event in an MC framework. In the absence
of a medium, the evolution of the shower is obtained using the
PYSHOW routine [37], which is part of the PYTHIA package [18].

In the presence of a medium, the main assumption of
YaJEM is that the parton kinematics or the splitting probability
is modified. In the RAD scenario, the relevant modification is
a virtuality gain,

�Q2
a =

∫ τ 0
a +τa

τ 0
a

dζ q̂(ζ ), (11)

of a parton during its lifetime through the interaction with the
medium. To evaluate Eq. (11) during the shower evolution, the
momentum space variables of the shower evolution equations
need to be linked with a space-time position in the medium.
This is done via the uncertainty relation for the average
formation time as

〈τb〉 = Eb

Q2
b

− Eb

Q2
a

(12)
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and randomized for every splitting by sampling from the
distribution

P (τb) = exp

[
− τb

〈τb〉
]

. (13)

The limit in which the medium modification is unimportant
is then given by Q2 � �Q2, that is, if the influence of the
medium on the parton virtuality is small compared with the
virtuality itself, the evolution of the shower takes place as
in vacuum. Note that there is always a kinematical region in
which the condition can never be fulfilled: The region z → 1 in
the fragmentation function represents showers in which there
has been essentially no splitting. Because the initial virtuality
determines the amount of branchings in the shower, this means
one probes events in which the initial virtuality Q0 is not (as
in typical events) of the order of the initial parton energy E0,
but rather Q0 ∼ mh, where mh is a hadron mass. Because mh

is, at least for light hadrons, of the order of the medium tem-
perature, Q2 � �Q2 cannot be fulfilled in the region z ≈ 1
of the MMFF; here the medium effect is always visible.

This is illustrated in Fig. 3. Here the ratio of medium-
modified over-vacuum fragmentation function Dq→h−

(z, µ2
p)

as obtained in YaJEM is shown for a constant medium for
different initial partonic scales µp ≡ E. For an initial scale
of E = 20 GeV, one observes that the whole range between
z = 0.2 and z = 1 is suppressed in the medium, whereas the
region less than z = 0.1 shows enhancement because of the
hadronization of the additional medium-induced radiation. For
larger initial scales, the region of enhancement becomes con-
fined to smaller and smaller z, and the fragmentation function
ratio approaches unity across a large range. However, in the
region z ≈ 1, suppression due to the medium always persists,
as expected. As a consequence, one can expect RAA → 1 for
PT � T [where �Q2 is assumed to be parametrically O(T 2)]
except near the kinematic limit PT ≈ √

s/2, where the region
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FIG. 3. (Color online) Ratio of medium-modified over-vacuum
quark fragmentation function into charged hadrons obtained in
YaJEM for a constant medium 5 fm long and q̂ = 2 GeV2/fm. Shown
are the results for different initial quark energies E.

z ≈ 1 of the MMFF is probed and suppression is expected to
persist.

B. Detailed calculation

The detailed computation of RAA within YaJEM is outlined
in Ref. [22]. It shares many steps with the computation within
the energy-loss picture as described previously, in particular
the medium-averaging procedure.

The basic quantity to compute is the MMFF, given a path
through the medium. Because of the approximate scaling law
identified in Ref. [21], it is sufficient to compute the line
integral

�Q2
tot =

∫
dζ q̂(ζ ) (14)

in the medium to obtain the full MMFF DMM(z, µ2
p, ζ ) from

a YaJEM simulation for a given eikonal path of the shower-
initiating parton, where µ2

p is the partonic scale. The link
between q̂ and medium parameters is given as previously by
Eq. (7), albeit with a different numerical value for K . The
medium-averaged MMFF is then computed as〈

DMM
(
z, µ2

p

)〉
TAA

= 1

2π

∫ 2π

0
dφ

∫ ∞

−∞
dx0

∫ ∞

−∞
dy0P (x0, y0)DMM

(
z, µ2

p, ζ
)
.

(15)

From this, the medium-modified production of hadrons is
obtained from

dσ AA→h+X
med =

∑
f

dσ AA→f +X
vac ⊗ 〈

DMM
(
z, µ2

p

)〉
TAA

(16)

and RAA via Eq. (10). A crucial issue when computing RAA

for a large momentum range is that YaJEM provides the
MMFF for a given partonic scale, whereas a factorized QCD
expression such as Eq. (16) utilizes a fragmentation function
at givem hadronic scale. In previous publications [21,22], the
problem has been commented on but not addressed because
the variation in momentum scale for current observables is not
substantial. In this article, the matching between partonic and
hadronic scales is done as follows:

For several partonic scales, 〈DMM(z, µ2
p)〉TAA is computed,

and the exponent n of a power law fit to the parton spectrum at
scale µp is determined. The maximum of zn〈DMM(z, µ2

p)〉TAA

corresponds to the most likely value z̃ in the fragmentation
process, and thus the partonic scale choice is best for a
hadronic scale PT = z̃µp. The hadronic RAA is then computed
by interpolation between different optimal scale choices from
runs with different partonic scales. Finally, in the region PT →√

s/2, 〈DMM(z, s/4)〉TAA is always the dominant contribution
to hadron production.

The matching procedure between hadronic and partonic
scales choice also leads to a significant improvement in the
description of RAA in the measured momentum range at RHIC
as compared to previous results [21,22].

IV. RESULTS FOR RHIC

The nuclear suppression factor for 200-AGeV central Au-
Au collisions at RHIC, calculated both in the energy-loss
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FIG. 4. (Color online) The nuclear suppression factor RAA at
RHIC across the full kinematic range in 10% central 200-AGeV
Au-Au collisions. Shown are PHENIX data [7], a calculation in the
energy-loss picture (ASW) with quark and gluon results shown
separately, and a calculation in the medium-modified parton shower
picture (YaJEM).

picture (represented by the ASW model) and the medium-
modified shower picture (represented by the MC code YaJEM),
is shown over the full kinematic range in Fig. 4 and compared
with PHENIX data [7]. For the ASW calculation, the partonic
RAA is also indicated separately for quarks and gluons.

Before discussing details of the plot, let us recapitulate
the main differences between the energy-loss picture as
exemplified by the ASW model and the medium-modified
shower picture as represented by YaJEM:

(i) ASW is derived for infinite parton energy; hence,
P (�E) is independent of the initial parton energy, and
the only energy dependence arises from the prescrip-
tion to assign contributions where �E > E into an
absorption term A. In contrast, YaJEM is a finite-energy
framework where the MMFF explicitly depends on the
initial parton energy. In particular, within ASW there is
an energy-independent transmission probability T̃ that
bounds RAA from below.

(ii) In the energy-loss picture, it is not specified what
happens to the lost energy. In contrast, within YaJEM
the energy lost from the leading shower partons is
recovered explicitly in a low-z enhancement of the
MMFF.

In Fig 4, these differences are apparent as follows: in the
lowest PT region from 6 GeV and above, there is small rise
of RAA with PT observed in ASW, which is not seen in
YaJEM. As apparent from the comparison of the ASW result
for pions to the results for quarks and gluons, the rise in this
region in the ASW model is driven by the transition from
a gluon-dominated to a quark-dominated regime; the ASW
hadronic result subsequently approaches the quark result for
larger momenta. This transition is also present in YaJEM;
however, it is masked by the onset of the low-PT enhancement,
which just starts to become significant below 6 GeV and
corresponds to a decreasing trend of RAA with increasing PT .

As a result, the two opposing effects roughly cancel, and the
YaJEM result appears flatter than the ASW result between 6
and 25 GeV.

For higher PT , there is a region up to 50 GeV in which both
the ASW and the YaJEM results decrease slightly. This can
be traced back to the facts that the pQCD spectrum is not a
power law and that local power law fits result in increasing n

for higher pT . The two curves run in parallel until ≈75 GeV;
then the predictions of the two models are strikingly different.

The ASW curve turns upward beyond PT = 75 GeV. A
comparison with Fig. 2 shows that this has nothing to do with
the final-state energy loss but rather reflects the Fermi motion
region in the nuclear PDFs. At the kinematic boundary, the
curve finally turns over to reach the transmission probability
T̃ , as all shifts in the spectrum at the kinematic boundary result
in substantial suppression and the only remaining contributions
are unmodified partons. In contrast, the YaJEM result shows
a strong suppression from 75 GeV to the kinematic limit.
This corresponds to the region z → 1 in the MMFF in which
suppression was always observed in Fig. 3, regardless of the
initial energy. This suppression is strong enough to mask
the enhancement from the nuclear PDF. In contrast to the
ASW model, YaJEM does not include an E-independent
transmission term; thus RAA becomes very small toward
the kinematic limit. In this, the finite-energy nature of the
suppression in YaJEM is apparent. Note that the YaJEM result
cannot be computed all the way to the kinematic limit because
of a lack of statistics in the MC results at z → 1.

It is also clear that there is no region throughout the whole
kinematic range at RHIC in either model for which RAA → 1
could be observed.

V. RESULTS FOR LHC

It is then natural to expect that RAA → 1 could be realized
by probing even higher momenta beyond the RHIC kinematic
limit, for example, by studying RAA at the LHC. However,
in going to collisions at larger

√
s, not only is the kinematic

limit is changed but also the production of bulk matter is
increased; that is, higher

√
s corresponds to a modification

of both hard probe and medium. However, there is reason
to expect that eventually one will find a region in which
PT � T ,�Emax,

√
�Q2, and RAA → 1 can be realized: the

kinematic limit
√

s/2 increases linearly with
√

s. However, the
medium density does not. There are different models that try
to extrapolate how the rapidity density of produced matter in-
creases with

√
s. The Eskola-Kajantie-Ruuskanen-Tuominen

(EKRT) [38] model is among the models with the strongest
predicted increase, and it has the scaling dN/dy ≈ √

s
0.574.

Thus, the rapidity density of bulk matter increases significantly
more slowly than the kinematic limit for increasing

√
s.

Although the medium lifetime may increase substantially
with

√
s as well, the more relevant scale is the transverse

size of the medium, as high-pT partons move with the speed
of light and will exit the medium once they reach its edge.
However, the transverse size of the medium is approximately
given by the overlap of the two nuclei and hence to zeroth
approximation independent of

√
s (beyond, there is the weak
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FIG. 5. (Color online) The nuclear suppression factor RAA at LHC
across the full kinematic range in 10% of central 5.5-ATeV Pb-Pb
collisions. Shown are results in the energy-loss picture (ASW), with
the quark and gluon results shown separately, and a calculation in the
medium-modified parton shower picture (YaJEM).

logarithmic growth of all total cross sections with
√

s). Thus,
for asymptotically high energies, the integration limits for a
line integral along the parton path through the medium will
not grow arbitrary large, and the integrand (i.e., the density
distribution) will be the main change. All these arguments
indicate that RAA → 1 can thus be realized for large

√
s

despite the increased production of bulk matter. The remaining
question is if the LHC energy

√
s = 5.5 ATeV is large

enough.
The result of the detailed calculation shown in Fig. 5

indicates that this is not the case. For this calculation, a
hydrodynamical evolution based on an extrapolation of RHIC
results using the EKRT saturation model [36] has been used
to account for the increased medium density and lifetime.
All other differences to the RHIC result are either plain
kinematics or can be traced back to the scale evolution of the
MMFF.

As far as the shape of RAA(PT ) is concerned, the LHC
predictions for both ASW and YaJEM agree; however,
quantitatively they differ substantially. At the heart of this
difference is that ASW is an infinite energy formalism in
which the larger

√
s of LHC as compared to RHIC is chiefly

reflected in the harder slope of the parton spectra but not
directly in P (�E). In contrast, within YaJEM, in addition
to the harder slope of the parton spectrum, there is an explicit
scale evolution of the medium effect in the MMFF (see Fig. 3).
Because both mechanisms tend to increase RAA, the combined
effect of scale evolution and parton spectrum slope leads, all
things considered, to less final-state suppression in the YaJEM
result.

The shape of RAA(PT ) can be understood by the mecha-
nisms also observed in the RHIC case. The initial steep rise
and subsequent flattening reflects the changing slope of the
parton spectra. Note that the transition from gluon-dominated
to quark-dominated hadron production is not an issue over
most of the LHC kinematical range. The final enhancement at
more than 2 TeV is again driven by the Fermi motion region in

the nuclear PDFs. Unlike in the RHIC case, at LHC kinematics
the suppression obtained from YaJEM for this region is not
strong enough to mask the enhancement. Finally, close to the
kinematic limit, a small RAA is obtained.

These results indicate that there is no reason to expect that
the limit RAA → 1 can be observed even with LHC kinematics.
However, the general trend for larger RAA observed in the
transition from RHIC to LHC indicates that the limit could be
reached for asymptotically high energies over a large kinematic
range but not close to the kinematic boundary.

VI. DISCUSSION

So far, the nuclear suppression factor RAA has been
observed experimentally in only a very limited kinematical
region. In this region, no strong PT dependence has been
observed. The main expectation of how RAA changes if
observed over a larger kinematical range is that the suppression
should eventually vanish and RAAshould approach unity.
The results presented here show that this expression is too
simplistic.

In particular, it is wrong to think that the shape of RAA(PT )
is the result of any single cause. Instead, many effects, among
them the slope change of the pQCD parton spectrum, the scale
evolution of the medium modification effect, the transition
from gluon-dominated to quark-dominated hadron production,
and also the initial-state nuclear effects, influence RAA(PT ) in
a characteristic way. Moreover, it is not sufficient to think of
going to higher PT to see the lessening of the suppression; it
matters how one approaches higher PT , in particular if one can
push a measurement further up in PT with higher statistics or
if one measures a different system with higher

√
s. Based on

the results presented here, it appears unlikely that the simple
limit RAA → 1 for sufficiently high PT can be reached even at
LHC kinematics.

These findings may largely be of little practical value
because of the impossibility of reaching out to a substantial
fraction of the kinematic limit experimentally. However,
theoretically they serve well to illustrate that even a hard
probe observable such as RAA is never simple, in the
sense that it reflects directly tomographic properties of the
medium, but rather that it is a convolution of many dif-
ferent effects that all need to be understood and discussed
carefully. In particular, RAA cannot be interpreted as an
observable reflecting properties of the medium causing a
final-state effect. The shape of the underlying parton spec-
trum or initial-state effects are equally important to under-
standing RAA.

ACKNOWLEDGMENTS

Discussions with Will Horowitz, Kari Eskola, and Hannah
Petersen are gratefully acknowledged. This work was sup-
ported by an Academy Research Fellowship from the Finnish
Academy (Project 130472) and from Academy Project
115262. The numerical computations were carried out with
generous support by Helen Caines on the bulldogk cluster at
Yale University.

014906-7



THORSTEN RENK PHYSICAL REVIEW C 81, 014906 (2010)

[1] M. Gyulassy and X. N. Wang, Nucl. Phys. B420, 583 (1994).
[2] R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigne, and

D. Schiff, Nucl. Phys. B484, 265 (1997).
[3] B. G. Zakharov, JETP Lett. 65, 615 (1997).
[4] U. A. Wiedemann, Nucl. Phys. B588, 303 (2000).
[5] M. Gyulassy, P. Levai, and I. Vitev, Nucl. Phys. B594, 371

(2001).
[6] X. N. Wang and X. F. Guo, Nucl. Phys. A696, 788 (2001).
[7] M. Shimomura (PHENIX Collaboration), Nucl. Phys. A774,

457 (2006).
[8] D. Magestro (STAR Collaboration), Nucl. Phys. A774, 573

(2006).
[9] J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 97,

162301 (2006).
[10] S. S. Adler et al. (PHENIX Collaboration), Phys. Rev. C 76,

034904 (2007).
[11] J. Putschke (STAR Collaboration), Eur. Phys. J. C 61, 629

(2009).
[12] T. Renk, J. Ruppert, C. Nonaka, and S. A. Bass, Phys. Rev. C

75, 031902(R) (2007).
[13] T. Renk, Phys. Rev. C 74, 024903 (2006).
[14] T. Renk and K. J. Eskola, Phys. Rev. C 75, 054910 (2007).
[15] A. Majumder, C. Nonaka, and S. A. Bass, Phys. Rev. C 76,

041902(R) (2007).
[16] G. Y. Qin, J. Ruppert, S. Turbide, C. Gale, C. Nonaka, and S. A.

Bass, Phys. Rev. C 76, 064907 (2007).
[17] H. Zhang, J. F. Owens, E. Wang, and X. N. Wang, Phys. Rev.

Lett. 98, 212301 (2007).
[18] T. Sjostrand, Comput. Phys. Commun. 82, 74 (1994).
[19] G. Corcella et al., J. High Energy Phys. 01 (2001) 010.
[20] K. Zapp, G. Ingelman, J. Rathsman, J. Stachel, and U. A.

Wiedemann, Eur. Phys. J. C 60, 617 (2009).
[21] T. Renk, Phys. Rev. C 78, 034908 (2008).

[22] T. Renk, Phys. Rev. C 79, 054906 (2009).
[23] N. Armesto, L. Cunqueiro, and C. A. Salgado, Eur. Phys. J. C

61, 775 (2009).
[24] N. Armesto, G. Corcella, L. Cunqueiro, and C. A. Salgado,

J. High Energy Phys. 11 (2009) 122.
[25] B. Schenke, C. Gale, and S. Jeon, Phys. Rev. C 80, 054913

(2009).
[26] J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. Nadolsky, and

W. K. Tung, J. High Energy Phys. 07 (2002) 012.
[27] D. Stump, J. Huston, J. Pumplin, W. K. Tung, H. L. Lai,

S. Kuhlmann, and J. F. Owens, J. High Energy Phys. 10 (2003)
046.

[28] M. Hirai, S. Kumano, and T. H. Nagai, Phys. Rev. C 70, 044905
(2004).

[29] K. J. Eskola, V. J. Kolhinen, and C. A. Salgado, Eur. Phys. J. C
9, 61 (1999).

[30] K. J. Eskola, H. Paukkunen, and C. A. Salgado, J. High Energy
Phys. 04 (2009) 065.

[31] T. Renk and K. J. Eskola, Phys. Rev. C 76, 027901 (2007).
[32] C. A. Salgado and U. A. Wiedemann, Phys. Rev. D 68, 014008

(2003).
[33] S. J. Brodsky and A. Sickles, Phys. Lett. B668, 111 (2008).
[34] R. Baier, A. H. Mueller, and D. Schiff, Phys. Lett. B649, 147

(2007).
[35] H. Liu, K. Rajagopal, and U. A. Wiedemann, J. High Energy

Phys. 03 (2007) 066.
[36] K. J. Eskola, H. Honkanen, H. Niemi, P. V. Ruuskanen, and

S. S. Rasanen, Phys. Rev. C 72, 044904 (2005).
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