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Quantum Monte Carlo method applied to non-Markovian barrier transmission
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In nuclear fusion and fission, fluctuation and dissipation arise because of the coupling of collective degrees
of freedom with internal excitations. Close to the barrier, quantum, statistical, and non-Markovian effects are
expected to be important. In this work, a new approach based on quantum Monte Carlo addressing this problem is
presented. The exact dynamics of a system coupled to an environment is replaced by a set of stochastic evolutions
of the system density. The quantum Monte Carlo method is applied to systems with quadratic potentials.
In all ranges of temperature and coupling, the stochastic method matches the exact evolution, showing that
non-Markovian effects can be simulated accurately. A comparison with other theories, such as Nakajima-Zwanzig
or time-convolutionless, shows that only the latter can be competitive if the expansion in terms of coupling constant
is made at least to fourth order. A systematic study of the inverted parabola case is made at different temperatures
and coupling constants. The asymptotic passing probability is estimated by different approaches including the
Markovian limit. Large differences with an exact result are seen in the latter case or when only second order in
the coupling strength is considered, as is generally assumed in nuclear transport models. In contrast, if fourth
order in the coupling or quantum Monte Carlo method is used, a perfect agreement is obtained.

DOI: 10.1103/PhysRevC.81.014609 PACS number(s): 24.60.−k, 25.70.Jj, 05.60.Gg

I. INTRODUCTION

To understand nuclear reactions, the dynamics of nuclei is
often replaced by few selected collective degrees of freedom
expected to contain important information on the dynamic.
This is, for instance, the case in fusion reactions where the
relative distance and/or mass asymmetry are retained [1,2].
Another example is provided by the fission process, which is
often treated as a trajectory in an energy landscape function on
different deformation parameters [3,4]. Although the evolution
is projected onto few variables, other internal degrees of
freedom may play an important role in understanding the onset
of dissipation or fluctuation phenomena [5]. To treat these
effects, the relevant degrees of freedom should be regarded as
an open quantum system (OQS) coupled to an environment
that simulates the internal dynamics.

To include dissipation in collective space, two important
simplifications are often made. First, most current models
treating fusion/fission neglect quantum effects and consider a
classical treatment [6–9]. Such an approximation is, however,
expected to be valid only if the internal excitation is high
and therefore is not expected to hold close to or below the
Coulomb barrier. As discussed in Ref. [10], a proper treatment
of quantum and decoherence effects might be crucial in this
region. Second, when the timescale associated with collective
dynamics cannot be dissociated from the timescale of the
environment, the “non-Markovian” (also called “memory”)
effect should also be properly treated [11,12]. Great effort
is now devoted to accounting for both quantal and non-
Markovian effects in nuclear reactions [13–18] and, more
generally, in OQSs [19].

Recently, the description of OQSs by stochastic methods
has received much attention [19–21]. In the Markovian limit,
several methods have been proposed to treat fluctuation and
dissipation starting from a quantum master equation of the
system density [19,20,22–28]. These methods have been

extended also to treat non-Markovian effects, such as in
quantum state diffusion (QSD) [29–32] or quantum Monte
Carlo (QMC) methods [33]. Several groups have shown that
these effects could eventually be simulated using a Feynman-
Vernon influence functional [21,34] or directly stochastic
master equations [35,36].

In this article, we apply the stochastic formulation proposed
in Ref. [36] to the case of quadratic potentials coupled to a heat
bath: the so-called Caldeira-Leggett (CL) model [37]. The case
of inverted potential is the first step toward realistic situations
like fusion or fission. The aim of this article is threefold: first, to
introduce the new QMC method and apply it to potentials with
barriers similar to those appearing in fusion/fission processes;
second, to show that the exact QMC method can be rather accu-
rate in treating the dissipative dynamics of a quantum system;
and last, to present a comparison of this theory with other
methods based on projection, namely, Nakajima-Zwangig
(NZ) and time-convolutionless (TCL) [38–41], which are
actually widely used to treat non-Markovian effects. Doing
so, we show that only TCL up to at least fourth order in
the coupling constant can provide a competitive theory. The
article is organized as follows. In Sec. II, the ingredients and
properties of the QMC approach are discussed, and the link
with a functional integral is precisely determined. In Sec. III,
the method is first illustrated for the case of a parabolic
potential. Then, the passing probabilities are estimated for
the inverted parabola case.

II. QMC METHOD

Our starting point is a system (S) interacting with a
surrounding environment (E). We assume here that the total
system (S + E) is described by the Hamiltonian

H = HS + HE + V. (1)
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HS (HE) acts on the system (environment) only while V

induces a coupling between the two subsystems. Starting from
an initial total density D(0), the dynamical evolution is given
by the Liouville-von Neumann equation on the density:

ih̄
dD(t)

dt
= [H,D(t)]. (2)

In many physical situations, the total number of degrees of
freedom to follow in time prevents from solving this equation
exactly. One of the leitmotifs of OQS theory is to find accurate
approximations for the system evolution without following
explicitly irrelevant degrees of freedom associated with the
environment, therefore reducing the complexity of the initial
problem. A conventional strategy to treat dissipation and
fluctuation in an OQS is to reduce the information to the
system density only, ρS(t) = TrE(D(t)), while accounting ap-
proximately for the environment effect. Here we use a different
strategy: The dynamics of the total system is first replaced by
a set of stochastic evolutions where the total density remains
separable along each path, that is, D = ρS(t) ⊗ ρE(t). Then,
the stochastic evolution of the environment is projected onto
the relevant degrees of freedom to obtain a closed equation
for the system density. It is shown that the new approach
provides a proper treatment of dissipation and fluctuation for
a system coupled to a surrounding heat bath.

A. QMC formulation of OQSs

Recently, new stochastic formulations [34,35,42,43] have
been developed to study the S + E problem that avoid eval-
uation of nonlocal memory kernels, although non-Markovian
effects are accounted for exactly (see also [35,36,42,44–47]).
One example of such a theory based on the QMC method is
presented here.

Hereafter, it is assumed that the coupling is separable: V =
Q ⊗ B, where Q and B act on the system and environment,
respectively. For simplicity, an initial separable density is
considered, that is, D(0) = ρS(0) ⊗ ρE(0). We want to replace
the evolution of the total density [Eq. (2)] by an ensemble of
stochastic evolutions of both the system and environment such
that {

dρS = dt
ih̄

[HS, ρS] + dξSQρS + dλSρSQ,

dρE = dt
ih̄

[HE, ρE] + dξEBρE + dλEρEB,
(3)

where dξS/E and dλS/E denote Markovian Gaussian stochastic
variables with zero means and where we use the Ito convention
of stochastic calculus [48]. In the following, we assume, in
addition, that

dξSdλE = dλSdξE = 0, (4)

where the overline denotes the stochastic average. Along each
path, the total density remains separable, that is, D(t) =
ρS(t) ⊗ ρE(t). Starting from such a density, at time t + dt ,
the average evolution deduced from Eq. (3) is given by

dD(t) = dt

ih̄
[hS + hE,D(t)]

+ dξSdξE(Q ⊗ B)D(t) + dλSdλED(t)(Q ⊗ B).

Therefore, under the conditions

dξSdξE = dt

ih̄
, dλSdλE = −dt

ih̄
, (5)

the average evolution over the separable densities that evolve
according to Eq. (3) identifies with the exact Liouville-von
Neumann equation of motion [Eq. (2)]. The possibility of
using simple Gaussian noises to incorporate the environment
effect might appear surprising. Indeed, noises used in standard
approaches for OQSs generally reflect properties of the
environment. It should, however, be kept in mind that such
environment-dependent noises appear once the environment
dynamics has been projected on the system density evolution.
Anticipating the discussion of Sec. II B, once such a projection
has been made, the Gaussian noises introduced here transform
into new random variables that explicitly depend on the
environment properties.

The preceding discussion for one time step can then be
iterated to show that the exact dynamics of a S + E problem
could be replaced by an average over an ensemble of stochastic
evolutions of separable densities [34–36]. To be really useful,
mainly, two difficulties should be overcome: (i) In general,
the environment corresponds to a large number of degrees
of freedom that could not be followed explicitly in time and
(ii) the numerical implementation of such a theory is possible
only if the statistical errors do not grow too fast during the
time evolution. These statistical errors are directly connected
to the number of trajectories necessary to accurately describe
the physical process. The first difficulty is solved in the next
section by projecting the effect of the environment on the
system, leading to a closed equation for the system density
only. Let us first concentrate on statistical errors. At any time,
a measure of the statistical fluctuation around the average
trajectory is given by

�stat = Tr{(D†(t) − D†(t))(D(t) − D(t))}
= Tr{D†D(t)} − Tr{D(t)

2}. (6)

Starting from Eq. (3), the evolution of �stat over a small time
step reads

d�stat = 2dt

h̄
{〈Q2〉S + 〈B2〉E}, (7)

where 〈Q2〉S ≡ TrS(Q2ρS(t)) and 〈B2〉E ≡ TrE(B2ρE(t)).
Statistical errors associated with Eq. (3) have been estimated
numerically and turn out to grow very fast in time [46]. As
a consequence, the stochastic process in the present form
is useless for simulating physical situations, and methods to
reduce statistical errors should be used.

To do so, it is worth noting that the stochastic equation of
motion is not unique. Indeed, any stochastic process of the
form⎧⎪⎪⎪⎨

⎪⎪⎪⎩
dρS = dt

ih̄
[HS + Q�E, ρS],

+ dξS(Q − �S)ρS + dλS, ρS(Q − �S)

dρE = dt
ih̄

[HE + B�S, ρE],

+ dξE(B − �E)ρE + dλEρE(B − �E),

(8)

where �S(t) and �E(t) are time-dependent parameters, leads
to the same average evolution. These stochastic equations also
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provide a reformulation of the initial S + E problem. Indeed,
we have

dρS ⊗ ρE + ρS ⊗ dρE = dt

ih̄
[HS + Q�E, ρS ⊗ ρE]

+ dt

ih̄
[HE + B�S, ρS ⊗ ρE],

dρS ⊗ dρE = dt

ih̄
[(Q − �S) ⊗ (B − �E), ρS ⊗ ρE].

Therefore terms appearing in the deterministic part are exactly
compensated by equivalent terms coming from the average
over the noise. Accordingly, the evolution of the average
density identifies with the exact equation of motion [Eq. (2)].

Up to now, the flexibility has been essentially exploited by
using [35,36]

�E(t) = 〈B(t)〉E,�S(t) = 〈Q(t)〉S. (9)

This choice is justified by the fact that it directly appears when
the Ehrenfest theorem is applied to separable total density
for system or environment observables. By modifying the
stochastic evolution, part of the coupling is already contained
in the deterministic evolution. Accordingly, we do expect that
the amount of coupling to be treated by the noise is significantly
reduced, as are the statistical errors. In the latter case, statistical
fluctuations are given by

d�stat = 2dt

h̄
{(〈Q2〉S − 〈Q〉2

S) + (〈B2〉S − 〈B〉2
S)} (10)

and are always smaller than the original ones [Eq. (7)]. As
shown numerically in Ref. [35], Eq. (9) significantly reduces
statistical fluctuations and opens new perspectives for the
application of the present framework.

The modified stochastic theory has other advantages. For
instance, the traces of densities are constant and remain equal
to their initial values, that is, dTr(ρS/E) = 0. This greatly
simplifies expectation values of system and/or environment
observables. Indeed, denoting by X a system operator, along
a trajectory, we have

〈X〉 = TrE(XD(t)) = Tr(ρE(t))TrS(XρS(t)). (11)

For stochastic processes with varying traces of densi-
ties, the observable evolution will contain terms coming
from dTr(ρS/E) and cross-terms coming from dTr(ρS/E)
dTr(XρS(t)). In the case considered here, we simply have

d〈X〉 = TrE(ρE(t))dTrS(XρS(t)). (12)

The QMC theory with centered noise overcomes the second
difficulty given earlier but does not help for the first difficulty
because the environment degrees of freedom should still be
followed in time. In the next section, we show how irrelevant
degrees of freedom can be projected out to obtain a closed
stochastic master equation for the system only.

B. Reduced system density evolution and link with
influence-functional theory

The stochastic formulation suffers a priori from the same
difficulty as the total dynamics: The environment is, in general,
rather complex and has a large number of degrees of freedom,

which can hardly be followed in time. In Eq. (8), the influence
of the environment on the system only enters through 〈B(t)〉E .
Therefore, instead of following the full environment density
evolution, one can concentrate on this observable only. As
shown in Ref. [43], the second equation in Eq. (8) can be
integrated in time to give

〈B(t)〉E = TrE(BI (t − t0)ρE(t0)) − 1

h̄

∫ t

0
D(t, s)〈Q(s)〉Sds

−
∫ t

0
D(t, s)duE(s) +

∫ t

0
D1(t, s)dvE(s), (13)

where BI denotes the operator B written in the interac-
tion picture, while D and D1 are the memory function
given by

D(t, s) ≡ i〈[B(t), B(t − s)]〉E,
(14)

D1(t, s) ≡ 〈{B(t), B(t − s)}〉E − 2〈B(t)〉E〈B(t − s)〉E.

A new set of stochastic variables dvS/E and duS/E have been
introduced through dξS/E = dvS/E − iduS/E and dλS/E =
dvS/E + iduS/E and verify

duSduE = dvSdvE = dt

2h̄
, duSdvE = dvSduE = 0. (15)

Reporting the evolution of 〈B(t)〉E into the evolution of ρS , a
closed stochastic equation of motion for the system density is
obtained:

dρS = dt

ih̄
[HS, ρS] + dt[Q,ρS]

∫ t

0
dsD(t − s)〈Q(s)〉S

+ dξ (t)[Q,ρS] + dη(t){Q − 〈Q〉S , ρS}, (16)

with

dξ (t) = dt

∫ t

0
D1(t − s)dvE(s) − dt

∫ t

0
D(t − s)duE(s)

− idvS(t), dη(t) = duS(t). (17)

By integrating out the evolution of the environment, a new
stochastic term is found that depends not only on the noise at
time t , but also on its full history through the time integrals.
Using second moments given by Eqs. (15) leads to

dη(t)dη(t ′) = 0,

dξ (t)dη(t ′) = −dt

2h̄
�(t − t ′)D(t − t ′),

dξ (t)dξ (t ′) = − idt

2h̄
D1(|t − t ′|),

where �(t − t ′) = 1 if t > t ′, and 0 elsewhere. Interestingly
enough, the stochastic equation given by Eq. (16) identifies
with the stochastic master equation obtained in Ref. [21] using
a completely different method based on the Feynman-Vernon
influence functional theory [49]. It should, however, be kept
in mind that different strategies to design the stochastic
equation (see the discussion in Sec. II A) would have given
a different stochastic master equation.

Despite the apparent complexity of Eq. (16), the QMC
approach has been recently applied with success to the
spin-boson model coupled to a heat bath of oscillators [43].
In particular, the introduction of Eq. (9) seems to cure the
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numerical difficulties that have been encountered in this
model [46]. By projecting the environment effect onto the
system density evolution, we no longer need to follow the
environment density, and we expect that a rather limited
number of trajectories will be sufficient to accurately simulate
the onset of dissipation and fluctuation in an OQS. Equation
(16) is the equation that is solved in practice. It should be
noted that the present stochastic process differs significantly
from conventional approaches. Indeed, according to the
noise properties, system densities are non-Hermitian along a
stochastic path. As a consequence, the expectation values of
observables are complex, losing their physical meaning before
averaging over the stochastic path. Nevertheless, we illustrate
in the following that the new theory can be a very powerful
tool.

III. APPLICATIONS

The CL model [37] corresponds to a single harmonic
oscillator coupled to an environment of harmonic oscillators
initially at thermal equilibrium, that is,

HS = Hc + P 2

2M
+ ε

1

2
Mω2

0Q
2, (18)

HE =
∑

n

(
p2

n

2mn

+ 1

2
mnω

2
nx

2
n

)
, (19)

and B ≡ −∑
n κnxn [19]. Here Hc = Q2 ∑

n

κ2
n

2mnω2
n

is the
counterterm that ensures that the physical frequency is ω0. In
the following, ε is either +1 (harmonic case) or −1 (inverted
parabola case). Such a model can be solved exactly.

As shown in Ref. [43], the two functions D and D1 defined
by Eqs. (15) and estimated along the stochastic trajectories
identify with the standard time correlation functions:

D(τ ) = 2h̄
∫ +∞

0
dωJ (ω) sin(ωτ ), (20)

D1(τ ) = 2h̄
∫ +∞

0
dωJ (ω) coth(h̄ω/2kBT ) cos(ωτ ), (21)

where J (ω) ≡ ∑
n(κ2

n/2mnωn)δ(ω − ωn) denotes the spectral
density characteristic of the environment [19,50]. In the
following, a Drude spectral density [43],

J (ω) = 2Mη

π
ω

�2

ω2 + �2
, (22)

is considered, where M is the nucleon mass.

A. QMC method for parabolic potentials

As a first illustration, the harmonic case (ε = +1) is
considered. This case has been already studied in Ref. [51]
using the stochastic method proposed in Ref. [21]. In the CL
model, starting from an initial Gaussian density, the system
density remains Gaussian along the stochastic path. Therefore
the stochastic evolution of the system density reduces to the
first and second moment evolution of 〈P 〉 and 〈Q〉, given

by [36]⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d〈Q〉 = 〈P 〉
M

dt + 2duSσQQ,

d〈P 〉 = −Mω2
0〈Q〉dt − dt〈B〉 + 2duSσPQ − h̄dvS,

dσQQ = 2 dt
M

σPQ,

dσPP = −2Mω2
0dtσPQ,

dσPQ = dt
M

σPP − Mω2
0σQQdt.

(23)

These equations illustrate the differences between the new
exact reformulation and standard methods to treat dissipation.
Generally, the noise enters into the evolution of 〈P 〉 only
and affects directly the second moment. Here we see that
second moments identify with the unperturbed ones, while
the random forces enter in both 〈Q〉 and 〈P 〉. In addition,
the noise is complex, which implies that observables make
excursions into the complex plane. This stems from the
specific noise used to design the exact formulation that leads
to non-Hermitian densities along paths. Part of the conceptual
difficulty in understanding the physical meaning of observable
evolutions can be overcome by noting that if ρS(t) belongs
to the set of trajectories, by symmetry, ρ

†
S(t) will also belong

to the set. By grouping these two trajectories to estimate
observables, real quantities are deduced.

The exact evolution is obtained by averaging over different
trajectories. For second moments, this leads to

�QQ ≡ 〈Q2〉 − 〈Q〉2 = σQQ + 〈Q〉2 − 〈Q〉2
, (24)

where 〈X〉 denotes the statistical average of quantum expec-
tation values 〈X〉. It is a particularity of the CL model that
total fluctuation is recovered simply by adding up quantum
and statistical fluctuations.

An example of the �QQ(t) evolution obtained using
Eq. (24) (circles) is compared to the exact result (solid
line) in Fig. 1. As an indication, the evolution of quantum
fluctuation σQQ, which is identical for all trajectories, is
also displayed (dotted line). Note that Eq. (16) is already
exact for the evolution of first moments 〈P 〉 and 〈Q〉, even
if the noise is omitted. However, it completely fails to
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FIG. 1. (Color online) Evolution of �QQ (circles) obtained by
averaging over 105 trajectories. This evolution is compared to the
exact result (solid line) and to the quantum fluctuation σQQ evolution
(dotted line). Parameters of the simulation are kBT = h̄ω0, h̄� =
5h̄ω0, η = 0, 5h̄ω0, and h̄ω0 = 14 MeV. The factor γ , defined as
γ 2 = h̄/(2Mω0), equals here γ = 1.216 fm−1.
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FIG. 2. (Color online) Evolution of �PP (left), �QQ (middle),
and �PQ (right) obtained with 105 trajectories, displayed with circles
as a function of time and systematically compared with the exact
evolution (solid line); kBT = 5h̄ω0, h̄ω0, and 0, 1h̄ω0 are shown from
top to bottom, respectively. In all cases, η = 0, 5h̄ω0, h̄� = 5h̄ω0,
and h̄ω0 = 14 MeV.

account for fluctuation. While the quantum evolution does not
present any damping, the average evolution closely follows the
exact solution. The harmonic oscillations in σQQ are due to
the fact that the width of the initial density differs from the
width of the coherent state associated with the considered
oscillator, that is, σQQ(0) �= h̄/(2Mω0). This is at variance
with the simulation of Ref. [51].

The accuracy of the QMC theory has been systematically
investigated for various temperatures and coupling strengths.
In all cases, averaged evolutions could almost not be distin-
guished from the exact evolution. This is illustrated in Fig. 2,
where �PP (Fig. 2, left), �QQ (Fig. 2, middle), and �PQ

(Fig. 2, right) are displayed as a function of time and are
compared to exact solutions for various temperatures. Figure 2
clearly shows that the stochastic method properly includes all
non-Markovian effects. In particular, at low temperature—
typically, kBT < h̄ω0—and with medium coupling constant
η, a large memory effect is expected.

B. Application of NZ and TCL

Jointly with the benchmark of QMC approaches, we
also tested a projection method based either on the
NZ [19,38,39,52] or TCL [19,40,41,52] formalism. Both
theories provide a priori exact reformulations of the initial
problem and lead to a closed master equation for the system
density. However, they differ completely in strategy and the
equation of motion used to incorporate memory effects. In the
NZ case, the evolution of the system density at time t depends
on its full history [i.e., on ρS(s) for all s � t]. In the TCL
case, the master equation is local in time, and non-Markovian
effects are treated in time-dependent transport coefficients. To
illustrate the differences between our new QMC method and
TCL, we give, as a reminder, the corresponding local master

equation for V = Q ⊗ B:

h̄
d

dt
ρS(t) = − i[HS, ρS(t)] − i

2
�(t)[Q, {Q,ρS(t)}]

− 2iλ(t)[Q, {P, ρS(t)}] − DPP(t)

h̄
[Q,[Q,ρS(t)]]

+ 2
DPQ(t)

h̄
[Q, [P, ρS(t)]], (25)

where �(t), λ(t), DPQ(t), and DPP (t) are time-dependent
transport coefficients that contain memory effects. Similarly
to the QMC case, the solution of the master equation [Eq. (25)]
is equivalent to following first and second moments given by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d〈Q〉
dt

= 〈P 〉
M

,
d〈P 〉
dt

= −Mω2
p(t) 〈Q〉 − 2λ(t)〈P 〉,

d�PP

dt
= − 2Mω2

p(t) �PQ − 4λ(t)�PP + 2DPP (t),
d�QQ

dt
= 2�PQ

M
,

d�PQ

dt
= −Mω2

p(t) �QQ − 2λ(t)�PQ + �PP

M
+ 2DPQ(t),

with ω2
p(t) = ω2

0 + �(t). In practice, the exact NZ or TCL
theory cannot be exactly solved, and an expansion in powers of
the coupling constant is made. In the following, NZ2 (TCL2)
will refer to the expansion up to second order, while NZ4
(TCL4) will refer to the expansion made up to fourth order.
By neglecting higher orders in the coupling in NZ2 (TCL2) or
NZ4 (TCL4), neither theory is exact anymore. In the following,
the efficiency of each method is systematically discussed.

In Fig. 3, the evolution of �PP for different cutoff frequen-
cies h̄� and coupling strengths η are compared to the exact
evolution (solid line). Explicit forms of the equation of motion
in the NZ and TCL cases can be found in Refs. [19,38,39,52]
and Refs. [19,40,41,52], respectively. Several important re-
marks could be drawn from this comparison. (i) In all cases,
when the coupling strength is considered up to second order,
NZ2 (open triangles) provides a better approximation than
TCL2 (open squares). This might indeed be expected since
NZ2 and TCL2 are equivalent to the Born and Redfield master
equation, respectively, and the former contains a priori less
approximations than the latter. (ii) While the TCL4 (filled
squares) leads to a clear improvement compared to the TCL2,
NZ4 (filled triangles) is, in general, worse than NZ2. This
is a known difficulty of the NZ approach and was one of
the motivations for the introduction of the TCL method (see
the discussion in Refs. [19,40,41]). This stems from the fact
that the order in perturbation in NZ cannot be identified. For
instance, NZ2 (NZ4) contains orders in coupling constant
greater than 2 (4). As a result, the NZ theory does not lead
to better results when the “apparent” order in the coupling
increases. The TCL method essentially cures this pathology,
and precise orders in the coupling can be selected. (iii) Rather
large deviations between the exact and TCL2 are observed
for different cutoff frequencies and coupling strengths. This
issue is important because several theories have been recently
developed along the line of TCL2 to include memory effects in
fusion and fission reactions [14,15,17]. Note that the accuracy
of TCL2 depends on different parameters used in the spectral
density, in particular, the parameter h̄�. Here we have used a
value of the cutoff frequency between 10 and 20 MeV, which
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FIG. 3. (Color online) Evolution of �PP for different approxi-
mations: NZ2 (open triangles), NZ4 (solid triangles), TCL2 (open
squares), and TCL4 (solid squares). The exact evolution is displayed
with a solid line. In all cases, h̄ω0 = 14 MeV and kBT = h̄ω0 are used.
(left) Different cutoff frequencies: (top) h̄� = 20h̄ω0 and (bottom)
h̄� = 5h̄ω0; in both cases, η = 0, 5h̄ω0. (right) h̄� = 10h̄ω0 and
different coupling strengths are used: (top) η = h̄ω0 and (bottom)
η = 0.1h̄ω0.

gives realistic dissipation and fluctuation for the fusion or
fission mechanism [14,15,18]. Our study clearly points out
that a proper treatment of memory requires us to include
higher order effects. (iv) Finally, in all cases, TCL4 could
not be distinguished from the exact result. As we will see,
the efficiency of TCL4 is similar for the inverted parabola.
Because the NZ method is not competitive, only the QMC and
TCL methods are considered in the following application.

C. QMC method applied to inverted oscillators

Several approaches have been recently developed to de-
scribe fusion and fission reactions [6,14,15,17,18,53]. In these
mechanisms, few collective degrees of freedom couple to a
sea of internal excitations while passing an inverted barrier. At
very low energy, both quantum and non-Markovian effects are
expected to play a significant role. Most of the theory currently
used starts from quantum master equations deduced from
TCL2. The QMC method offers a practical alternative that has
similarities with path integral theory. Path integrals are known
to provide a possible framework for including dissipation
while passing barriers (see, e.g., Ref. [54]). However, owing
to their complexity, only a few applications have been made
so far [2,55]. We compare here the different approaches for
inverted potential (ε = −1).

Initially, we consider a Gaussian density with quantum
width σQQ(0) = 0.16 fm2 and σPQ(0) = 0 MeV fm/c and
positioned on one side of the potential (here taken arbitrarily
at 〈Q(0)〉 = Q0 > 0, while the barrier height is located at 0
fm and is, by convention, taken as VB = 0 MeV). The initial
kinetic energy, denoted EK (0), is set by boosting the density
with an initial momentum 〈P (0)〉 = P0 < 0.

Contrary to the classical theory of Brownian motion, the
notion of trajectories is not so easy to tackle in the present

0

0 5

-2

-1

0

1

2

0 0.5

Re(<Q>)

-2

-1

0

1

2

0 0.5

Re(<Q>)

-2

-1

0

1

2

E
 (

M
eV

)

0 0.5

Re(<Q>)

-2

-1

0

1

2

FIG. 4. (Color online) Evolution of E(t) as a function of Q(t) for
two trajectories (dark and light lines) with �E = 0 MeV, kBT = 1
MeV, and η = 0.003 MeV. The arrow indicates the initial position of
the trajectories, while the potential is also shown with a bold line for
reference.

Monte Carlo framework. First, observables are complex. As
mentioned in Sec. III A, this difficulty can be overcome by
grouping trajectories by pairs, which is equivalent to replacing
the expectations of observables by their real parts. Second, it
should be kept in mind that the present theory is a purely
quantum theory in which densities associated with wave
packets are evolved. Therefore each trajectory should be
interpreted in the statistical sense of quantum mechanics and
contains many classical paths. Nevertheless, to visualize the
trajectory, we define the following energies:

E(t) = P (t)2

2m
− 1

2
mω2

0Q(t)2, (26)

where Q(t) and P (t) denote the real part of 〈Q(t)〉 and 〈P (t)〉
along the trajectory. An illustration of two trajectories, one
passing the barrier and one reflected, is shown in Fig. 4. As
illustrated in the following, it is convenient to group trajectories
according to the quantity �E, defined by

�E = E(0) − VB, (27)

which is nothing but the difference between total initial energy
and barrier height. Both trajectories shown in Fig. 4 correspond
to �E = 0 MeV.

It is tempting to group trajectories into those passing the
barrier and those reflected by the potential to get information
on the passing probability or passing time; however, it should
be kept in mind that the present theory is fully quantal. Because
each trajectory is associated with densities with quantum
widths, both trajectories presented in Fig. 4 contribute to the
transmission probability.

The accuracy of different methods is illustrated in Fig. 5,
where evolutions of 〈Q〉, 〈P 〉, �QQ, and �PP are shown
as a function of time. Values of parameters retained for
this figure are typical values generally taken in the nuclear
context [16]. In all cases, including TCL2, second moments
are well reproduced. However, only TCL4 and the stochastic
simulation provides a correct description of first moments.
Calculations are shown here for �E = 0 MeV. TCL2 provides
an increasingly better approximation when �E increases,
while the disagreement increases below the barrier. This will
be further illustrated later.
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FIG. 5. (Color online) Evolution of 〈Q〉, 〈P 〉, �QQ, and �PP

as a function of time obtained with quantum Monte Carlo (circles),
TCL2 (open squares), and TCL4 (solid squares). The exact evolution
is also displayed with a solid line. Parameters of the simulations are
VB = 4 MeV, h̄ω0 = 1 MeV, η = 0.03 MeV, h̄� = 15h̄ω, kBT = 1
MeV, �E = 0 MeV, and γ = 0.402 fm−1; 105 trajectories have been
used for the quantum Monte Carlo case.

Different coupling parameters, cutoff frequencies, and
temperatures have been investigated, showing that both TCL4
and QMC are very accurate theories, leading always to results
on top of the exact evolutions. It should be noted that the
number of trajectories used in the stochastic approach to get
small statistical errors is rather small (around 105), which is
quite encouraging for future applications.

D. Transmission probability

The accuracy of the method used to incorporate non-
Markovian effects directly affects the predicting power of
the theory. This aspect is illustrated here with the passing
probabilities. Such a probability is a crucial ingredient,
particularly for models dedicated to the formation of very
heavy elements [7,14,15,17,53,56,57], and should be precisely
estimated.

The asymptotic passing probability is usually defined as

P (+∞) = lim
t→+∞

1

2
erfc

(
− |q(t)|√

2σqq(t)

)
, (28)

where q(t) and σqq(t) denote the expectation value and
second moment of Q deduced from the considered theory,
respectively. In the QMC case, these quantities identify with
〈Q(t)〉 and �QQ(t), respectively. To quantify the precision of
each theory, we have systematically investigated the difference
between the estimated passing probability and the exact
probability using the parameter �P/P :

�P

P
≡ P (+∞) − Pex(+∞)

Pex(+∞)
, (29)

where P (+∞) and Pex(+∞) denote the results of the specific
calculation considered and the exact calculation, respectively.
Figure 6 presents the evolution of �P/P as a function of �E

obtained for different coupling strengths and temperatures for
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FIG. 6. (Color online) Evolution of �P/P as a function of
�E calculated using quantum Monte Carlo (circles), TCL2 (open
squares), TCL4 (solid squares), and Markovian approximation
(crosses) for different coupling constants: (left) η = 0.003 MeV and
(right) η = 0.03 MeV. In both cases, T = 5h̄ω, h̄ω, and 0, 1h̄ω are
shown from top to bottom, respectively.

the QMC (circles), TCL2 (open squares), and TCL4 (solid
squares) cases. In Fig. 6, the Markovian approximation is also
shown by crosses.

Once again, the TCL4 and QMC methods are in perfect
agreement with the exact solution for any input parameters.
Small differences sometimes observed between the stochastic
approach and the exact value come from the limited number
of trajectories used to obtain Fig. 6. Well above the barrier
(here at least two times), TCL2 converges toward the exact
case. However, at low �E, it turns out to be a rather poor
approximation. The difference seen in the TCL2 case can
be traced directly back to the discrepancy already observed
in Fig. 5 and further confirms the difficulty of treating non-
Markovian effects below the barrier. We can see that at the
lowest energy considered here, the error could be as large
as 20% in the weak coupling case and more than 100% in the
strong coupling limit. It is worth to mention, finally, that below
the barrier, the Markovian limit gives an even better result than
the TCL2 case.

IV. SUMMARY AND DISCUSSION

In this article, the QMC approach recently proposed in
Ref. [43] to incorporate exactly non-Markovian effects is
introduced and applied to the case of harmonic potentials
coupled to a heat bath.

For both noninverted and inverted potentials, the new
technique is rather effective in reproducing the exact evolution
with a rather limited number of trajectories. Other methods
have also been benchmarked. The TCL2 method, which is
now widely used in nuclear physics to estimate passing
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probabilities, turns out to deviate significantly from the
expected result, especially below the barrier and even in the
weak coupling regime. To properly treat the dynamics of
barrier transmission, higher orders in the coupling strength
should be incorporated. TCL4 gives very good agreement with
the exact evolution in all cases considered here. The conclusion
of our present work is that both the QMC approach and TCL4
could be considered as good candidates for including memory
effects for situations of interest in nuclear physics. Henceforth,
the TCL2 method, which is widely used nowadays, should
be replaced by TCL4. The possibility of using stochastic
formulations that are exact in average opens new perspectives
in describing a system coupled to a complex environment. The

application to harmonic potentials gives interesting insight into
such a theory. Application to more general potentials turns
out to be less straightforward, with the appearance of spikes,
which have already been observed in several formalisms in
which nonlinear stochastic equations appear [28]. To make
these theories more versatile, new methods, such as the one
proposed recently in Ref. [58], could be used.
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