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Atomic cascade of K− p and K−d atoms and Doppler broadening contribution on x-ray widths
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In this article we present a new calculation of the cascade of K−p and K−d atoms by the Monte Carlo
method. Energy dependence of the collisional cascade processes is taken into account. The x-ray yields due to the
radiative transition during the cascade are also calculated. We compare our results with the previous calculations
by others and by KEK and DEAR experimental data for K−p atoms. We have also investigated the kinetic energy
distribution of K−p atoms and the role of Coulomb transition on x-ray yields. Finally, the Doppler broadening
contribution on the measured width of x-ray spectra are determined. In order to study the strong interaction in
low energies, our results for x-ray yields from K−p and K−d atoms can be compared with the forthcoming
SIDDHARTA collaboration results.
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I. INTRODUCTION

When a heavy negative particle (µ−, π−,K−, . . .) enters a
hydrogen isotope target, an exotic hydrogen atom is formed.
The particle may replace an atomic electron, thus becomes
bounded in high-n atomic Bohr orbit around the nucleus. The
principal quantum number of this highly excited state is of
the order n � √

m/me, where m and me are the masses of
the particle and electron, respectively [1–3]. The exotic atoms
formation is followed by an atomic cascade consisting of a
multistep transition to lower atomic states. It is a complicated
interplay of competitive collisions and radiative deexcitation
processes [1–6].

Muonic atoms of hydrogen isotopes are the simplest among
the exotic atoms. Muons, in contrast to the other possible
particles, are not affected by the strong interaction. So they
may serve as the best probe for the investigation of these
deexcitation processes.

Studies the other exotic atoms such as K−p, K−d, and
π−p are very important in investigating QCD in low energies
and strong interaction [5,7–9]. In order to determine the
strong interaction component of the kaon-nucleus interaction
in low energies, the shift of the Kα energy from the pure
electromagnetic calculation energy are measured. The energy
levels of kaonic atoms have also a finite absorption width due
to the strong interaction between the kaon and nucleus. Thus
it is expected that the shift and width of the 1s state can be
determined by measuring the energy of the K-series x-ray.

For example, for kaonic hydrogen, the 1s shift and width
can be related to the real and imaginary parts of the K−p

scattering length aKp by the Deser-Trueman formula [9],

�E1s + i

2
�1s = 2α3µ2as

Kp = 412 eV fm−1as
Kp, (1)

where �E1s = (Ekα
)exp − (Ekα

)em, µ is the reduced mass of
the K−p system and α is the fine structure constant.

The basic cascade processes are collisional and radiative
deexcitation. The known collisional deexcitation processes are
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external Auger effect, Stark mixing, Coulomb transition, and
elastic scattering. A simple kinetics for cascade of muonic
hydrogen atoms was discussed by Menshikov [10], and then
the kinetics of cascade was developed by Markushin [2,3].

The Coulomb deexcitation [11], is an important acceler-
ating mechanism to produce hot kaonic atoms. The exotic
atoms are decelerated by elastic scattering. The evolution of
the kinetic energy distribution during the atomic cascade is
very important because the rates of collisional processes are
energy dependent. The kinetics of the cascade was calculated
in a Monte Carlo approach by Markushin [2]. The extended
standard cascade model (ESCM) that is presented in Refs. [3,4]
introduces some important improvements compared to the
earlier models. In this article we also take into account the
energy dependence of collisional processes but we do not use
any tuning parameters in the Coulomb transition and Stark
mixing cross sections. Then the role of the high kinetic energy
component of kaonic hydrogen from Coulomb transition on
x-ray yields and Doppler broadening contribution on the
measured width of x-ray yields are calculated.

The strong interaction shifts and widths affect the ab-
sorption during the cascade and therefore the x-ray yields
[5,12–14]. Since the calculated x-ray yields from our simu-
lation are confirmed by the existing experimental results for
muonic deuterium atoms [6,15], we have developed our Monte
Carlo simulation for kaonic hydrogen and deuterium. For this
purpose, the cross sections of the cascade processes for kaonic
atoms should be calculated in order to be used as an input
of our computer code. Our results for x-ray yields of kaonic
hydrogen are compared with other simulations [5,12–14] and
the two existing measurements in KEK [16] and LNF (DEAR
Collaborations) [17].

Until now the x-ray yields of K−d atoms have not
been measured, therefore we can use �1s and �2p as free
parameters in our calculations. The SIDDHARTA (Silicon
Drift Detectors for Hadronic Atoms Research by Timing
Application) collaboration at LNF in Italy have prepared an
experiment to detect precisely the x-ray from K−d atoms [18].
The experiment have been installed in the DA�NE machine at
LNF recently. Hence, in order to study the strong interaction at
low energies, our results for x-ray yields from K−d atoms can
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be compared with the forthcoming SIDDHARTA experimental
results. In this article the time dependence of population of
excited levels of the kaonic atoms during the cascade are also
investigated and the dependence of the deexcitation average
time (average cascade time) on the target density (φ) are
presented.

II. CASCADE PROCESSES OF KAONIC HYDROGEN
AND DEUTERIUM

When negative kaon, K−, is injected into a mixture
of hydrogen isotopes it slows down and immediately gets
captured into atomic orbits with the size of the electron
Bohr radius. So the cascade starts from a highly excited state
with a principal quantum number n ∼ √

mk/me ≈ 25. The
subsequent process is a complicated interplay of competitive
collisional and radiative deexcitation processes, which comes
to an end by the absorption of the kaon by nucleus or the weak
decay of kaon. The cascade processes and their rates (λ) can
be summarized as follows:

(1) Radiative transition:
The excited kaonic atoms can be deexcited by spontaneous

emission,

(K−x)ni li → (K−x)nf lf + γ, (2)

where x = p, d and nili and nf lf are initial and final principal
and orbital angular-momentum numbers, respectively. The
rate of radiative transition is given by quantum mechanical
calculations with electric dipole approximation:

λ
ni li→nf lf
rad = 4

3
αµ−2(Rnili

nf lf

)2 Max(li , lf )

2li + 1
(�Eif )3

(3)
ni < nf , lf = li ± 1,

where µ is the reduced mass of the kaonic atom, �Eif is the
transition energy and R

nili
nf lf

is the radial matrix elements of
hydrogen atom [1]. The radiative transition rate is decreased
by increasing ni .

The known collisional deexcitation processes are chem-
ical dissociation, external Auger effect, Stark mixing, and
Coulomb deexcitation. The rates for the collisional transitions
depend on target density and the kinetic energy of the exotic
atom.

(2) Chemical dissociation:
If �Eif > 4.7 eV (4.7 eV is the dissociation energy of H2

molecules) the excited kaonic atom can dissociate the target
molecules:

(K−x)ni li + X2 → (K−x)nf lf + X+ + X−, (4)

where X = H,D. Leon and Bethe [1] have estimated the cross
section for this process to be σchem = 1

2πa2
n, where an is nth

Bohr orbit of the exotic atom. Therefore the rate of chemical
dissociation is given by:

λ
ni li→nf lf
chem = N

2
viπa2

n , lf = li , (5)

where N is density of the target and v is the relative velocity of
K−x and the target atoms. This process is important for high
initial excitation level n.

(3) External Auger effect:
If excitation energy of K−x atom is enough to ionize the

target molecules, Auger deexcitation can take place. In this
process the excitation energy of the kaonic atom is absorbed
by an electron of the colliding molecule, then the molecule
becomes ionized and an Auger electron is released:

(K−x)ni li + X2 → (K−x)nf lf + e− + X+
2 . (6)

The rate of external Auger deexcitation has been calculated
by Lone and Bethe [1] in the Born approximation as follows:

λ
ni li→nf lf
Aug = 16

3
Nµ−2(Rnili

nf lf

)2 Max(li , lf )

2li + 1
(2�E + 1.39)−1/2,

(7)

where �E = �Eif − 15.2 eV (15.2 eV is the ionization en-
ergy of H2 molecules). As usual, the dipole radiation is
subject to selection rule �l = lf − li = 1. There, a critical
level nc exists, which is the greatest n for which the released
binding energy in the �n = 1 transition can ionize the target
molecule (�Eif > 15.2 eV). For n > nc only the transitions
with �n > 1 are energetically allowed. The Auger rates
increase with ni until it reaches nc, then on average the Auger
rates decrease with ni .

(4) Stark mixing:
The neutral K−x can penetrate deep into the target molecule

or atom where the electric field mixes the sublevels with the
same n. The electric field splits the energy levels and induces
oscillation among the resulting n2 sublevels.

(K−x)ni li + X → (K−x)nf lf + X, nf = ni, lf �= li (8)

The Stark transition affect the population of the nl

sublevels. It is especially important as it results in strong
absorption during the cascade by feeding the ns states. This
effect contributes to the overall deexcitation time.

Those radiative transitions that are primarily forbidden may
also become allowed by Stark mixing.

The first detailed calculations of Stark cross sections
appeared in an article by Leon and Bethe [1]. They ana-
lyzed this problem by means of the rotating field model.
A unified framework for calculating Stark mixing, elastic
scattering, and nuclear absorption during collisions have also
been presented as the close-coupling model by Jensen and
Markushin [3].

In this article for the rate of this process we have used the
extended method of Borie and Leon [19] formulated by Terada
and Hayano [12]. In this method one can consider all of the l

transitions in any m quantum number.
(5) Coulomb deexcitation:
The mechanism of this process is similar to stark mixing;

when the neutral K−x approaches a target atom, a much
stronger field is needed to mix states with different values of n,

(K−x)ni li + X → (K−x)nf lf + X. (9)

Contrary to Auger transition, where the transition energy of
K−x atom is completely carried away by an electron. In this
process the released binding energy is shared between the
colliding particles. It is an important acceleration mechanism
that produces high kinetic energy kaonic atoms. Bracci and
Fiorentini [11] calculated the Coulomb cross section for µ−p
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atoms in the semiclassical approximation. Here we use the
same procedure to calculate the Coulomb transition rate for
K−p and K−d atoms,

λ
ni li→nf lf
Coul. = Nvi

4
πa2

ni

(
1 + µ

Ein
2
i

)
,

(10)
nf = ni − 1, lf = li ,

where Ei is the initial kinetic energy of K−x atom. Transitions
with �n = 1 dominate and the cross sections were found to
grow with increasing n.

(6) Elastic scattering:

In this collisional process the nl states of kaonic atom is
not changed where nili = nf lf ,

(K−x)ni li + X → (K−x)ni li + X. (11)

This process leads to deceleration of kaonic atoms. Menshikov
and Ponomarev estimated the effective rate by the following
formula [20]:

λ
ni li→nf lf
scat = Nviπ

2 2MK−xMH

(2MK−x + MH )2

n2
i − 1

4µEi

. (12)

(7) Nuclear reaction:

In kaonic atoms, nuclear reactions occur due to the overlap
of the k− and x (p or d) wave functions. The strong interaction
leads to a broadening of the nip → nf s and nid → nf p x-ray
lines. One of the channels of this reaction is given by

(K−x)ni li → πo + 
. (13)

The n dependence of the rates of this process from ns and np

states are given by [1],

λns
abs = λ1s

n3
, λ

np

abs = 32

3

n2 − 1

n5
λ

2p

abs, (14)

where λabs = �abs/h̄ and �abs is the strong absorption width
that is determined by experimental values or, theoretically,
by solving a Klein-Gordon equation with relevant optical
potential [5,22]. Otherwise, they are treated as a parameter.

(8) Nuclear absorption:
Contrary to the nuclear reaction, this process may take place

in collision with target atoms. For example, one channel of this
process is as follows:

(K−x)ni li + X → πo + 
 + X. (15)

Jensen and Markushin included this process in cascade sim-
ulations in a close-coupling method by adding an imaginary
part to the Coulomb potential for levels n < 5 [3,21]. We also
used the cross sections calculated by Jensen and Markushin
for nuclear absorption in our simulation. The values of cross
sections are less than the nuclear reaction cross sections.

The rates of the cascade processes [Eqs. (2)–(15)] are in the
atomic unit given by me = h̄ = e = 1. It should be noted that
the kaon may decay in any time,

λdecay = 8.13 × 107 s−1. (16)

The collisional deexcitations dominate at the beginning of
the cascade that is related to the highly n states, whereas
deexcitations from lower n states to the ground state are

mostly radiative. During the atomic cascade a large fraction of
the atoms are not thermalized [2,23–25]. Some experimental
evidence for the high-velocity components exist for π−p

atoms [26,27], which are related to the Coulomb transitions.

III. MONTE CARLO SIMULATION OF THE KAONIC
ATOM CASCADE DYNAMICS

Kinetics of the cascade processes of exotic atoms can be
studied by solving the kinetics equations [5,6,12,28,29]. The
energy dependence of the cross sections is not usually taken
into account by this method; however, this can be considered
by a multigroup method [6,29]. But Monte Carlo simulation
is the most powerful method for taking into account all
the parameters such as time and energy dependence of the
collisional cascade processes in the investigation of the exotic
atom cascade dynamics. We can also calculate the x-ray yields
from radiative transition (especially Kα , Kβ , and Kγ ) by the
Monte Carlo simulation. For this purpose we have prepared
a computer code based on the Monte Carlo method. The
cross sections and rates of the cascade processes given by
Eqs. (2)–(16) should be calculated numerically to be used as
input for our computer code.

The program starts from a highly excited state of exotic
atoms (ni ∼25 for kaonic hydrogen and deuterium and li is
distributed statistically [3]). The life history is followed step by
step during the cascade through nl states. For this purpose the
transition probability from nili to nf lf due to any j th processes

(2)–(10) in the initial kinetic energy Ei , P
ni li→nf lf
j (Ei), should

be determined before any step of deexcitation. This probability
is given by:

P
ni li→nf lf
j (Ei) = λ

ni li→nf lf
j (Ei)

λ
ni li
tot (Ei)

, (17)

where, λ
ni li
tot (Ei) is the total transition rate from excited state

nili and it is given by the following expression:

λ
ni li
tot (Ei) =

ni−1∑
nf =1

λ
ni li→nf li
chem (Ei) +

ni−1∑
nf =1

nf −1∑
lf =0

λ
ni li→nf lf
rad δli±1,lf

+
ni−1∑
nf =1

nf −1∑
lf =0

λ
ni li→nf lf
Aug δli±1,lf +

ni−1∑
lf �=li

λ
ni li→ni lf
Stark (Ei)

+
ni−1∑
nf =1

λ
ni li→nf li
Coul. (Ei) + λ

ni li
nul.−re + λ

ni li
abs (Ei)

+ λ
ni li→ni li
scat. (Ei) + λdecay, (18)

where δij is Kronecer delta.
By the Monte Carlo method we can then determine the

type of the cascade processes and final state nf lf of kaonic
atom in any step. The program also determines the final kinetic
energy Ef of exotic atoms after any collisional processes such
as Coulomb deexcitation, elastic scattering, Stark mixing, and
Auger effect in each step. To calculate the kinetic energy of
exotic atoms after any collision with atoms or molecules of
the target we have used the method of Sachs and Teller [30]
that is also explained in Ref. [31]. The cascade time is also
calculated using the rates of the reactions.
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FIG. 1. (Color online) Average cascade time of kaonic atoms as a
function of target density. Solid line for K−p atoms and dashed line
for K−d atoms.

At any interval time we determine the state of the kaonic
atom until it reaches to the ground state or it is absorbed by
the nucleus or the kaon decay. This procedure is repeated for
106 kaonic atoms; then the number of any event in any time
interval is computed during the atomic cascade. We determine
the average values of the significant parameters such as the
average cascade time, the population of the kaonic atoms in
any state n as a function of time, normalized kinetic energy
distribution of K−p and K−d atoms, and x-ray yields per
stopped kaon in the target. Figure 1 shows the average cascade
time for K−p and K−d atoms as function of target density (φ).
It shows the average transition time is decreased by increasing
the density (φ). In fact, if the density of the target is increased,
the collisional cascade processes [given by Eqs. (3)–(12) and
(15)] increase, since the collisional processes are much faster
than the radiative transition. Therefore when φ is increased the
cascade time is decreased.

IV. X-RAY YIELD OF K− p ATOMS

The strong interaction shifts and widths affect the number
of absorption events during the cascade and therefore the
x-ray yields [5,13–15]. During the cascade of K−p atoms,
radiative transition may take place which is more important in
the lower states. In the Monte Carlo simulation of the atomic
cascade, the program follows the story of 106 kaon which
are stopped in the hydrogen target and records the number
of x-ray with its energy (for example K series). Then the
x-ray yields per stopped kaon at different target densities are
computed.

Initially we compare our results with the cascade calcula-
tions that were already presented by Terada [12] and Koike [5].
We have used the rates of the radiative transition, chemical
dissociation, Auger effect, and nuclear absorption from the
same expression that have been used by Terada and Koike. For
Stark mixing we have used the extended method of Borie and
Leon [19] formulated by Terada [12], because it gives more
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FIG. 2. (Color online) Comparison of the present density depen-
dence of Kα x-ray yield (solid line) with the Koike [5] (dashed line)
and Terada [12] (dotted line) works for K−p atoms.

completed rates of Stark mixing with no need to tune a the free
parameter kstk. Koike [5] used the Borie and Leon method for
Stark mixing rates in cascade calculations. It should be noted
that in the Koike and Terada cascade calculations the Coulomb
deexcitation, elastic scattering, and absorption [Eq. (8)] is not
taken into account and kinetic energy of the K−p atoms is
considered as a constant parameter (Ek = 1 eV). However, we
have considered all of the cascade processes [Eqs. (2)–(16)]
and the energy dependence of the collision rates [Eqs. (3)–(12)
and (15)]. Furthermore, our method of cascade calculation is
different from the one used in Refs. [5,12]. In fact, we have
used the Monte Carlo method, whereas Kioke and Terada have
used the kinetics equations and the matrix calculation to solve
them.

In Figs. 2–4 we have compared our results with the x-ray
yields for K−p atoms that were calculated by Koike [5]
and Terada [12] at different densities. They used the nearly
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FIG. 3. (Color online) Comparison of the present density depen-
dence of Kβ x-ray yield (solid line) with the Koike [5] (dashed line)
and Terada [12] (dotted line) works for K−p atoms.
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FIG. 4. (Color online) Comparison of the present density depen-
dence of Ktot x-ray yield (solid line) with the Koike [5] (dashed line)
and Terada [12] (dotted line) works for K−p atoms.

average of the theoretical values for |�E1s | = 300 eV and
�1s = 550 eV and they considered �2p as a free parameter.
In order to compare our method with Refs. [5,12], our present
work has also been carried out with the same �1s and �2p

(�2p = 0.5 meV). Figures 2–4 show that the x-ray yields
decrease with density. At higher densities the probability
of the collisions among Stark mixing is enhanced. Stark
mixing leads to an increase in the population of the s and
p states, where nuclear reaction and absorption take place
faster specially at ns states. Therefore we expect that this
decreasing behavior at high densities is established for all
the K-series x-rays. Figure 2 shows this decreasing variation
for Kα x-ray yield in the present work and as well as for two
other calculations (Koike and Terada); however, for Kβ x-ray
yields, only our calculation shows this expected variation with
respect to density (Fig. 3). In other words Kβ x-ray yields in
Koike and Terada calculations are approximately constant in
high densities. However, our calculation shows the decreasing
variation for Kβ yields in the high densities.

More recent and complete cascade calculations for K−p

atoms have been carried out by Jensen and Markushin
[3,14,32] and Faifman [13]. They also considered the energy
dependence of the cascade rates in their cascade calculations
by the ESCM. In Figs. 5 and 6 we have also compared
our x-ray results for K−p atoms with the Jensen [14] and
Faifman [13] results. The curves from the Jensen’s work is
related to �E1s = 323 eV and �1s = 407 eV that have been
extracted from the KEK measurement [16] and �2p = 0.3 meV
assuming. In order to compare with the results of Ref. [14],
we are using the same �1s and �2p parameters in Figs. 5 and 6.
However, more precise measurement by DEAR (DAφNE
Exotic Atom Research) collaboration [17] gives �E1s =
−193 ± 37(stat) ± 6(syst) eV and �1s = 249 ± 111(stat) ±
30(syst) eV. Figure 5 shows that our Kα x-ray yields have
approximately the same order of magnitude of the results
given in the two other works in low densities (φ < 5 × 10−3 of
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FIG. 5. (Color online) Comparison of the present density depen-
dence of Kα x-ray yield (solid line) with the Faifman [13] (dotted
line) and Jensen [14] (dashed-dotted line) works for K−p atoms. The
experimental results from KEK [16] and DEAR [17] have also been
shown.

LHD)1, but it is greater in higher densities. Jensen has chosen
�2p = 0.3 meV [32] to obtain a better fit with the KEK data
at φ = 0.013 of LHD. Figure 5 shows that the Jensen curve
is closer to the KEK [16] data in comparison to our curve.
But it could be a direct consequence of using not accurate
values for �1s and �2p for which we have used the Jensen’s
choice. In fact, in our calculation we should choose a more
precise measurement for 1s width (�1s = 249 meV) by DEAR
collaboration and a better fitting is needed to determine the

1LHD is liquid hydrogen density, which is equal to 4.25 × 1022 atoms
cm3 .
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FIG. 6. (Color online) Comparison of the present density depen-
dence of Kβ x-ray yield (solid line) with the Faifman [13] (dotted
line) and Jensen [14] (dashed-dotted line) works for K−p atoms. The
experimental result from DEAR [17] have also been shown.
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�2p value. However, all of the incident kaons in the target do
not succeed to form kaonic atoms. Some of them decay before
stopping and some of them escape from the target. Therefore,
to compare our results correctly with the experimental values,
we should calculate the x-ray yields per incoming kaon to
the target instead of per stopped kaon. It can be calculated
if the values of the x-ray yields per stopped kaon (Figs. 5
and 6) are multiplied by the values of kaonic atom formation
probability [33].

Figures 5 and 6 show that the values of Kα and the values of
Kβ from our results are greater than the existing experimental
data. However, the values from Refs. [13,14] are less than
the DEAR experimental data point that is a more precise
experiment on x-ray yields. Therefore if the calculated x-ray
yields per stopped kaon multiplies the kaonic atom formation
probability (which is less than 1 [33]), our calculated values
for Kα and Kβ per incoming kaons approach to the experi-
mental values. However, the two other calculated results from
Refs. [13,14] become smaller in value.

V. X-RAY YIELD OF K−d ATOMS

The x-ray yields of K−d atoms have not been measured yet.
However, the SIDDHARTA Collaboration is planned to detect
precisely the x-ray yields to measure the 1s strong interaction
shift and width in kaonic deuterium for the first time [18,34].
Therefore cascade calculation for prediction of the absolute
x-ray yields is important. Since the x-ray of K−d atoms
are rare, calculating the K−d atom x-ray yields as a func-
tion of target density is very important for choosing the
optimum density in the corresponding experiment setups
[33]. Furthermore, these calculations are useful in data
analysis.

For this purpose we have repeated the calculations of
the rates of the cascade processes of K−p atoms for K−d

atoms [Eqs. (2)–(15)]. Calculation of nuclear absorption rates
[Eq. (15)] for K−d atoms has not been carried out yet, therefore
we have used the values for K−p atoms [3,21] for these
rates. Then using the same procedure explained in the previous
section, the cascade of K−d atoms is simulated by the Monte
Carlo method and the x-ray yields per stopped kaon have been
computed as a function of density. The values of �E1s , �1s ,
and �2p for K−d atoms have not been measured yet. However,
there exist some theoretical estimated values [5,22]. In order
to make an easy comparison with Jensen’s work [14,32], we
have considered the same values as Jensen (�E1s = 0.5 keV,
�1s = 1 keV, and �2p = 1 meV). Figures 7 and 8 show that the
variation of K−d x-ray yields vs. density is almost similar to
the K−p x-ray yields. Like K−p atoms the yields for K−d

atoms are larger than Jensen and Koike works. This increases
the chance for a successful SIDDHARAT experiment. In the
diluted gas target the K−p stopping power is low and the
decay of kaon dominates, therefore by using Fig. 7 higher
densities near 0.1 of LHD are suggested to have the appropriate
x-ray.

Finally, we present a suggestion for the SIDDHARTA
experiment: x-ray measurement for K−p and K−d in different
densities are needed to determine �1s and �2p parameters. If
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FIG. 7. (Color online) Comparison of the present density depen-
dence of Kα x-ray yield (solid line) with the Koike [5] (dashed line)
and Jensen [14] (dashed-dotted line) works for K−d atoms.

we get the suggested results, we can take �1s and �2p as
free parameters; then they can be determined by fitting the
simulated x-ray curves (as a function of density) with the
experimental curves.

VI. INVESTIGATION OF THE KINETIC ENERGY
DISTRIBUTION OF K− p ATOMS

If the kinetic energy distribution of K−p atoms is calculated
in some nl states, the important role of Coulomb deexcitation
to produce the high-energy component of K−p atoms can be
seen. Figure 9 shows the average kinetic energy distribution
in 2p state. It shows the peaks at energies 473.7, 165.8, and
76.7 eV that are produced by the 3 → 2, 4 → 3, and 5 → 4,
Coulomb transition, respectively. Figure 9 shows that the ki-
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FIG. 8. (Color online) Comparison of the present density de-
pendence of the Ktot x-ray yield (solid line) with the Koike [5]
(dashed line) and Jensen [14] (dashed-dotted line) works for K−d

atoms.

014608-6



ATOMIC CASCADE OF K−p AND K−d ATOMS AND . . . PHYSICAL REVIEW C 81, 014608 (2010)

0 100 200 300 400 500 600
0.000

0.002

0.004

0.006

0.008

0.010

6 
   

 5

5 
   

 4

4 
   

 3

3 
   

  2

K-p φ=0.031 LHD
Γ

1s
=249 eV

Γ
2p

=0.105 meV

no
rm

al
iz

ed
 c

ou
nt

 p
er

 c
ha

nn
el

Kinetic energy (eV)

FIG. 9. (Color online) Kinetic energy distribution of K−p atoms
in 2p state.

netic energy distribution of K−p atoms in 2p state depends not
only on the 3 → 2 Coulomb transition but also on the higher
Coulomb transitions such as 4 → 3 and 5 → 4 and so on.
Because, the K−p atoms that go through the 4 → 3 Coulomb
transitions, may gain the 165.8 eV kinetic energy in 3d state, so
they can go through the 3d → 2p radiative transition without
losing kinetic energy. Thus, K−p atoms in 2p state appear with
the 165.8 eV kinetic energy by 4 → 3 Coulomb transitions.
Likewise, the 5 → 4 Coulomb transitions can contribute to
the kinetic energy distribution of K−p atoms in the 2p

state.

A. Sensitivity of the x-ray yields to the kinetic energy
distribution of K− p atoms

In this section we compare the calculated x-ray yields of
K−p atoms in two cases:

(i) Kinetic energy of K−p atoms is considered a constant
parameter (Ek = 1.0 eV).

(ii) Kinetic energy of K−p atoms is not considered constant
and we take into account its evolution by accelerating
(Coulomb deexcitation) and decelerating (elastic scat-
tering and stark mixing) processes.

Figure 10 shows that if we consider the kinetic energy
evolution during the cascade of K−p atoms, the calculated
x-ray yields are greater than the x-ray results for constant
kinetic energy. The difference between the x-ray results
in the two cases increases with density, because in the
higher densities the collisional processes that are energy
dependent are more probable. Figure 10 shows this fact is
important in the densities higher than ϕ = 0.001 of LHD.
For example at ϕ = 0.1 of LHD, the calculated Kα in the
second case (considering the kinetic energy evolution) is
approximately 4.3 times greater than its calculated value in
the first case (considering the constant kinetic energy) and
it is approximately 2.5 times greater than for Ktot. It shows
that the evolution of kinetic energy distribution during the
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FIG. 10. (Color online) Comparison of the x-ray yield per stopped
kaon in two cases, with considering constant kinetic energy and
without considering constant kinetic energy of K−p atoms.

cascade dynamics is very important to calculate the x-ray
yields.

B. Doppler broadening effect on the measured
width of x-ray yields

The kinetic motion of the K−p atoms at the instant radiative
transitions appears as a Doppler broadening profile in the
experimental x-ray spectra [35]. The Doppler broadening
due to the high kinetic energy component of K−p atoms is
combined with strong interaction width �had

1s [Eq. (1)], and
makes a convolution profile of the np → 1s experimental x-ray
lines. In order to extract the strong interaction width for 1s

state(�had
1s ), the Doppler broadening (δ�D

1s) must be subtracted
from the measured width �m

1s of the x-ray spectra.

�m
1s = �had

1s + δ�D
1s . (19)
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FIG. 11. (Color online) Kinetic energy distribution of K−p atoms
in 2p state at the instant of 2p → 1s radiative transition.
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TABLE I. Calculated average Doppler broad-
ening and its contribution on the observed width.

ϕ (LHD) δ�D
1s (eV) γ2p (%)

0.031 5.98 2.4
0.100 7.97 3.2
1.00 8.71 3.5

Doppler broadening of the 2p → 1s radiative transition is
determined as follows.

δ�D
1s = v

c
E2p→1s , (20)

where v is the velocity of K−p atoms at the moment of
the radiative transition and E2p→1s is the 2p → 1s radiative
transition energy. In order to determine the average Doppler
broadening (δ�D

1s) we have calculated the kinetic energy
distribution of K−p atoms in 2p state at the instant of 2p → 1s

radiative transition [F2p(E)]. Figure 11 shows the contribution
of the higher Coulomb transition to produce the high kinetic
energy component of K−p atoms in 2p state. The reason
was explained in Sec. VI. The average Doppler broadening
contribution on the measured 1s width is calculated as follows,

δ�D
1s =

∫ ∞
0 δ�D

1sF2p(E)dE∫ ∞
0 F2p(E)dE

. (21)

For this purpose we have calculated δ�D
1s numerically using

the simulated results from Fig. 11 for F2p(E). The calculated
results for δ�D

1s in three different densities have been presented
in Table I. γ2p is the contribution of the 2p → 1s Doppler

broadening on the observed �1s , where γ2p = δ�D
1s

�m
1s

and �m
1s is

considered from DEAR experiment [17] (�m
1s = 249 eV). It is

very important to extract the �had
1s from experimental results.

Thus it should be used to analyze the experimental results such
as SIDDHARTA experiment [34].

VII. CONCLUSION

In this article we first presented a Monte Carlo method to
calculate the cascade dynamics of K−p and K−d atoms, then
we compared our results with the other previous calculations.

A. K− p atoms

Our results for K-series x-ray yields are more comparable
with the two other calculations by Faifman [13] and Jensen
[14] because they have also taken into account the energy
dependence of the collisional processes rates. However, our
results for Kα and Kβ x-ray yields are greater in high densities.

Our results for x-ray yields per stopped kaon are also
greater than the two existing data points for x-ray yields (KEK
and DEAR). Thus if our results multiply the kaonic atom
formation probability that is less than 1 [33], our calculated
values for x-ray K series per incoming kaons approach to the
experimental values.

The x-ray yields decrease with density because at higher
densities the probabilities of collisions among Stark mixing are
enhanced. Stark mixing leads to an increase in the population
of the s and p states, where nuclear reaction and absorption
take place faster, especially at ns states. While at low densities
we expect a decreasing behavior for x-ray yields, as the
collisional processes are rare at low densities and so most of the
kaonic atoms cannot succeed to reach the lower-n states and
radiate x-rays. Actually, kaons decay before they can deexcite
to lower-n states by collisional processes. This fact is clearly
shown in Fig. 1 where the cascade time approaches to the kaon
lifetime at very low densities.

B. K−d atoms

The x-ray yields of K−d atoms have not been measured
yet. Our calculation shows that variation of K−d x-ray yields
vs. density, is approximately similar to the K−p x-ray yields,
except that in this case the x-ray yields are smaller than those
of K−p atoms due to the larger absorption width. Like K−p

atoms, our yields for K−d atoms are larger than Jensen’s and
Koike’s works and consequently are more promising for the
forthcoming SIDDHARATA experiment. In the diluted gas
target the K− stopping power is low and the decay of kaon
dominates; however, the x-ray yields decrease by increasing
density. Therefore using Fig. 7, higher densities near 0.1 LHD
is suggested to reach higher x-ray yields.

Because we do not have a reliable value for �2p, it was
taken as a free parameter to determine the order of magnitude
of the x-ray yields. We suggest that by experiments in several
densities, the values of �1s and �2p for K−d and K−p atoms be
determined by fitting the simulated x-ray curves (as a function
of density) with the experimental data.

Finally, we investigated the kinetic energy distribution of
K−p atoms. The role of the Coulomb transition on x-ray yields
and the Doppler broadening contribution on the measured
width of x-ray yields were determined. It was shown that
the evolution of kinetic energy distribution during the cascade
dynamics by Coulomb transitions is very important to calculate
the x-ray yields. We showed that the calculated x-ray yields
considering kinetic energy evolution during the cascade are
greater than the x-ray results with constant kinetic energy
assumption. The difference between the x-ray results in two
cases increases with density as depicted in Fig. 10.

The high kinetic energy component of K−p atoms appear as
Doppler broadening profile in the experimental x-ray lines. We
have calculated the average Doppler broadening contribution
on the observed width in Kα line by using the simulated kinetic
energy distribution of K−p atoms in 2p state at the instant of
2p → 1s radiative transition (Table I). It should be used to
extract the �had

1s from experimental results.
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