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Elastic and inelastic scattering to low-lying states of 58Ni and 90Zr using 240-MeV 6Li
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Elastic and inelastic scattering of 240-MeV 6Li particles from 58Ni and 90Zr were measured with the multipole-
dipole-multipole spectrometer from 4◦ � θc.m. � 43◦. The elastic scattering data were fitted with the double-
folding model using the density-dependent M3Y NN effective interaction and with a phenomenological Woods-
Saxon potential. B(E2) and B(E3) values obtained for low-lying 2+ and 3− states with the double-folding
calculations agreed with the adopted values.
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I. INTRODUCTION

The inelastic scattering of α particles has been a valuable
technique for studying isoscalar giant monopole resonances
(ISGMR) for many years [1–3]. A comparison of the results
of systematic studies of the ISGMR in stable nuclei with
calculations using the Gogny interaction resulted in the value
Knm = 231 ± 5 MeV [1]. Calculations with other interactions
and relativistic models have shown that the location of the giant
monopole resonance (GMR) is also sensitive to the symmetry
energy, and studies of stable Sn isotopes have led to some
constraints on Ksym [4,5]. To determine the contribution from
symmetry energy more accurately, a systematic study of the
ISGMR over a wide range of (N–Z)/A is necessary. This
range can be expanded by extending ISGMR measurements
to unstable nuclei using inverse reactions. Using beams of
240-MeV [1] and 400-MeV [6] α particles, the peak cross sec-
tions for the monopole resonance have been shown to approach
0.5 b/sr, sufficient to observe these resonances with low-
intensity rare isotope beams in inverse reactions. Unfortunately
He targets have serious limitations for such studies. At Riken
a liquid He target 120 mg/cm2 in thickness was employed
to study the ISGMR in 14O [7] using 60 MeV/nucleon 14O
beams. However, the energy straggling in such a target is large,
and for heavier mass projectiles, it would be unacceptably
large. The excitation of the GMR in the 56Ni nucleus [8]
has also been reported using deuterium in the active target
MAYA at the Grand Accelerateur National D’Ions Lourds
(GANIL) [9].

6Li is an isoscalar projectile (N = Z), and it has been shown
that the inelastic scattering of 6Li excites the ISGMR strongly
[10]. For 6Li scattering, the low-lying particle emission
threshold gives a large breakup probability into the dominant
channel 6Li → α + d. Therefore the contribution of multistep
processes should be low especially at higher excitation
energy.

To study the ISGMR in unstable nuclei with inelastic
scattering using a 6Li target, optical parameters are needed
for distorted-wave Born approximation (DWBA) calculations
of multipole excitations. Therefore we are using a 6Li beam on
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stable targets to investigate optical potentials and explore how
reliable B(E2) and B(E3) values for well-known low-lying
states are reproduced. Beene et al. [11] have shown that
B(EL) values in agreement with electromagnetic values can
be obtained from hadron inelastic scattering using the folding
model, but that B(EL) values obtained using Woods-Saxon
(WS) potentials can have systematic and large differences
from those obtained from electromagnetic reactions. Our
primary focus is to obtain appropriate folding model pa-
rameters that eventually can be used to obtain a systematic
parameter set that can be applied to studies with unstable
nuclei.

The double-folding model has been successfully [12–14]
used for heavy-ion scattering studies. However, for the scatter-
ing of weakly bound nuclei such as 6Li, 7Li, and 9Be [12], the
elastic data require a renormalization (Nr ) of the real folded
potential with a factor around 0.5–0.6. The reason for this
anomalous behavior of Nr is that the loosely bound nuclei
are very easy to break up, which is otherwise not accounted
for in the folding model. This effect can be represented [14]
by a complex dynamical polarization potential (DPP) that has
a strongly repulsive real part. Sakuragi [15] has thoroughly
investigated the breakup effect of the projectile using coupled
discretized continuum channels (CDCC) technique and con-
firmed that the elastic scattering data could be fitted well with
the Nr close to unity when coupling to the breakup channel
was included.

There have been several previous studies of elastic and
inelastic scattering of 6Li ions from various targets. Chen
et al. [10,16,17] studied elastic and inelastic scattering of
240-MeV 6Li from 24Mg, 28Si, and 116Sn and investigated
double-folding calculations using several NN interactions,
obtaining B(EL) values in agreement with electromagnetic
results for low-lying states and getting general agreement
with giant resonance distributions obtained with α particles.
Nadasen et al. [18,19] have studied 6Li elastic scattering
from 12C, 28Si, 40Ca, 58Ni, 90Zr, and 208Pb at 210 MeV but fit
the data only with WS potentials. In another study, Nadasen
et al. [20] scattered 318-MeV 6Li ions from 12C and 28Si and
fit this data with both phenomenological and double-folding
potentials. The same group studied inelastic scattering of
210-MeV 6Li ions from low-lying 2+ states in 12C, 28Si, and
58Ni [21] and obtained quadrupole moments in agreement with
those measured with electromagnetic interactions. A study of
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600-MeV 6Li scattering on 12C, 58Ni, 90Zr, and 208Pb targets
[22] that investigated the coupling effect between the elastic
and the breakup channels at intermediate energy was reported
in 2000.

In this work, 240-MeV 6Li elastic scattering on 58Ni and
90Zr was carried out and optical potentials obtained with the
double folding were used to fit the data. For comparison
with the other investigations of 6Li scattering described
above, we also carried out calculations with Woods-Saxon
potentials. The differential cross sections for the low-lying
2+ and 3− states were also extracted from the experiment
and DWBA calculations were carried out, which provides
another test of the potentials as well as information on
the validity of collective form factors normally used to
describe the excitation of these states. The best-fit values
for B(EL) with both the models were extracted. Differential
cross sections for the excitation of giant resonances in
these nuclei were also calculated using the double-folding
model.

II. EXPERIMENTAL TECHNIQUE

The experimental technique for the 6Li scattering mea-
surements was similar to that for α scattering that has
been described in Ref. [23] and is summarized briefly
below.

Beams of 240-MeV 6Li ions from the Texas A&M K500
superconducting cyclotron bombarded self-supporting target
foils (enriched to more than 95%, 4.0 mg/cm2 58Ni and
5.0 mg/cm2 90Zr) in the target chamber of the multipole-
dipole-multipole (MDM) spectrometer [24]. The beam was
delivered to the MDM spectrometer through a beam analysis
system [25] to remove halo and improve momentum resolution
and was stopped on a Faraday cup inside the scattering
chamber. The horizontal acceptance of the spectrometer was
4◦ and ray tracing was used to reconstruct the scattering angle.
The focal-plane detector consisted of four 60-cm-long resistive
wire proportional counters to measure position, an ionization
chamber to measure �E, and a scintillator to measure E and
to provide a fast timing signal for each event. The out-of-plane
scattering angle (φ) was not measured. The principles of
operation of the detector are similar to those of the detector
described in Ref. [26]. The details of angle and position
calibrations are described in Ref. [27]. A position resolution
of approximately 0.9 mm and a scattering angle resolution of
about 0.09◦ were obtained.

Data for elastic scattering and inelastic scattering exciting
the low-lying states were taken at spectrometer angles ranging
from 4◦ to 43◦ with a spectrometer acceptance of �θ = 4.0◦.
The vertical acceptance was ±1◦ for spectrometer angles from
4◦ to 9◦ and ±2◦ for spectrometer angles from 11◦ to 43◦. In
the data analysis, data taken at one spectrometer angle were
divided into ten angle bins, each angle bin corresponding to
�θ ≈ 0.4◦. The average angle for each bin was determined
by averaging over the height of the solid angle defining
slit and the width of the angle bin. For each angle bin,
the elastic and inelastic scattering peak positions, widths,
and cross sections were extracted by integration or by a

FIG. 1. Representative energy spectra for the scattering of
240-MeV 6Li ions from 58Ni at θlab = 7.22◦, 16.52◦, and 24.53◦,
showing the elastic and 2+ and 3− low-lying states.

Gaussian fitting routine. The target thicknesses were obtained
by measuring the energy loss of the 240-MeV α beam passing
through the targets. The absolute differential cross section for
each angle bin was obtained from the combination of yield,
charge integration, target thickness, solid angle, and dead time
correction. The cumulative uncertainties in target thickness,
solid angle, etc., result in a ±10% uncertainty in cross section.
Data from a monitor detector, fixed at θlab = 25◦, were used
as a check on the charge integration to verify the normal-
ization between the different data sets across the angular
range.

Figure 1 shows representative energy spectra obtained
with the 58Ni target at θlab = 7.22◦, 16.52◦, and 24.53◦.
As is clear from the spectra, the 2+ and 3− low-lying
states are well separated from the ground-state peak (elastic
peak). Experimental angular distributions of the cross section
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FIG. 2. Experimental angular distribution of the cross section
(relative to the Rutherford cross section) and fits for 6Li + 58Ni
elastic scattering using WS potential and DDF potential parame-
ters are shown. The error bars include statistical and systematic
errors.

(relative to the Rutherford cross section) for elastic scattering
data are shown in Figs. 2 and 3.

III. RESULTS AND ANALYSIS

A. Optical model and parametrization of the
elastic scattering data

The elastic scattering data were fit with optical model
calculations using the program ECIS [28] with a WS phe-
nomenological potential of the form

U (r) = −V0 {1/[1 + exp((r − RV )/a)]}
− iW0 {1/[1 + exp((r − RW )/a)]} + VC(r) (1)

RV = r0
(
A

1/3
T + A

1/3
P

)
, RW = ri0

(
A

1/3
T + A

1/3
P

)
, (2)

where AT is the mass number of the target and AP is the mass
number of projectile.

The quality of fit of elastic as well as inelastic scattering is
estimated by χ2, defined by

χ2 = 1

N

N∑
i=1

[
σ (θi)cal − σ (θi)exp

�σ (θi)

]2

, (3)

FIG. 3. Same as Fig. 2, but for the 90Zr target.

where N is the number of data points, σ (θi)cal is the ith
calculated cross section, σ (θi)exp is the experimental cross
section, and �σ (θi) is the corresponding absolute uncertainty.

The optical potential parameters that best describe the
elastic scattering of 6Li on 58Ni and 90Zr are listed in Table I.
The calculated angular distributions for the ratio between
calculated cross sections and Rutherford cross sections are
shown in Figs. 2 and 3. As can be seen, the measured angular
distributions are reasonably well described by the calculations.
Parameters obtained by Nadasen et al. [18,19] and Farid and
Hassanain [29] using 210-MeV 6Li are also shown in Table I
for comparison.

B. Double-folding model description of the
elastic scattering data

A microscopic understanding of light heavy-ion scattering
can be obtained if one relates the optical potential to a
fundamental nucleon-nucleon (NN ) interaction by folding this
interaction with the nuclear matter distributions of both the
target and the projectile nuclei [12].

In a simple picture, the nucleus-nucleus optical potential in
this double-folding (DF) model is obtained from

V DF(R) =
∫ ∫

ρ1(r1)ρ2(r2)vnn(s, ρ1, ρ2)d�r1d�r2, (4)

where ρ1(r1) and ρ2(r2) are the nuclear matter distributions
for projectile and target nuclei, respectively, and vnn(s) is

TABLE I. Optical parameters obtained from the analysis of 6Li scattering, using Woods-Saxon (WS) geometry, as described in the text.
The asterisk means that Rv(w) = r0(i0)A

1/3
T .

ELi (MeV) Target V (MeV) r0 (fm) a (fm) W (MeV) ri0 (fm) ai (fm) Jv (MeV fm3) Jw (MeV fm3) χ 2 σr (mb)

240 [Present] 58Ni 160.37 0.785 0.926 33.08 1.070 0.899 245 109 0.98 2187
210 [18,29] 174.50 1.136∗ 0.907 32.00 1.607∗ 0.806 254 108 6.20 2078

240 [Present] 90Zr 159.67 0.873 0.823 38.61 1.075 0.949 252 111 1.22 2709
210 [19,29] 170.00 1.182∗ 0.939 31.30 1.627∗ 0.810 257 106 8.30 2618
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TABLE II. Parameters for the Fermi model [Eq. (5)] of the
ground-state density distributions.

Nucleus ρ0 (fm−3) c (fm) a (fm) 〈r2〉 (fm) Reference

58Ni 0.176 4.08 0.515 3.695 [32]
90Zr 0.165 4.90 0.515 4.251 [29]

the effective NN interaction with s = | �R − �r1 + �r2|. The key
inputs in a folding calculation are the nuclear densities of the
interacting nuclei and the effective NN interaction.

There are several nucleon-nucleon effective interactions
that have been used in folding model calculations. In the
present work, the Paris version of M3Y NN interaction
was used to carry out density-dependent double-folding
calculations. Details of this interaction can be found in
Refs. [10,16,30].

Satchler and Khoa [31,32] found that better fits to the
measurements taken at angles beyond the Fraunhofer diffrac-
tion region were obtained by a hybrid model in which the
real interaction was obtained with folding and the imaginary
part was represented by a Woods-Saxon potential. So, in the
present work, only the real parts of the optical potentials
were obtained by folding. Density-dependent double-folding
(DDF) calculations were carried out with the folding code
DFPD4 [32].

The ground-state density of the projectile 6Li was
obtained from proton scattering with the cluster-orbital
shell-model approximation (COSMA) [33] and the Fermi
model,

ρT (r) = ρ0

[1 + exp((r − c)/a)]
fm−3, (5)

was used for 58Ni and 90Zr target nuclei densities. The density
parameters used in the folding model calculations are listed in
Table II.

The optical potential parameters obtained from the density-
dependent double-folding calculations (Paris M3Y interac-
tion) are listed in Table III and the calculated angular
distributions of the cross sections are plotted along with elastic
scattering data in Figs. 2 and 3. The renormalization factors
(Nr ) obtained are around 0.87 for both 58Ni and 90Zr target
nuclei. Similar values, 0.823 and 0.887, have been reported
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N
r
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S

r

FIG. 4. The target mass number dependence of real normalization
(Nr ) and radius scaling (Sr ) factors is shown by solid squares. The
24Mg and 28Si results are from Ref. [16], and the 116Sn result is from
Ref. [17]. Solid lines are linear fits of the data.

by X. Chen et al. [16] for 24Mg and 28Si, respectively, using
the same interaction. A somewhat lower value Nr = 0.65 was
required to fit 240-MeV 6Li scattering from 116Sn [17]. Farid
and Hassanain [29,34] have analyzed 210-MeV 6Li scattering
from 58Ni and 90Zr using double-folding calculations with
density-independent M3Y and JLM NN interactions. In
both cases the renormalization factors (Nr ) are lower (see
Table I) than our results with the density-dependent M3Y NN

interaction. The target mass number dependence of Nr values
obtained for 240-MeV 6Li scattering is illustrated in Fig. 4.
Except for 116Sn, Nr is almost the same (∼0.87) for the nuclei
(24Mg, 28Si, 58Ni, and 90Zr) studied.

A scaling factor, Sr , on the radius of the real optical potential
is necessary to fit the elastic scattering data for both 58Ni and

TABLE III. Optical model parameters obtained from fits of elastic scattering with the density-dependent double-folding (DDF) calculations
using the M3Y interaction. Nr is the renormalization factor for the real potential. Sr is the scaling factor for the radius of the real potential.
W , ri0, and ai are WS parameters for the imaginary potentials. Jv and Jw are the volume integral per nucleon pair for the real and imaginary
potentials, respectively. σr is the total cross section of the reaction. DIF means density-independent folded potential. The asterisk means that
Rv(w) = r0(i0)A

1/3
T .

Target ELi (MeV) NN int. Potential type Nr Sr W (MeV) ri0 (fm) ai (fm) Jv (MeV fm3) Jw (MeV fm3) χ 2 σr (mb)

58Ni 240 [Present] M3Y DDF 0.875 1.059 35.33 1.027 1.057 244.6 112.0 0.9 2397
210 [29] M3Y DIF 0.640 26.20 1.673∗ 0.767 237.0 97.0 6.1 2061
210 [34] JLM DIF 0.408 19.27 1.776∗ 0.820 195.0 28.1 2204

90Zr 240 [Present] M3Y DDF 0.878 1.066 33.34 1.090 1.006 239.5 101.5 1.1 2792
210 [29] M3Y DIF 0.700 31.30 1.596∗ 0.917 263.0 103.0 4.9 2744
210 [34] JLM DIF 0.448 25.43 1.673∗ 0.847 217.0 10.5 2695
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90Zr. A similar scaling factor was required to fit data for 6Li
scattering from 24Mg and 28Si target nuclei [16], which has
been attributed to a repulsive surface correction for dynamical
polarization potential (DPP) [16,35]. As is clear from Fig. 4,
the value of Sr is almost constant and independent of the target
mass number.

The volume integrals of the optical potentials per interacting
nucleon pair were determined by the relations

Jv = 1

AT AP

∫
v(r)dτ,

(6)

Jw = 1

AT AP

∫
w(r)dτ,

where v(r) and w(r) are the real and imaginary parts of the
optical potential and AT and AP are the mass numbers of
the target and the projectile. It has been suggested [13,14] that
the volume integral of the nuclear potential is better determined
by the data than the potential itself. According to Brandan
and Satchler [14], even in the cases of extreme sensitivity
of the scattering to the potential, a small readjustment of
the various parameters is possible, while keeping the volume
integral a constant. This fact might be exploited to better un-
derstand the optical potential parameters for light heavy-ions
like 6Li.

Volume integrals of the real and imaginary parts of
optical potentials are both energy and target mass dependent.
According to Gupta and Murthy [36], the value of the volume
integral of the real part of the optical potential will slowly
decrease as the incident energy and target mass increases.
Such energy and mass dependence was further explored by
Nadasen et al. [19] using 210-MeV 6Li scattering on 12C,
28Si, 40Ca, 58Ni, and 90Zr. They suggested that the volume
integrals, derived using a WS phenomenological form factor,
depend on A−1/3, in the form of (using the least-square fit to the
data [19])

JR/6A = J0(1 + CA−1/3),
(7)

JW/6A = J ′
0(1 + C ′A−1/3),

for real and imaginary parts of the optical potential, respec-
tively, with J0 ≈ 215 MeV fm3, J ′

0 ≈ 45 MeV fm3, C ≈ 0.88,
and C ′ ≈ 5.9. These are compared with those obtained in
the present experiment using both WS and double folding
approaches in Fig. 5. The values of volume integrals of the
real and imaginary parts of the optical potentials obtained
with the WS potential model are almost comparable for 210-
and 240-MeV 6Li data. The corresponding values obtained
with the double-folding model are also close except for
the integral of the real potential for 116Sn. The values of
volume integrals of the real parts of the optical potentials
obtained with WS form factors for 58Ni and 90Zr are in
reasonable agreement with those predicted using the energy
dependencies prescribed by Nadasen et al. [19] and Gupta and
Murthy [36].

C. Low-lying states and calculations for giant resonances

The angular distributions for the 2+ and 3− states of 58Ni
(at 1.454 and 4.475 MeV, respectively) and 90Zr (at 2.186
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FIG. 5. Plot of the real and imaginary volume integrals obtained
from 240-MeV data are compared with those obtained from 210-MeV
data by Nadasen et al. [19] using WS form factors. The 24Mg
and 28Si results are from Ref. [16], and the 116Sn results are from
Ref. [17]. The solid and broken lines are linear fits of the data from the
present work and from Nadasen et al., respectively. The solid squares
show Nadasen et al.’s results, while the circles show our results
using WS form factors. The asterisks show our results using double
folding.

and 2.747 MeV, respectively) are shown in Figs. 6 and 7.
As a further test of the optical model parameters obtained
from elastic scattering, these distributions were compared to
DWBA calculations using the deformed potential model as
well as the double-folding model. The double-folding model
was also used for calculations of the excitation of nuclear giant
resonances.

1. Deformed potential model

The transition potential (both real and imaginary) used to
describe inelastic scattering to excited states of the target
nucleus is directly obtained as the derivative of the WS
potential U (r) for l � 2:

GDP
l (r) = −δU

l

dU (r)

dr
, (8)

where δU
l is the potential deformation length. The values of

deformation parameters δl and α0 are related to sum-rule limits
as discussed in Ref. [10].
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FIG. 6. The angular distributions of the differential cross sections
calculated with deformed potential model and folding models for
inelastic scattering to the 1.454-MeV 2+ state of 58Ni and the
2.186-MeV 2+ state of 90Zr are plotted along with the data points.
The B(E2) values used for DP and DDF models calculations are
best-fit values shown in Table IV. The error bars represent statistical
and systematic errors.

2. Double-folding model

In the folding model approach, the transition potential can
be expressed as

GDF
l (r) =

∫
gl(r2)v̄l(r1, r2)r2

2 dr2, (9)

where gl(r2) is the transition density for a 2l-pole excitation
of the target and v̄l(r1, r2) is the 2l-pole component of an

FIG. 7. The differential cross sections calculated with deformed
potential model and folding models for inelastic scattering to the
4.475-MeV 3− state of 58Ni and 2.747-MeV 3− state of 90Zr are
plotted along with the data points versus average center-of-mass
angle. The B(E3) values used for DP and DDF models calculations
are listed in Table IV. The error bars represent statistical and
systematic errors.

effective nucleon-nucleon interaction, vnn(s), averaged over
the ground-state projectile density distribution ρ1(r). Detailed
information on the folding model approach including exchange
terms can be found in Refs. [13,32].

Following the discussion in Ref. [13], the transition density
for l � 2 can be expressed as

gl(r) = −δm
l

dρ(r)

dr
, l � 2, (10)

where ρ(r) is the ground-state density distribution of the ex-
cited nucleus and δm

l is the corresponding matter deformation
length that provides a measure of the strength of transition.

The transition density for a monopole resonance (l = 0)
can be obtained with a simple scaling on radius [13,37],

g0(r) = −αm
0

[
3ρ(r) + r

dρ(r)

dr

]
. (11)

The transition density for isoscalar dipole excitation (l = 1)
is given as [38]

g1(r) = − β1

c
√

3

[
3r2 d

dr
+ 10r − 5

3
〈r2〉 d

dr

+ ε

(
r

d2

dr2
+ 4

d

dr

)]
ρ(r), (12)

where c is the half density radius of the Fermi mass distribution.
The transition density given above (12) is only for one of the
magnetic substates and must be multiplied by (2l + 1)1/2 to
represent excitation of the ISGDR [39].

The real parts of the transition potentials were calculated
by folding the NN effective interaction over the densities
of the target and the projectile, while the imaginary parts
were constructed with the deformed potential model. The
transition potentials were calculated with DFPD4 [32] and
the cross sections were calculated with ECIS [28]. The
mass deformation parameters for the 2+ and 3− states were
obtained from electromagnetic B(EL) values by assuming
that the mass and Coulomb deformation lengths are the same.
The calculated angular distributions of the cross section for
the 2+ and 3− states in 58Ni and 90Zr are shown in Figs. 6
and 7, respectively, normalized to the data to produce the
lowest χ2.

B(EL) values obtained from the fits are listed in Table IV.
There are two errors given for each fitted B(EL) value.
The superscript represents statistical error, which comes from
the fit of inelastic scattering cross sections. The subscript
error represents the total error including both statistical
and systematic errors (and the error in the absolute cross
section).

The results are compared with B(EL) values obtained using
electron scattering [40,41] and also are compared with the
adopted B(E2) [42] and B(E3) [43] values in Table IV. The
B(E2) and B(E3) values for the 2+ and 3− states in 58Ni
and 90Zr obtained with the double-folding calculations agree
with the adopted values and with the values from electron
scattering. The B(EL) values obtained from the deformed
potential model for the 2+ states are in agreement with the
adopted values, but those obtained for the 3− states in this work
are much lower than the adopted values. This is consistent with
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TABLE IV. B(EL) values for 2+ and 3− states of 58Ni and 90Zr obtained with the deformed potential model and the double-folding model.
Adopted values of B(E2) and B(E3), as well as values extracted from electron scattering, are shown in the table. For B(EL) values obtained
from 6Li scattering, the superscript errors represent statistical errors, while the subscript errors represent total errors including statistical and
systematic errors. DP is deformed potential, DDF is density-dependent double folding, and EM is electromagnetic.

Work Model B(E2) (e2 b2) B(E3) (e2 b3)

J π = 2+, J π = 3−,58Ni
Ex = 1.454 MeV Ex = 4.475 MeV

Present DP 0.0728±0.0022
±0.0073 0.0131±0.0004

±0.0013

DDF 0.0662±0.002
±0.007 0.0160±0.0006

±0.0016

Electron scattering [40] EM 0.0588 ± 0.004 0.0191 ± 0.0008
Adopted value 0.0695 ± 0.002 [42] 0.0176 ± 0.0016 [43]

J π = 2+, J π = 3−,90Zr
Ex = 2.186 MeV Ex = 2.747 MeV

Present DP 0.055±0.002
±0.005 0.053±0.002

±0.005

DDF 0.059±0.002
±0.006 0.086±0.002

±0.009

Electron scattering [41] EM 0.067 ± 0.006 0.0874 ± 0.01
Adopted value 0.061 ± 0.004 [42] 0.098 ± 0.005 [43]

Beene et al.’s [11] conclusion that inelastic scattering analyzed
with deformed potential model calculations do not reproduce
electromagnetic transition probabilities. The inability of the
deformed potential model to reproduce the strength of giant
resonances, using 6Li scattering, has been reported in Ref. [10],
even though the deformed potential model gives fits to the
elastic data and low-lying states comparable to those from the
double-folding model.

Figures 8 and 9 show calculated differential cross sections
for the excitation of various giant resonances (l = 0 to 3)
in 58Ni and 90Zr, respectively, using the potential parameters
obtained from the double-folding model. The calculations
were done for resonances at Ex = 18 and 17 MeV, respec-
tively, in 58Ni and 90Zr using ECIS [28], assuming that these
resonances exhaust 100% of the respective EWSRs. The peak

FIG. 8. Angular distributions of the differential cross section for
240-MeV 6Li inelastic scattering from 58Ni for l = 0–3 for 100% of
the EWSR at Ex = 18 MeV.

cross sections for the monopole resonances at 0◦ in these nuclei
are found to be somewhat less than 116Sn [10], but are adequate
for studies with unstable beams. The ISGMR cross section
decreases rapidly beyond 1◦, whereas the other multipoles are
basically flat or slowly varying, so that ISGMR strength should
be separable from the other multipoles.

IV. SUMMARY

Elastic and inelastic scattering of 240-MeV 6Li parti-
cles from 58Ni and 90Zr were measured with the MDM
spectrometer. Optical parameters were obtained from the
fit of elastic scattering data using double folding with the
density-dependent M3Y NN interaction as well as the WS

FIG. 9. Angular distributions of the differential cross section for
240-MeV 6Li inelastic scattering from 90Zr for l = 0–3 for 100% of
the EWSR at Ex = 17 MeV.

014603-7



KRISHICHAYAN et al. PHYSICAL REVIEW C 81, 014603 (2010)

phenomenological potential. B(EL) values obtained with the
double-folding model agree well with adopted values. Volume
integrals of the real and imaginary parts of the optical potentials
were obtained and are in reasonable agreement with those
obtained at 210 MeV using Woods-Saxon potentials.
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J. W. Jänecke, and R. E. Warner, Phys. Rev. C 39, 536
(1989).

[20] A. Nadasen, T. Stevens, J. Farhat, J. Brusoe, P. Schwandt, J. S.
Winfield, G. Yoo, N. Anantaraman, F. D. Becchetti, J. Brown
et al., Phys. Rev. C 47, 674 (1993).

[21] A. Nadasen, M. McMaster, M. Fingal, J. Tavormina, J. S.
Winfield, R. M. Ronningen, P. Schwandt, F. D. Becchetti,
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[43] T. Kibédi and R. H. Spear, At. Data Nucl. Data Tables 80, 35
(2002).

014603-8


