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Self-consistent symmetries in the proton-neutron Hartree-Fock-Bogoliubov approach
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Symmetry properties of densities and mean fields appearing in the nuclear density functional theory with pairing
are studied. We consider energy functionals that depend only on local densities and their derivatives. The most
important self-consistent symmetries are discussed: spherical, axial, space-inversion, and mirror symmetries. In
each case, the consequences of breaking or conserving the time-reversal and/or proton-neutron symmetries are
discussed and summarized in a tabulated form, useful in practical applications. Particular attention is paid to
the case of broken proton-neutron symmetry, especially in the context of isoscalar pairing. We demonstrate that
isoscalar pairing fields have geometrical properties markedly different from those of the usual isovector pairing

fields and their theoretical treatment requires great care.
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I. INTRODUCTION

The nuclear density functional theory (DFT) [1-3] is a
theoretical tool of choice for describing complex, open-shell
nuclei, for which the dimension of the configuration space
becomes intractable for other methods of theoretical nuclear
structure, such as ab initio and configuration interaction (shell
model) techniques [4]. The main building blocks of the nuclear
DFT are the effective fields, often represented by local proton
and neutron densities and their derivatives. Compared to the
electronic DFT, the unique features of the nuclear variant are
(i) the presence of two kinds of fermions, protons and neutrons;
(ii) the essential role of nucleonic pairing; and (iii) the absence
of external potential and the need for symmetry restoration in
a self-bound system.

At the heart of the DFT lies the energy density functional
(EDF) H, which is built from the nucleonic intrinsic density
matrices. The requirement that the total energy be minimal
under a variation of the densities leads to the Hartree-Fock-
Bogoliubov (HFB; or Bogoliubov-de Gennes) equations. They
form a set of nonlinear integrodifferential equations that has
to be solved iteratively for self-consistent densities.

The quasiparticle vacuum associated with the DFT solution
is a highly correlated state. This is partly because the DFT
description is performed in a frame of reference attached
to the nucleus, the intrinsic frame, in which the nuclear
mean field may spontaneously break the symmetry of the
original Hamiltonian, or energy density. Although the resulting
deformed solutions do not obey symmetries present in the
laboratory system, they acquire lower binding through long-
range polarization effects. Additional correlations may be
gained by means of symmetry restoration. Such a strategy,
rooted in the nuclear Jahn-Teller effect [5,6], has proven to be
very effective in nuclear mean-field calculations [7,8].
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Because the symmetry breaking is essential for determining
the optimal mean field of the nucleus, the self-consistent
symmetries (SCSs) present in the model [9—-15] may often
determine the physics. A SCS is a unitary or antiunitary
transformation S, which commutes with the HFB Hamilto-
nian. Owing to self-consistency, S also commutes with DFT
densities. The associated DFT energy density H is referred to
as symmetry invariant [16]:

HS(r) = H(r). (1)

This definition of SCS, which is often found in the literature
[7],1s too limiting when it comes to the DFT. Indeed, invariance
of the energy density itself is not a prerequisite for invariance
of the EDF. Actually, the EDF is invariant with respect to S
also when the energy density is covariant with S, that is,

HE(r) = H(STrS). )

The energy density that meets Eq. (2) is referred to as symmetry
covariant; see discussion in Appendix of Ref. [16]. The
existence of an SCS has a profound impact on self-consistent
solutions. If the initial density matrix employed at the first
iteration of HFB equations contains a SCS, then that symmetry
will propagate through to the final DFT solution. Therefore,
the introduction of an SCS restricts the generality of the
self-consistent density matrix and may lead to an erroneous
estimate of the DFT energy and deformation of the system.

A considerable literature exists on nuclear collective modes
associated with spontaneously broken symmetries. Ground-
state deformations of nuclei, including those in the pairing
channel, have been reviewed in Refs. [17] and [18]. In
the presence of angular momentum, new deformations of
magnetic character may appear in the rotating nuclear mean
field. High-spin particle-hole (p-h) and particle-particle (p-p or
pairing) deformations, both isoscalar and isovector, have been
discussed in detail in Refs. [19] and [20], which also contain
a general discussion of spontaneous symmetry-breaking phe-
nomena in rotating nuclei (see also [21] for a recent update).
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Symmetry properties of Hartree-Fock (HF) densities were
studied in Ref. [22] in the context of a double point group
DD that contains three mutually perpendicular symmetry axes
of the second order: space inversion, and time reversal. The
associated symmetry-breaking schemes have been outlined in
Ref. [23].

In this paper, we extend the discussion in Refs. [22] and
[23] to the pairing channel and transition densities using the
coordinate-space HFB theory, which incorporates an arbitrary
mixing between protons and neutrons in the p-h and p-p
channels [24]. The constraints imposed on DFT densities
by the time-reversal and proton-neutron (p-n) symmetries
are studied for various spatial geometries (spherical, axial,
space-inversion, mirror, and D»y,). The details pertaining to the
p-n HFB theory in the local density approximation are given in
Ref. [24]. Throughout this work, we refer to this previous paper
as I and to, for example, Eq. (1) therein as (I-1). However, to
make the present paper self-contained, some of the definitions
given in I are also repeated here.

Our interest in a general HFB formalism that incorporates
an arbitrary mixing between proton and neutron quasiparticles
is motivated by numerous phenomena that are present in
medium-mass and heavy nuclei with N ~ Z. These include
p-n pairing correlations, o decay and o clustering, a local
increase in binding (Wigner energy), interplay between isospin
T =0 and isospin T = 1 states in N = Z nuclei at low and
high angular momenta, isospin mixing and mirror symmetry
breaking, and B decays and, in particular, superallowed
B decays, just to mention a few. All these cases involve
isospin in one way or another, and because we are often
interested in nuclear states with nonzero spin, proper treatment
of time-reversal symmetry is crucial. A considerable body of
literature exists on a mean-field treatment of N ~ Z nuclei.
For instance, for a concise overview of p-n pairing, we refer
the reader to Ref. [24].

In this study, we revisit assumptions behind some of the
previous work devoted to the subject of isoscalar pairing in
light of the general symmetry properties of pairing fields. In
particular, we point out that the vector field associated with the
isoscalar pairing density is covariant with respect to certain
SCSs, and this has profound consequences for the existence of
the 7 = 0 pairing.

The paper is organized as follows. Section II introduces
the local DFT densities and defines transformation rules for
density matrices. The symmetries of interest, both in the
position-spin space and in the isotopic space are discussed in
Sec III. Symmetry properties of densities are studied in Sec. IV
for (i) spherical symmetry (with and without space inversion);
(i1) axial symmetry (with and without space inversion);
and (iii) D,y symmetry. When going beyond the mean-field
approximation, for example, by using the generator coordinate
method or projection techniques, multireference transition
densities appear. The associated symmetry properties are
summarized in Sec. V. Previous self-consistent calculations
of p-n pairing are commented on in Sec. VI in the context of
our findings. We point out that some symmetry assumptions
guiding some earlier studies were too restrictive; hence, could
impact outcome of practical calculations of the isoscalar
pairing. Section VII summarizes the main results of our
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study. Finally, the Appendix is devoted to the generalized
Cayley-Hamilton theorem for irreducible spherical tensors and
tensor fields.

II. DENSITIES AND FIELDS

A. Density matrices and mean fields in the p-h and p-p channels

To fix the notation, we begin with a brief recapitulation of
definitions and basic properties of the one-body HFB density
matrices in p-h and p-p channels; see I for details. The p-h and
p-p density matrices are defined, respectively, as

prst, r's't) = (Wl ar | V), 3)
plrst, r's't’y = 4s't (Wlay g _paps |W), 4)

where gt and a,,, create and annihilate, respectively, nucle-
ons at point r, spin s = :t%, and isospin t = :I:%, while |W) is
the HFB independent-quasiparticle state.

The p-h and p-p density matrices together form the

projective generalized “breve” density matrix,

763(x, Xy = (P(x, x")

AT (x, x)

plx, x")
. , 5
1— ﬁTC(x,x/)) ©)

where we abbreviate the position-spin-isospin variables as
x={rst}and 1 :=8(x — x') := 8(r — r')8s58,.

In I, we found that, instead of using the usual antisymmetric
pairing tensor [7], it is more convenient to introduce the
preceding p-p (or anomalous) density matrix, 5 [Eq. (4)]. The
relation between the standard density matrix R(x, x') [7] and

7%()6, x') is given by a unitary transformation [24]:

wo(l 0 6
\0 678 )7 ©

The quantities expressed in representation (6) are indicated by
a “breve” symbol in the following.

Throughout this paper we apply the following naming
convention. Matrices are denoted by a “hat,” the quantities
expressed in representation (6) are marked with a “breve,’
and the matrices in a double HFB space are denoted by the
calligraphic capital letters. As in I, we label space vectors with
boldface symbols and their scalar products with a central dot,
for example, r - V; the components of vectors and tensors are
labeled with indices a, b, and c¢; and the names of axes are
x,y, and z, for example, r = (r, ry, r;). Here we note that,
similarly to I, the individual vector components are also in
boldface.

Vectors in isospace (isovectors) are labeled with arrows,
with their scalar products in the isospace denoted by a circle,
for example, v o w. The components of isovectors are labeled
with indices i and k, and the names of isoaxes are 1, 2,
and 3. Isoscalars are marked with the subscript “0,” and
we often combine formulas for isoscalars and isovectors by
letting the indices run through all four values, for example,
k=0,1,2,3.

The symbol 3 dx represents integration over spatial co-
ordinates and summation over spin and isospin indices, and
e denotes the matrix multiplication and integration/summation
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¥ dx. An asterisk stands for complex conjugation. The
spin and isospin Pauli matrices are, respectively, 6,y =
(63,6, 6% ) and T, = (£, 21, £5), and the correspond-
ing unity matrices are ft(g) =& and 6y, = dy.

Under TC, the product of time reversal 7 and charge
reversal C (a rotation by m in isospace around the second

axis), density matrices (3) and (4) become

1 gl

pTC(rst, r's't) = 16ss'tt' p*(r —s —t,r' —s' — 1), (7a)

STC(rst, r's't) = 16ss'tt' 5*(r —s —t,r' —s' —t'). (7b)

The symmetries of 5 and $ can be conveniently expressed in
terms of just the Hermitian conjugation and 7C:

T=p (8a)
+ 5TC . (Sb)

Vo D>
o
I >

Expressed in terms of spin-isospin components, the density
matrices can be written as

v

~ 1 1 - 5
,O(I"SI, rst ) = 1100(", r/)(sss/stt/ + z5ss/,0(", r/) O Ty
1 A 12 A ad
+ ZS()(I’, I'/) <0 g0 + Zs(r’ I’/) * 055 O Tyys

(9a)

9 < og N
,O(I‘Sl, I’/S/t/) = ipo(’ﬂ r,)éss/stl/ + %(Sss/p(r’ I’/) O Ty
+ 1§ N 13 N oA s
1 O(rsr)'ass’ tt’+Zs(rsr)'ass’OTtt’~

(9b)

To avoid confusion, the functions of two position vectors,
r and r’, appearing on the right-hand sides of Egs. (9), are
called the nonlocal density functions or, simply, densities,
unlike density matrices (3) and (4), appearing on the left-hand
sides.

Because the p-h density matrix and the Pauli matrices
are both Hermitian, according to (I-16) all p-h densities
are Hermitian as well; hence, their real parts are symmet-
ric, whereas the imaginary parts are antisymmetric with
respect to exchanging r and r’. Similarly, transformation
properties of Pauli matrices under time reversal and charge
conjugation (I-17) make the p-p densities either symmetric
(scalar-isovector and vector-isoscalar) or antisymmetric
(scalar-isoscalar and vector-isovector) with respect to ex-
changing r and r’; see Eq. (I-18). These properties are
fulfilled independently of any other symmetries conserved by
the system; they are consequences of definitions of density
matrices / and .

In the HFB theory with the zero-range Skyrme interaction
[25,26], or in the local density approximation (cf. Refs. [7] and
[27]), the energy functional depends only on local densities,
and on local densities built from derivatives up to a given order;
see Refs. [16] and [28] for systematic constructions. The local
densities are denoted by having only one spatial argument to
distinguish them from the nonlocal densities. Following the
standard definitions [29,30], in the present study we employ
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definitions of local p-h and p-p densities according to Ref. [1].
For the sake of completeness, we repeat them here.
A. Scalar densities

(1) Particle and pairing densities:

o(r) = p(r, )r=p, (10a)
pr) = pr, 1. (10b)
(i1) p-h and p-p kinetic densities:
©w(r) = [(V - V)pu(r, 1)l =, (11a)
#r) = (V- V)3, P )r=r (11b)
B. Vector densities
(1) p-h and p-p spin (pseudovector) densities:
sk(r) = si(r, 1=, (12a)
So(r) = So(r, r')r=p'. (12b)

(i1) p-h and p-p spin-kinetic (pseudovector) densities:

Ti(r) = [(V - V)si(r, r)]=r, (13a)
To(r) = [(V - V)So(r, )= (13b)
(iii) p-h and p-p current (vector) densities:
Jer) = 5V = Vo(r, P )=, (14)
Jor) = £[(V = V))po(r, ). (14b)

(iv) p-h and p-p tensor-kinetic (pseudovector) densities:
Fi(r)=5[(VOV'+V'®@V)-5;(r, )=, (15a)
Fo(r)=3[(VOV'+V'®V)-50(r,r)],—p. (15b)

C. Tensor densities:

(1) p-h and p-p spin-current (pseudotensor) densities:

Ji(r) = %[V = V)@ s¢(r, r)]r—p,  (160)
Jory = LIV = V) @ %, r)leyr,  (16b)

where k =0, 1, 2, 3, and ® stands for the tensor product of
vectors in the physical space, for example, (v ® w),, = v, W)y
and [(v® w) - 2], = v, (w - 2).

The kinetic, spin-kinetic, and tensor-kinetic densities are,
in fact, equal to contractions of the following second- and
third-order tensor densities:

Tkpe(r) = [V Vi pe(r, 1)), (17a)
Ee(r) = VLA, r)]ror . (17b)
Tivea(r) = [V Viska(r, r')lr=r, (17¢)
Tovea(r) = [V ViS0a(r, 1)]r—r, (17d)
namely,

w(r)= Y (), (18a)

b=x,y,z
)= ) T, (18b)

b=x,y,z
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Tea(r)= Y Tapa(r), (18¢)
b=x,y.z

Toar) =Y Tona(r), (18d)
b=x,y,z

Fu() = 3 T M)+ Bl (159

Foy(r) = % _Z [Topee(r) + Toche(r)].  (18D)

All pseudotensor densities can be decomposed into trace,
antisymmetric, and symmetric components (I-26)—(I-28), that

is, into pseudoscalar Ji(r) and J(r), vector Ji(r) and J(r),
and pseudotensor J, (r) and J(r) densities.

In the case of the Skyrme effective interaction, as well as
in the framework of the EDF approach, the energy functional
is a three-dimensional spatial integral,

H = /d3rH(r), (19)
of the local energy density H(r), which is supposed to be a
real, scalar, time-even, and isoscalar function of local densities
and their derivatives.

Minimization of the energy functional with respect to the
p-h and p-p density matrices under auxiliary conditions,

/ Erpo(r)= A (20)

and

/d3rp3(r) =N—Z=2T;, (1)

leads to the common eigenvalue problem for the generalized

density matrix R and the generalized mean-field Hamiltonian
matrix, defined as

A

o h—% h
=", ). (22)
ht —hTC+ %
with the Lagrange multiplier matrix given by
=10 + a0 + 300 — 20t =0l + 2389, (23)

where A, and A, are the neutron and proton Fermi levels,
respectively.

B. Transformation rules for the density matrices

A general Hermitian one-body operator in the Fock space
can be written as

G = / &'y f &r ) 2s't rstalang.  (24)
st

s't’
where

I !

g(r's't  rst) = (r's't’|g|rst) (25)

is the matrix element of the single-particle operator g acting
in the space of one-body wave functions. Let us now consider
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a unitary transformation U in the Fock space generated by G:
U =é“9, (26)

where « is a real parameter. By making use of the Baker-
Campbell-Hausdorff relations, the annihilation and creation
operators transform under U as

Uta,uU = / & st r's'aper,  (27a)
s't’
Utal,U = / &Yt @s't rshat,.  (27b)
s't’
where
PN _ (VAR 74
a(r's't’,rst) = (r's't'|e'*®|rst). (28)

From Eqgs. (27) it follows that the density matrices calcu-
lated for the transformed state U |W), that is, the transformed
density matrices, are

AU (x1, x7) =Iddex§ﬁ(x1 , X2)P(x2, X5)™ (x5, x7),
(29a)
BU(x1,x) = 4s;z;i: doxydx4s e (xy, x2)B(x2, X3)

X i(x], xp), (29b)
where X = {r, —s, —t}. Using a shorthand notation, Egs. (29)
can be written as

A A At
P =lhepeilm,

U=nefeiit, (30)
where 11 is defined as
arst, r's'ty = 16ss'tt'*(r —s —t,r' —s' — 1)

=Y (=it (=i )at st s

s 1" 1"

x (i62,0)(i£2) 31)

or
i = (—it?)(—ieMa*i6”)(it?), (32)
a=a"¢; (33)

compare Egs. (7). It immediately follows from Egs. (30) that

the generalized density matrix (5) transforms under U as
RV =U e Rell™, (34)

where the transformation matrix in the doubled-dimension

space is defined as
¢ a 0
U= -
0 u

Similar definitions can be introduced for any unitary
antilinear transformation operator, Uy, which can always be
presented in the form

(35)

Ux = UK, (36)

where U is a linear unitary operator and K is the operator
of complex conjugation in the position-spin-isospin repre-
sentation, in which the basis states |rst) are assumed to be
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real: K|rst) = |rst). Let us recall that the action of K on
a single-particle wave function ®(rst), expressed in a basis
@i(rst), @(rst) =Y ; c;¢i(rst), is defined as

K®(rst) = @*(rst) = Y _ cj ¢} (rst). (37)

The generalized density matrix (5) transformed under Uk
reads

7%U"=Z/O{Ko7%,olfl+, (38)
where the transformation matrix is
¢ il 0
Uy = ( o ) : (39)
0 Ug
with
hx = ik, (40a)
iix =ik, (40b)

and K is the matrix complex conjugation operator as-
sociated with the position-spin-isospin representation. One
must remember that the decomposition (36) and defini-
tion of K (37) do not depend on any specific choice of
the single-particle basis ¢;(rst). The advantage of such a
choice is that properties of antilinear symmetries (like the
time reversal) directly translate into the complex-conjugation
properties of densities. However, other choices of K can
be useful when the complex-conjugation properties of ma-
trix elements of operators in the given basis ¢;(rst) are
considered.

III. SYMMETRIES

Let us suppose that U (or Uk ) is a symmetry transformation
of the nuclear many-body Hamiltonian, H, that is,

UHU' = H. (41

The generalized density matrix (5) and mean-field Hamilto-
nian (22), obtained through the minimization procedure, may,
but need not, obey the symmetry U. It can be proved [7]
only that, if U is a symmetry of H, then the transformed
generalized mean-field Hamiltonian depends functionally on
the transformed generalized density matrix in the same way as
the original Hamiltonian on the original density:

HYU(R} = U o« H{R} o LIt = TRV}, (42)

This means that, to understand the symmetries of the mean
field, it suffices to analyze the symmetries of the underlying
density matrix. The nuclear Hamiltonian is supposed to
conserve numbers of protons and neutrons and to be invariant
under space rotations D(w, B, y), space inversion P, time
reversal T, and rotations in the isotopic space (isorotations)
D (a;, B, yr). (Throughout the present paper, to denote
rotations we use symbols D, d, and D instead of the usual
letter R. The symbol R is reserved for the generalized density
matrix.) In the space-spin-isospin basis, the single-particle
matrix elements of corresponding operators d, p, ¢, and d;
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are

ﬁaﬂy(r’s’t/, rst) = 8(r' — r)(gt,leiij(r)eiﬂjv(r)eiaj:(r)

— 8(", _ r)at,leiylz(r)eiﬂl}.(r)eial:(r)

X dys(6, aBy), (43a)
pr's't' rst) = 8(r' 4+ r)dy S, (43b)
ir's't' rst) = 8(r' —r)(—i6) )8k, (43c¢)
AP (st rst) = 8(r' — r)8ys@ (T, 2 Brye),  (43d)

respectively, where I(r) is the single-particle orbital-angular-
momentum operator, j(r) = I(r) + (h/2)o is the total single-
particle angular-momentum operator, and «, 8, and y (¢;, B,
and y;) are the Euler angles of rotations in space (isospace).
The spin rotation matrix dy, being the function of the Pauli
matrices and Euler angles, reads

ays(6, afy) = (€277 277207

o
AX
axﬁv)’

(44)

and the isospin rotation matrix &t/,(%, o Bryr) 1s defined
analogously.

Here, rotations by angle & about the three axes x, y, and z,
which are called signature operators, are of particular interest:

Per's't rst) = AT (st rst), (45a)
For's't' rst) = A0St rst), (45b)
P(r's't rst) = d¥OW st rst). (45¢)

Products of signature operators and the space-inversion op-
erator, which are called simplex operators, correspond to
reflections with respect to the y—z, z—x, and x—y planes,
respectively:

S =Fr e p, (46a)
S, =Fy e p, (46b)
5, =7, ep. (46¢)

Symmetry operations (43) form well-known group struc-
tures.

(i) Proper rotations (43a): They belong to the orthogonal
unimodular group in three dimensions SO(3).

(ii) Improper (or mirror) rotations, that is, rotations (43a)
combined with space inversion (43b): They belong to
the full orthogonal group O(3).

(iii) Improper rotations supplemented by time reversal
(43¢): They form the group called O (3).

(iv) Together with the group of isorotations (43d), the
symmetry operations (43) constitute the group O7 (3) x
SO@3).

(v) Space inversion (43b), together with three signatures
(45) and three simplexes (46), constitutes the point
group of symmetries of a parallelepiped, called Dy,
which is of interest for triaxial nuclei.
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Because the rotation of a spin—% system by 2w changes
the sign of the wave function, one must, in fact, double these
groups (see Refs. [22] and [23] for details). The doubling of
groups has no bearing on the results of the present study; hence,
in what follows we do not refer to it.

Although strong nuclear forces are charge independent,
that is, invariant under rotations in isospace, the nuclear
Hamiltonian is not, at least because of electromagnetic
forces. Within the HFB theory, the charge independence is
additionally broken by the auxiliary condition (21), which
is manifestly isovector. This constraint gives rise to HFB
product states that violate isospin even for charge-independent
Hamiltonians (see Ref. [31] for a recent discussion). If the
density matrix in the p-p channel does not vanish, particle
number is also violated in the HFB theory. The local energy
density H(r) is usually constructed under the assumption that
it should be (a) invariant with respect to the time reversal
T and isorotations D, and (b) covariant with respect to the
space symmetries D and P (see Appendix in Ref. [16]). All
these symmetries are often spontaneously broken in mean-field
theories. As discussed in Sec. I, the problem of symmetries that
are conserved by H and internally broken by H is, in fact, one
of the most important elements of a mean-field description of
many-body systems.

A. Symmetries in the isotopic space
Asdiscussed in I, the standard case of no explicit p-n mixing
can be described by the conserved p-n symmetry given by

& = —ia(t, 700) = £, (47)

That is, ¢3 does not change the third isospin component but
it reverses the sign of V) and £®. Because ¢3 = —t©®, we
obtain from Eq. (31) that

(48a)
(48b)

&3pey = p,
&p87 = —p.
Consequently, in the absence of explicit p-n mixing, the

p-h density matrices have only the Xk =0 and 3 isospin

cos cos Bcosy — sina siny
a(aBy) = | sinacosBcosy + cosasiny

—sin B cos y,

Similarly, the rotation matrix (54) also rotates the position
arguments, r and r’, of the density matrices. Finally, we have

pP(rst, r's't’) = Lpo(ar, ar')s, 8, + 18,0 p(ar, ar’) o T,y
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components, whereas the p-p densities have only the k = 1
and k£ = 2 isospin components.

In the presence of an additional p-n exchange symmetry
[charge-reversal transformation C of Eq. (I-5) multiplied by
i], defined as

& = —ia(z, 0m0) = £, (49)

only the k = 0 isospin component remains for the p-h density
matrix, whereas the p-p matrix has only a k = 1 nonvanishing
isospin component. In other words, in this case proton and
neutron densities are equal to each other.

B. Symmetries in the position-spin space
In this section, we discuss transformation properties of the

generalized density matrices R under D(aBy), P,and T. In
the case of rotations, the general transformation matrix (28)
is given by d of Eq. (43a). Because the single-particle orbital
angular-momentum operator is imaginary, I(r) = —I*(r), by
applying (31) to Egs. (43a) and (44), one obtains

AP (r's't rst) = A% (F's't, rst), (50)

that is, the density matrices in both channels, p and ,8,
transform under rotations in the same way, and the generalized
rotation matrix has a simple form:

o daefr 0
D(efy) = . (51)

0 dubr

When applying this symmetry operation to the generalized
density matrix (34), we need to use the Hermitian-conjugate
matrix, (d“ﬂ”)+,

(dAaﬂy)Jr(r/S,t/, rst) = S(r' _ r)(sl,teﬂ'ylz(r’)efiﬂlv(r/)efialz(r’)
x af (6, apy), (52)

and Pauli matrices that transform as vectors under the spin
matrix 4, that is,

a6, apy)s a* (@, apy) =Y aw(@py)s’,  (53)
b

fora, b = x, y, z, where the Cartesian rotation matrix reads

—cosacosBsiny —sinacosy cosasinf
—sinacosBsiny +cosacosy sinwsinf (54)
sin & sin 3, cos B
[
pP(rst, r's't') = Lpo(ar, ar')s, 8, + 18,0 p(ar, ar’) o T,y
+ 180(ar, ar’) - (a6 )y 8y
+ 15@ar,ar’) - (@6)sy 0 Turr. (55b)

+ 1so(ar, ar’) - (a6 ),y 8y

+5@r, ar') - @6)s o Tur, (552)

The inversion matrix (43b) is evidently real and symmetric,
and it does not depend on 6 and T. Thus, we also have
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p(r's't’, rst) = p(r's't’, rst), and
A - 5
Pl (rst, r's't) = Lpo(—r, =185y 8 + 18,9 B(—1, —1) 0 T 1y
1 A
+ ZS()(—I', _r/) . Um’(stt’

> n S
+18(=r, =1 - 6,y 0 T, (56a)

o o M s
IOP(rSt’ r/slt/) = ipo(—ﬁ _r/)(sss’gtt’ + iass’p(_r’ —I'/) O Ty

+ 41150(_r’ —I‘/) : &ss’(stf’

+4¥(=r, =) Gy 0T (56b)

The time reversal T is an antilinear operation and has the
form given in Eq. (36) with the corresponding single-particle
time-reversal matrix 7 given in Eq. (43c). It transforms all the

position-dependent densities and the isospin Pauli matrices T
to their complex conjugate partners and changes the signs of o.
Therefore, tc(r’s’t’, rst) = f(r's't’, rst), and the time-reversed
densities are

Pl (rst, F's't)y = Lpi(r, 188 + 185 (r 1) 0 T,

1 ~ 1= ~ %
— 280, 1) - 6y 8iy—387(r 1) -Gy 0T,

(57a)
BT (rst, r's't) = Lp5(r, 18,8 + 1805 (r, 1) 0 T,
— 155 1) 68— 15 (P Gy 0 T,
(57b)
From Egs. (55b), (56b), and (57b) we conclude that the
density matrix o in the p-p channel transforms under all

position-spin transformations considered here in the same way
as the p-h density matrix g. In other words, the generalized

transformation matrices of P and 7 have the same general

structures as that of rotations, D, given in Eq. (51).

IV. SYMMETRY PROPERTIES OF DENSITIES

We begin by recalling general symmetry properties of
nonlocal densities, which are given in I. Because the p-h
density matrix (8a) and the Pauli matrices are both Hermitian,
all the p-h densities are Hermitian as well:

(58a)
(58b)

pi(r.r’) = pi(r',r),
se(r,r’) = si(r',r),

for k =0,1,2,3; hence, their real parts are symmetric,
whereas the imaginary parts are antisymmetric, with respect
to exchanging r and r’.

Similarly, transformation properties of Pauli matrices un-
der TC (8b) imply that p-p densities are either symmet-
ric (scalar-isovector and vector-isoscalar) or antisymmetric
(scalar-isoscalar and vector-isovector) under the transposition
of their arguments, namely:

S, 1y = (=D s ),
$i(r.r’) = (=D*sp(r', 1),

(59a)
(59b)

for k=0,1,2,3, where #p) = 0 (isoscalars) and #;,3 =1
(isovectors). Equations (58) and (59) are fulfilled indepen-
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dently of any other symmetries conserved by the system; they
result from definitions of density matrices p and p.

A. Spherical symmetry

1. Spherical and space-inversion symmetries

Let us suppose that the generalized density matrix is invari-
ant under the transformations of Egs. (43a) and (43b) forming
the full orthogonal group O(3) = P ® SO(3) D SO(3), which
is the direct product of the group of proper rotations SO(3) and
the two-element group P of the space inversion. This means
that RP? = RY = RP? =R, and these symmetries impose
the following conditions on nonlocal densities:

p(r,r') = p(sar, gar’), (60a)
ok(r.r') = pi(car, car’), (60b)
si(r,r’) = a'si(car, car’), (60c)
$i(r,r) = a’§(car, car’), (60d)

fork =0, 1, 2, 3, and for arbitrary Euler angles «, 8, y, which
are arguments of the rotation matrix a (44). The factor ¢ is
equal to +1 for rotations and —1 for improper rotations.

The full O(3) symmetry imposes quite strong conditions
(60) on the nonlocal densities. Equations (60a) and (60b) tell
us that, owing to the generalized Cayley-Hamilton (GCH)
theorem (see the Appendix), scalar densities, pr and g,
depend on r and r’ through rotational invariants r - r = r2,
r-r' =r? and r - r/, that s,

(61a)
(61b)

or(r, 1) = pr(r*,r -1 ),
pr(r, 'y = B v ),
fork=0,1,2,3.

Similarly, from Egs. (60c) and (60d), we see that vector
densities, s; and §y, are pseudovectors. At the same time, they
are functions of two vectors, r and r’. The only pseudovector
that can be constructed from two vectors is their vector product

r x r’: therefore, all pseudovector densities, s; and §, for
k=0,1,2,3, have the form

(62a)
(62b)

ser 1) =i(r x s> r -1, %),

Se(ror) = (r x P3G r v r?).

For the sake of convenience, in definition (62a) we have
introduced the imaginary unit ;.

Owing to the general symmetry properties (58) and (59),
scalar functions that define the nonlocal densities must obey
the following conditions:

oA r P = pr (v ), (63a)

P r' ) = (1) g o ), (63b)
and

s v P =sie? e ), (64a)

5% ) = (D50 e F,r?). (64D)

This means that nonlocal p-h densities (63a) and (64a)
are Hermitian, whereas nonlocal isoscalar and isovector p-p
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densities (63b) and (64b) are antisymmetric and symmetric
functions of r and r/, respectively.

The preceding symmetry properties of densities im-
ply strong conditions on local densities. For instance,
Egs. (61)—(64) imply that

pe(r) = pe(r,r) = pi(r) = p; (1), (65a)
pr) = p(r.r) = p(r), (65b)
and
sp(ry=si(r,r)=0, (66a)
So(r) = So(r,r) =0, (66b)

that is, the scalar local p-h densities p;, and isovector scalar
local p-p densities ,g , depend on the radial variable r only, pi
are real, and all vector local p-h densities s, and the isoscalar
vector local p-p density §( vanish. At this point, we remind the
reader that conditions (59) imply that local p-p densities g
and § always vanish, irrespective of whether or not any other
symmetries are imposed; see Table IV in L.

All local derivative densities can be derived from Egs. (61)
and (62) by using expressions for gradients of scalar functions,
for example,

ap ap
\v/ 27 . /’ ” =2 /’ 67
pre,r-r',r) 8(r2)r + 3 - r,)r (67a)
ap ap
V/ 2’ . /7 2 — 2 /’ 67b
p(re,r-r,r-) 8(r~r’)r + a(r/z)r (67b)

which are linear combinations of vectors r and r’ with
scalar coefficients (again illustrating the GCH theorem). In
this way, all local derivative densities can be expressed
through derivatives of the scalar functions o, Ok, Sk, and
S¢. Alternatively, one can employ the GCH theorem to
build local scalar, pseudoscalar, vector, pseudovector, and
symmetric-traceless-pseudotensor densities from the single
position vector r, and we follow this path here.

Pseudoscalar, pseudovector, and pseudotensor densities
cannot be built from the position vector r. Therefore, they
must all vanish:

Ti(r) =0, (682)
To(r) =0, (68b)
F,(r) =0, (68¢)
Foir)=0, (68d)
Ju(r) =0, (68e)

Jr =o, (681)

Jear™ =0, (682)

J =0, (68h)

fork=0,1,2,3.
The local scalar kinetic densities must have properties
analogous to those of scalar densities in Egs. (65), that is,

(69a)
(69b)

w(r) = u(r,r) = u@r) = 7/ (r),

ir)=i(r,r) = t(r),
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and all local vector densities must be proportional to r,
that is,

Jir) = jir(e, = ji, (e, (70a)
Jor) = jo, (e, (70b)
Ji(r) = Jir(r)e, = Ji,.(r)e,, (70c)
Jo) = J.te,. (70d)

where e, = r/r is the unit vector in radial direction. In
addition, the radial components j,. and Jy, are real.

Conditions on local densities, presented in this section, can
be further restricted by imposing the time-reversal and/or p-n
symmetries; see Table IV of I. The conditions on local time-
even and proton-neutron-symmetric p-h and p-p densities are
exactly the same as in Ref. [32], whereupon properties of the
p-p densities exactly mirror those of the p-h densities. This
mirroring does not hold if time-reversal orp-n symmetries are
broken.

For a broken time-reversal symmetry and conserved proton-
neutron symmetry, two modiﬁcationqs occur: (i) the isovec-

tor p-p densities B(r), %(r), and f,(r) become complex,
whereas the p-h densities px(r), 7(r), and Jy,(r) still
remain real [32], and (ii) the current p-h density j.(r)
does not vanish. It is interesting to see that in this case
the only nonzero time-odd density is the current density,
that is, spin polarizations are not allowed and only the flow
of particles in the radial direction (a breathing mode) is
permitted if the spherical and space-inversion symmetries are
present.

It is also interesting to see that the spherical and space-
inversion symmetries impose very strong restrictions on the
isoscalar pairing densities. Indeed, the isoscalar pairing density
§o(r) (66b) must then vanish [33]. The only allowed isoscalar-
pairing channel can be related to the p-p current density J or (),
which represents a radial flow of isoscalar pairs within a
nucleus. Such a flow can, in fact, be nonzero in either the
time-even or the time-odd case, represented by 9( jVO,)(r) or
(7, or)(r), respectively. It corresponds to the situation in which
proton-neutron pairs locally change into neutron-proton pairs,
or vice versa, whereas the sum of densities thereof remains
constant.

2. Spherical symmetry alone

Let us consider the unusual case of the SO(3) C O(3)
symmetry, in which the spherical symmetry of the generalized
density matrix is conserved, whereas the space inversion
symmetry is broken. Compared to the results presented in
Sec. IV Al, here properties of scalar nonlocal densities,
Egs. (61), remain the same. However, in Egs. (60) ¢ is always
equal to +1, meaning that there is no difference between
vectors and pseudovectors. Thus, vector nonlocal densities
can now have structures that are richer than those of Egs. (62).
Indeed, owing to the GCH theorem, these densities can be
linear combinations of the pseudovector r x r’ and vectors r
and r'.
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Hence, vector densities in the p-h and p-p channels can now
be presented in the form

sero )y =i(r x s r -1, r?)
+rs (v P s e ), (T1a)
$(r 1) = (r < 5 r - r?)
+ 5,0 ) (DS ),
(71b)
where scalar functions s; and §; obey previous conditions (64),
whereas scalar functions s; and §; are arbitrary.

Breaking the parity does not affect the local scalar densities
in both channels, and Egs. (65) and (69) are still valid. The
same is true for vector current densities of Egs. (70a) and
(70b) being gradients of scalar densities. On the other hand,

the local spin densities no longer vanish. The isoscalar and
isovector components of the p-h spin density are

Si(r) = sir(r)ey, (72)

where their radial components sy, are real for k =0, 1, 2, 3.
The p-p isoscalar spin density has a complex radial component
and reads

So(r) = 5o, (r)e;. (73)

Spin-kinetic and tensor-kinetic densities have the same
structures as the spin densities of Egs. (72) and (73),
namely,

Ti(r) =Ti(r) = Ty (r)e,, (74a)
Fi(r) = Fi(r) = Fi,(r)e,, (74b)
for all k’s and
To(r) = Tor(r)e;, (752)
Fo(r) = Fo.(r)e,. (75b)

When the parity is not conserved, the tensor densities
have, apart from the antisymmetric parts represented by
vectors of Egs. (70c) and (70d), also nonvanishing traces,
namely,

J(r) = () = JE),
i) = Jr),

(76a)
(76b)

and symmetric traceless parts have the following structure:

ikab(r) = %!krr(r)gub = %err(’”)ilb, (773)
Iy () = 33,8, (77b)

where the standard symmetric traceless tensor function of the
space vector r is defined as

s, =3

ry
~ab rz

— Sap- (78)

3. Spherical symmetry: Summary

When the spherical O(3) symmetry is conserved, all the
local densities can be treated as fields depending on the O(3)
vector r (see the Appendix). Then vector r itself is the only
one elementary vector and its length squared r? is the only
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one elementary scalar. The scalar densities are functions of
r2. The vector densities are pointing along r, and their radial
components depend on 72 only.

The pseudoscalar, pseudovector, and pseudotensor densi-
ties all vanish. They can become nonvanishing when the parity
is broken and only the rotational SO(3) symmetry remains
conserved. Then they have properties of the scalar, vector, and
tensor densities, respectively. The symmetric tensor densities
are proportional to the outer product r @ r.

In general, the p-h densities are real, whereas the p-p densi-
ties are complex. Additional symmetries (space inversion, time
reversal, proton-neutron symmetry), when conserved, can also
cause some isoscalar or isovector p-h densities to vanish, and
those in the p-p channel become either purely real or purely
imaginary, or vanish. In Tables I and II, we list all the local
SO(3)-invariant densities in cases when additional symmetries
are broken or conserved.

B. Axial symmetry

While the spherical symmetry of the mean field is often
broken, the axial symmetry is usually conserved in the
presence of time reversal. Here we discuss consequences of
conserved symmetry of Eq. (43a), with 8 =0 and y =0,
and the transformation of Eq. (46¢), together forming group
0“1(2) = S. ® SO+ (2)  O(3), which is the direct product
of the rotations SO*(2) about the z axis and the reflection
S, in the plane perpendicular to this axis. For rotations
about the z axis, the Cartesian rotation matrix (54) takes the
form

cosae —sina O
a(w00) = | sine cosa O
0 0 1
al(w) 0
= . 79
(") 19

It is now convenient to decompose the position vectors as
r=r;+z, (80)

where r is a two-dimensional vector perpendicular to the z
axis and z is the z-component vector of r.

Because —a'(«) = a'(a 4+ ), the 0+ (2) =S, ® SO+
(2) symmetry of the generalized density matrix implies the
following conditions for the nonlocal densities:

ok(r, vy = pr@tr, + gz, atr| +¢7), (81a)
Sr,r) = p@tr + ¢z, atr| +¢7), (81b)
sir,r) = c@Y s @ty + sz, atr +¢2)
+sp@tr, 4+ ¢z, atr| + ¢7)e., (8lc)
§p(r r) = c@H s @tr, + ez atr +¢7)
+§.@tr, 4+ cz,atr| + ¢7)e., (81d)

where e, is the unit vector (z = ze;) and ¢ is the sign of the
determinant of the orthogonal 0%+(2) transformation.
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TABLE I. Properties of local particle-hole rotationally symmetric [SO(3)-invariant] densities, depending on the conserved
(C) or broken (B) space-inversion (P), proton-neutron (p-n), or time-reversal (7') symmetries. Generic real, imaginary, or
complex functions of the radial variable r are denoted fr(r), f;(r), or fc(r), respectively.

Symmetry Conserved or broken

P B B B B C C C C
p-n B B C C B B C C
T B C B C B C B C
00,3 Sr(r) Sr(r) Sr(r) Sr(r) Sr(r) Sr(r) Sr(r) Sr(r)
P1 fr(r) fr(r) 0 0 fr(r) fr(r) 0 0
02 Sr(r) 0 0 0 Sr(r) 0 0 0
70,3 Sr(r) Sr(r) Sr(r) Sr(r) Sr(r) Sr(r) Sr(r) Sr(r)
T fr(r) fr(r) 0 0 Sfr(r) fr(r) 0 0
T fr(r) 0 0 0 fr(r) 0 0 0
Jos Sr(r) Sr(r) Sr(r) Sr(r) 0 0 0 0
Ji fr(r) fr(r) 0 0 0 0 0 0
Jr fr(r) 0 0 0 0 0 0 0
50,3 fr(r)e, 0 fr(r)e, 0 0 0 0 0
S1 fr(r)e, 0 0 0 0 0 0 0
) fr(r)e, fr(r)e, 0 0 0 0 0 0
Tos fr(r)e, 0 fr(r)e, 0 0 0 0 0
T, fr(r)e, 0 0 0 0 0 0 0
T, fr(r)e, fr(r)e, 0 0 0 0 0 0
Fo3 fr(r)e, 0 fr(r)e, 0 0 0 0 0
F, fr(r)e, 0 0 0 0 0 0 0
F, fr(r)e, fr(r)e, 0 0 0 0 0 0
Jos Sr(r)e, 0 Sr(r)e, 0 fr(re, 0 Sr(r)e, 0
Ji fr(r)e, 0 0 0 fr(r)e, 0 0 0
J2 Sr(r)e, Sr(r)e, 0 0 Sr(r)e; Sfr(r)e, 0 0
Jos fr()e, fr()e, fr(r)e, fr(r)e, Sfr(re, fr(r)e, fr()e, Sr(r)e,
Ji Sr(r)e, Sr(r)e, 0 0 Sfr(re, Sfr(r)e, 0 0
J2 Sr(r)e, 0 0 0 Sr(r)e; 0 0 0
Jo,g fR(r)§ fR(V)§ fR(V)§ fR(V)§ 0 0 0 0
J, fz(r)S fr(r)S 0 0 0 0 0 0
J, fr(r)S 0 0 0 0 0 0 0

1. Axial and mirror symmetry

In this case, Eqgs. (81a) and (81b) imply that the scalar
densities p; and g, depend on r and r’ through the O%*(2)
invariants z-z=2%z2 -2/ =z% z-2/ =z, r1-r. =13,
r' -r| =r? andr, - r/ . Apart from the invariants, there are
two O*+(2) pseudoscalars: 7 - (r, X r'yandz’ - (rp xr') =
(z7'/z%)z - (ry % r’). The spin nonlocal densities have the
following transformation properties under the O*+(2). Their
z components are the O°1(2) scalars. Their perpendicular
components are the SO*(2) vectors and S, pseudoscalars
(i.e., they change sign under S,). Because the spin densities
are the O(3) pseudovectors, their components that are parallel
to the z axis should be linear combinations of r; x r’,, [z -
(r. xr')lz,and [z’ - (r. x r'|)]z’, whereas the perpendicular
components should be linear combinationsof z x r,z" x r/|,
[z-(rip xr')Iri, and [z - (rip x r’)]r’ . Consequently, the
Hermitian nonlocal spin densities in the p-h channel should
have the following structure:

Ske(r, re; = i(r i xr' o (r, r)+lz - (rixr')lzop(r, )

— [z (ro x D1z o, 1), (82a)

spi(ror)y=@xrow(r,r)+ @ xr')of (r,r)
+[z-(roxr'Dlriop, (r,r)

— [z (ro x F)IF o (r, ), (82b)

where or;, 0y,, 0ki, and @, are scalar functions. The
pseudovector nonlocal densities in the p-p channel are either
symmetric or antisymmetric in r and r’. Therefore, we have

So:(r, re; = (roxr’ oo (r, r')+[z - (r L xr' ) z0y,(r, ')

—[2' - (ro x r')12'00,(r', 1), (83a)

(ri x FDB(r r)+ 1z (re x F')128.(r, F')

(83b)

Ez(r, re,
2 (re x FO1ZE ),
Sor(r,r') = (z xroo(r,r")+ @ xr')ooL(r',r)

+lz-rxr')DIridy, (r,r')

— 2 -y x FDIFL8, (P, (83c)
S.0r 1) =@ xr0d,(r ) — @ xr')E, ()

Flz-(re xF)Ir )

2 x FOIFL L), (83d)
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TABLE II. Similar to Table I except for the particle-particle densities.

Symmetry Conserved (C) or broken (B)

P B B B B C C C C
p-n B B C C B B C C
T B C B C B C B C
b1 fe@) Sfr(r) fe@) fr(r) fe@r) fr(r) fe@) Sfr(r)
J23) Je(r) Si(r) Je(r) Ji(r) Je(r) Si(r) Je(r) Si(r)
Joi) Jer) Sr(r) 0 0 Je(r) Sr(r) 0 0
T fe@) Sfr(r) fe@) fr(r) fe@r) fr(r) fe@) Sfr(r)
2] Je(r) Ji(r) Je(r) Ji(r) Je(r) Si(r) Je(r) Ji(r)
4 Jer) Sr(r) 0 0 Je(r) Sr(r) 0 0
Ji Sfe(r) Sr(r) Sfe(r) Sr(r) 0 0 0 0
S Je(r) Ji(r) Je(r) Ji(r) 0 0 0 0
J3 fe(r) fr(r) 0 0 0 0 0 0
So fc(r)e, fi(r)e, 0 0 0 0 0 0
T, fere, fi(re, 0 0 0 0 0 0
E, fere, fi(re, 0 0 0 0 0 0
Jo fe(re, fire, 0 0 fere, 0 0 0
{1 fC(r)er fR(r)er fC(r)er fR(r)er fC(r)er fR(r)er fC(r)er fR(r)er
.{2 fe@e, fr(r)e, fe(e, fr(re, fe@e, fi(r)e, fe@e, fi(r)e,
Js Se(r)e, Sfr(r)e, 0 0 fe(r)e, Sfr(r)e, 0 0
Jy fe()S fr(r)S fe()S fr(r)S 0 0 0 0
gz fc(")§ fl(r)§ fc(r)§ fl(")§ 0 0 0 0
Js fe(MS fr(NS 0 0 0 0 0 0

where 0o, 0g » E) 1 E)l, 0p.»and E)é) |, are arbitrary scalar func-
tions, whereas Qg, and 5Z are antisymmetric and symmetric
scalars, respectively.

The local scalar p-h and p-p densities are functions of
two invariants, zZ and rf_. The particle density ,ok(zz, rf_) for

k=0,1,2,3 is real, whereas the pairing density 5(12, ri) is
complex in general; hence,

(84a)
(84b)

pr(r) = pr(r,r) = pi(2%,r}) = pf (2, D),
pr) = plr.r) = pE, rh).

Differential operators V, and V; have the same transfor-
mation properties under the O**(2) transformations as z and
r, respectively. That is, V, and z are S, pseudoinvariants
and SO*(2) invariants, whereas V| and r are S, invariants
and SO*(2) vectors. Counterparts of Egs. (67a) and (67b) for
gradients of scalar functions are now linear combinations of
vectors z, z’, r 1, and r/, with scalar coefficients:

2 2 2 2
(Vo4+ Ve 2 2% i e v r)

_8pz sz/ 8pr+ ap r,
)" D) a0 T AL -r)
(85a)
(Vo +V'D)p@2 22 2%l e D)
ap ap ap ap
= 742 7+ r,+2——r'.
0z TaED” T arL-r) T et
(85b)
Both terms of the operator,
V-V =V, V.+V, .V, (86)

are O*1(2) scalars. Therefore, the local scalar kinetic densi-
ties,

W@, ) =V, - V. + V-V Do, ez, (872)
22 ) =V, V. 4+ V-V, r)rer,  (87b)

can be expressed as sums of the two O*(2) scalars. Because
the operator (86) is Hermitian, again the p-h densities are real
and the p-p ones are complex.

It is seen from Eqs. (82) and (83) that the spin densities
in both channels are parallel to the vector product z x r and
take the form:

(88a)
(88b)

sk(r) = oeL (2%, 1)@ x 1),
$0 = GoL(2%, 1)z x 1),

with real g, ; and complex g¢, . Applying Eq. (85) to Egs. (82)
and (83), we find that the spin-kinetic and tensor-kinetic
densities in both channels can be written as

Ti(r) =1V, V. + VL -V)si(r,r)]—r

=0 ri)z xry), (892)
Tor)=[(V.- V. + VLV s, r)lr=r
= Doz ri)z x ry), (89b)
and
Fi(r) = 3[(V 4+ VOV + V) - si(r, 1)
+ (VL + VDV, + V1) sk 1 )]rr
=@ r])z x r), (90a)
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Fo(r) = (V. + V)V, + V') - So(r, 1)
+(Vo+ VDV + V1) S0, P )]y
=@ ri)z xrL). (90b)

The scalar functions ¥; and ¢ are real, whereas 3o and @o
are, in general, complex. Equations (85) imply that the vector
current densities in both channels are spanned by vectors z and
r |, and read

(91a)
(91b)

. 2 .2 2 2
Ji(r) = u(z° rz+ua (@5 rpra,
4 v 2 .2 o 2 .2
Jor) =l (2%, r))z + 1o (2", rry,
where i, g1, lo;, and Iy, are scalar functions. The p-h currents
are real and the p-p current is complex.

The spin-current pseudotensor densities can be decomposed
according to

Ji(r) = £ + JEr) + I ), (92a)
2 2z -l szl
Jn=J3w+J )+J @), (92b)
where
1
Ji(r) = 51V — V) ®si(r.rel,—, (93a)
1
Jir) = 5 (Vi - V') ®sii(r, r)rer,  (93b)
1 ,
Jitr) = 5 (Vo= V) ®sii(r,r')
+ (VL= V) ®si(r,redr—, (93c)
v 1 o
S = SV = VD @5, el (93d)
31_ 1 ’ > ’
J=(r) = Z[(VL - VL) Q51 (r, )=, (93e)
v 1 o
Jtr) = 5 (V.= VD@30, 1)
F(VL -V )®Fr. red. (93D
The traces of the spin-current pseudotensors,
Ji(r) = JAr) + JE(r), (94a)
Jary = Fir) + TH, (94b)
where
z 1 / /
J]:(r) = Z[(Vz - Vz) Sk, r)e;lr=r, (95a)
1
JHr) = 5 1(Vi— V') sk, )=, (95b)
2 1 -
Jir) = (V. = V) - 5:0r el (950)
2 1 >
JHr) = 5 (VL= V)50, )y, (95d)

are the scalar products of gradient operators and spin densities.

Because J; and J are sums of O“%(2) pseudoscalars, they
cannot be constructed from two vectors z and r | ; hence, all
spin currents (95) must vanish. On the other hand, the O(3)
vectors coming from the antisymmetric parts of spin-current

PHYSICAL REVIEW C 81, 014313 (2010)
pseudotensors,

1
Ji(r) = E[(Vz = V) x s, r')

+(V, - V,J_) X si(r, r,)]r=r’v (96a)
2 1 >
Jr) = 21V = V) x50, 1)

+ (VL = V) X3, F)mr, (96b)

do not vanish. They can be decomposed in the same way as
the current vectors (91):

(97a)
(97b)

2 .2 2 .2
Jk(r) = UkZ(Z ?rl)z+vkl(z ?rl)rlv
Jr) =0, rDz+ 01 ..

The scalar functions vy, and vy are real, whereas U, and
U, are complex. Finally, the traceless symmetric parts of the
spin-current densities (92) are

Ji(r) =0, (98a)
Jm=o (98b)
JEr) = k(2 ) @ (z x r))), (98¢)
S = k(2 rHE® (z x r)), (98d)
2Ll 5
I =F () ®@xr)), (98e)
2zl o
I =2 e @ xr)), (98)
where
ri®@xry) =sri®@xr)+@xr)@ri], (99)
@@ xr)=1z@@xr)+@xr)®z,  (99b)

are the symmetrized outer products of the vector product
z x r and vectors r | and z, respectively. As usual, the scalar

functions k; are real, whereas K are complex.

2. Axial symmetry alone

From the preceding discussion we see that the mirror
symmetry imposes quite strong conditions on the nonlocal and
local density functions. When the generalized density matrix
is invariant only under the SO*(2) ¢ SO3) group of rotations
about the z axis, the transformation rules of Eqgs. (81) with
¢ = +1 are fulfilled. This means that coordinate r, = z is the
SO*(2) invariant, and there is no difference between the SO(3)
pseudoscalars and scalars, or pseudovectors and vectors. The
scalar nonlocal densities are thus functions of z, ri, z/, r/,
rp-r',andz-(rp xr)).

The spin densities are SO*(2) vectors and can take more
general forms than those of Egs. (82) and (83); namely, the
Hermitian spin densities in the p-h channel are

Si(r, re; = i(ro x r')ow(r, 1)
+ 20, (r, v+ 2o (r', 1), (100a)
siL(ror) =@ xr)o(r,r)+ @ xr')og, (r',r)
+rio (r,r)y+r ol (r, ), (100b)

where oy, is Hermitian and o), o1, and o, are arbitrary
scalars.
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The spin nonlocal densities in the p-p channel are either
symmetric or antisymmetric in r and r’:
So,(r,r'Ye, = (r. x r')do.(r, 1)

+ 200, (r, r") + 2'00,(r', 1), (101a)
Sc(rore; = (ru x FB.(r r) +28,(r 1) =28, 1),
(101b)

Sor(r, 1) = (2 xr)Bo(r,r') + (' xr')éoL(r', 1),

+r 0y, (r,r)+r' 0y, (r',r), (101¢)
§J_(rvr/) = (z X rl)éj_(rar/) - (Z/ X rl)él(r/9r)
+r. 8 ey =78 ), (101d)

where go, is antisymmetric, 5Z is symmetric, and &, oL,
00, » E);, 5 1.and E)IL are arbitrary complex scalar functions.

In the case of broken mirror symmetry, the real local p-h
densities p(z, 1) = p{(z, r1) and the complex local isovector
p-p density B(z, r;) are functions of the two cylindrical
coordinates, z and r,, that is, they depend on the sign of
z. The same is true for the scalar kinetic densities (87), that is,
the real p-h densities 7x(z, r1) = 7(z, r1) and complex p-p
isovector kinetic density %(z, r).

At this point, it becomes convenient to use the cylindrical
coordinates r| , ¢, and z and the corresponding unit vectors e | ,
ey, and e;. The p-h isoscalar and isovector real spin densities
and the p-p isoscalar complex spin density are

$i(r) =Sk (2, r1) e + iz, 1) e + S (2, r) e, (102)
fork=0,1, 2,3, and
So(r) = Sor, (2, r1) e + Sop(z, r1) e + Soz(z, ri)e;. (103)

All differential local densities can be calculated by using the
gradient formulas:

(Vo+ Ve 2 ro,r-rrh)

a a 0
=t L+ (104a)
0z ar | o(rL-r')
(V.+ VDo 2 ri,r -1,
ap ap ap
=—e,+——r +—¢,. 104b
a0 oy ey (00

The spin-kinetic densities (89) have all nonvanishing
cylindrical components:

Ti(r)=Ty (z,ri)es +Trp(z,r1) ey + Ti(z.r1) e,
(105a)
Tor)=To (z,r1) el + Tos(z,r1) ey + Tolz, r1)e;.
(105b)
As usual, the p-h spin-kinetic densities are real and the p-p
ones are complex.
The tensor-kinetic densities (90a) and (90b) have the same
structure as the vectors (105):
Fi(r)=Fi (z,r1)e; + Frg(z,r1)es + Fi(z,r1) e,
(106a)
Fo(r) = Fo. (z,r1) e + Fos(z, r1) e + Foz, 1) ..
(106b)
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The current densities, being proportional to the gradients of
scalar functions, have only the r; and z components:
Jkr) = jr(z,r) e + ju (z,ri)ed,

Jo) = jo.(z.r)e. + jo. (z,r)el.

(107a)
(107b)

Finally, owing to the breaking of mirror symmetry, the spin-
current densities can have rich structures. The traces of spin-
current tensors (95) do not vanish, and they decompose into
the sums of two SO*(2) scalars:

J(r) = Tz, r) + JH(z, ro),
J(r)y= Tz, r) + Tz, ro).

(108a)
(108b)

The antisymmetric parts (96) of the spin-current tensors (93)
form the vectors with nonzero transverse components:

Jr) = Ji(r)=Jir, (z,r1)es
+ Jrp(z 7)) ey + Ji(z,71) e,

Jey=J, roes +T s r) e+ ro)e..

(1092)
(109b)

The symmetric traceless parts of the tensors (93) vanish:

L =0, (110a)
J_=o0. (110b)

The remaining traceless symmetric tensors are

Jh, =Jdis =Kt o) PY 4+ Ji (o) S, (111a)
ol VaS ol
Jop =K (2. r) Py +J, (2. r0) Sy,

(111b)
fora, b = x, y, where
sh, =2t s, (112)

ry
is the standard symmetric traceless SO*(2) tensor, and

1 4
Eab = (rlaebzc + rnguzc)rlc
2|z|r

. (113)
€L

is a symmetric pseudotensor. The tensor J,Z(L is traceless by
definition. Its symmetric part has the structure

7zl ogedx ezl z1 zL z1
"—Jkaz - ‘—Jkaz - Kkzi(z’ ri)Eaz + "—szJ_(Z’ ri)§az

for a = x, y, where nonvanishing components of the normal-
ized and symmetrized outer products z @ ¥ andz ® (z x r})
are

(114)

zl _ I'ia 2 (115)
r1 |zl
and e r
PzJ_ — azc J_c. 116
Pe=—" (116)
Similarly,
2zl 2zl n 2zl L
J.. =K. (@, r)P- +J,,(z,r1) S, . (117)

All components of the spin-current tensor in the p-h channel
are real, whereas those in the p-p channel are complex.
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TABLE III. Properties of the local axial and mirror-symmetric [ O**(2)-invariant] particle-hole densities, depending on the conserved (C)
or broken (B) proton-neutron (p-n) and time-reversal (7') symmetries. The z-simplex (S,) symmetry is conserved. Vector and pseudovector
densities can be expanded in a basis of three vectors: r , z, and z x r, . The symmetrized outer products 7, ® (z x r )and z ® (z x r, ) form
a basis for the pseudotensor densities. The expansion coefficients are real, imaginary, and complex functions of the two O*1(2) scalars: z> and
r?. Generic real, imaginary, and complex coefficients are denoted fx(z%,72), fi(z%,r%), and fc(z%, %), respectively.

Symmetry Conserved or broken

S, C C C C
p-n B B C C

T B C B C

Basis Coefficient

£0,3 1 fR(sz Vi) fR(Zz, Vi) fR(sz Vi) fR(Zz, VJZ_)
o 1 fr(@, D) fr@,r]) 0 0

02 1 fr(@2r?) 0 0 0

70,3 1 fr(2r?) fr(Z2, 1) fr(@*r?) fr@2r?)
7 1 fr@r]) @) 0 0

12} 1 fr(Z?, rf_) 0 0 0

Jos 0 0 0 0 0

Ji 0 0 0 0 0

Jo 0 0 0 0 0

50,3 TXry, fR(Zzs rf_) 0 fR(sz "i) 0

51 X7, fr(@2 1) 0 0 0

52 IXry fR(Zzs ”i) fR(sz ’]2_) 0 0
Ty; ZXry, fR(Zzs "JZ_) 0 fR(sz "i 0

T, IXr, fr(@% D) 0 0 0

T, ZXr, fR(Zzs "i) fR(sz "i) 0 0
Fy; ZXrg fR(Zzs"i) 0 fR(ZZJi) 0

F, IXr, fr(@3 D) 0 0 0

F, ZXry fr(@,r7) fr(@,r7) 0 0
Jos ri,z fr(Z%,17) 0 fr(2? 1) 0

Ji ri,z fr@*,r]) 0 0 0

J2 ri.z fr(@*.r}) fr@*r]) 0 0
J0,3 r.,z fR(ZZ, ri) fR(Zz, Vi) fR(Zz, Vi) fR(ZZ, Vﬁ)
Ji r,,z fR(Zz, ri) fR(Zz, Vi) 0 0

J> ri,z2 fR(Zz,ri) 0 0 0
Jos ri®@xr),zQ(z xr,) fr@4 D) fr(@* ) fr(z*r?) fr(z*r?)
J, ri®@Exr),zQ@xry) fr(Z2r?) fr(Z2,r%) 0 0

J, ri®@Exr1),z®(@Zxry) fr(Z%, 1) 0 0 0

3. Axial symmetry: Summary

In the case of the axial O**(2) symmetry, the position vector
r can be decomposed (80) into two vectors, z and r , having
different transformation properties under rotations and mirror
rotations about the z axis. Vector r is the SO(2) vector,
whereas z is the O+ (2) pseudoinvariant. There are two O*+(2)
scalars, z2 and 3, and all the local scalar densities are functions
thereof. In this study, we are not concerned with the question
whether the densities are analytical functions of the invariants.
Therefore, it does not matter whether the argument of densities
is 72 or justry.

The local vector densities are linear combinations of vectors
z and r with scalar coefficients. The pseudovector densities
are proportional to vector product z x r; and thus have

the azimuthal direction. Although it is not possible to build
pseudoscalar densities from elementary vectors z and r,
pseudotensor densities can be constructed. The symmetric
pseudotensor densities are linear combinations of the sym-
metrized outer products r; ® (z x r1) and 2 ® (z X ry).
The symmetry properties of local axially symmetric [0+(2)
invariant] densities are listed in Tables III and IV.

If the mirror symmetry is broken, the two SO*(2) in-
variants are z and r;. The scalar and pseudoscalar densi-
ties are now functions thereof. The vector and pseudovec-
tor densities now have nonvanishing components along all
three vectors, e, es, and e,. The traceless symmetric
tensor densities are linear combinations of the pseudoten-
sors P* and P** and tensors S* and S*. Properties
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TABLE IV. Similar to Table III except for the particle-particle densities.

Symmetry Conserved (C) or broken (B)
S, C C C C
p-n B B C C
T B C B C
Basis Coefficient
Jodl 1 fe(Z,rd) fr(2, ) fe(Z, D) fr@rt
P2 1 fe(Z,rd) fi@ ) fe(Z, D) fi@r})
03 1 fe(Z,rd) fr(2 D) 0 0
4 1 fe(,rd) fr(Z2, 1) fe(Z,r?) fr(z*r?
B 1 fe@,r}) fi@, ) fe@,r}) f1@, )
T 1 fe(,rd) fr(, D) 0 0
Ji 0 0 0 0 0
J 0 0 0 0 0
Js 0 0 0 0 0
5o TXry fe@, 1) fi(2.r}) 0 0
T, Txry fe@,rh) fi(22,r1) 0 0
F, ZXTr fe(@®,r]) fi@, D) 0 0
Jo ri.z fe@.rd) fi@2 ) 0 0
Ji ri.z fe(@.rd) fr(@2.rd) fe(@®.rd) fr(z2r)
J> r.,z fe(Z, D) fi@, ) fe(Z, D) fi@ )
J; ri.z fe(2%,r?) fr(z%, %) 0 0
J, ri®@xr).z®@xry) fe@.rd) fr(@.rd) fe@rd) fr(@, )
J, ri®@Exr).z®@xry) fe@.rd) fi@2rd) fe@.rd) fi@2rd)
Js ri®@xr).z®@xry) fe@.r?) fr@rd) 0 0
of the SO (2)-invariant local densities are listed in -1 0 O
Tables V and VI. a’¥=alr0)=|0 1 0], (119¢c)
0O 0 -1
C. Symmetry Dy, . _01 0 8
= = -1 11
The identity, the inversion, three signatures, three sim- a a(w00) 0 0 1 (119d)

plexes, and their negative partners form the symmetry group
D?, . The Cartesian rotation matrices of Eq. (54) for the identity
(labeled by u) and signature operations are all diagonal:

at¢ 0 o0
a’=10 aj o0 (118)
0 0 af
for a = u, x, y, z. They can be written explicitly as
1 00
a’=a0o00)=10 1 0], (119a)
0 0 1
1 0 0
a*=al0xmn)=]0 -1 0 |, (119b)
0 0 -1

Let us suppose that the generalized density matrix is invari-

ant under the generalized transformation matrix U*, (a =
u, x,y, z), belonging to the D5} of transformations. According
to Egs. (60), the transformation rules for nonlocal densities are

ok(r,r") = pr(sa’r, ga’r’), (120a)
(r,r") = pi(ca’r, ca’r’), (120b)
sw(r,r’) = ajswp(ca’r, ca’r’), (120c)
S, r) = azsi(ca’r, ca‘r’), (120d)

foranya = u,x,y,zandb = x, y, z; ¢ = +1 for identity and
signature operations and ¢ = —1 for inversion and simplex
operations.

Transformations (120) constitute symmetry conditions for
densities under changes of signs of their arguments; hence,
they relate the values of densities between different regions of
space. For the p-h densities, this problem has been extensively
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TABLE V. Properties of local axially symmetric [SO*(2)-invariant] particle-hole densities, depending on the conserved
(C) or broken (B) p-n and time-reversal (T') symmetries. The z-simplex (S,) symmetry is broken. The vector, pseudovector, or
pseudotensor densities can be expanded in the vector (e, , ey, e;) or tensor (P, P*t, S*, S**) bases. The expansion coefficients
are real, imaginary, and complex functions of cylindrical coordinates r; and z. Generic real, imaginary, and complex coefficients

are denoted fr(z,7L), fi(z,rL), or fc(z, L), respectively.

Symmetry Conserved or broken

S. B B B B
p-n B B C C

T B C B C

Basis Coefficient

00,3 1 fr(z, 1) fr(z,r1) fr(z, L) fr(z, L)
o1 1 Sfr(z, 1) Sfr(z,r1) 0 0

02 1 Sr(z,r1) 0 0 0
70,3 1 fr(z, 1) fr(z, r1) fr(z, r1) fr(z, r1)
7 1 Sfr(z,71) Sfr(z,r1) 0 0

193 1 fr(z,ry) 0 0 0
Jos 1 fr(z, 1) fr(z,r1) fr(z, L) fr(z, L)
Ji 1 Sfr(z,71) Sfr(z,r1) 0 0

Jr 1 fr(z,ry) 0 0 0
50,3 e ,e4,¢e; fr(z, 1) 0 fr(z, r1) 0

51 e, ey €, fr(z,ry) 0 0 0

3 e,e4, e, Sr(z, r1) Sr(z,rL) 0 0
T3 e ,e4,¢e; fr(z, 1) 0 fr(z, r1) 0

T, e, ey, €; Sfr(z,r1) 0 0 0

T, e e, e, Sr(z, 1) Sr(z,rL) 0 0
Fo; e ,e4, e Sfr(z, 1) 0 fr(z, r1) 0

F, e, ey €, fr(z,ry) 0 0 0
F, e ,e4, e, Sr(z,r1) Sr(z,rL) 0 0
Jos e ,e4,¢e; Sfr(z, 1) 0 fr(z, r1) 0

Ji €,6€y,€; Sfr(z, 1) 0 0 0

J2 e,e4, e, Sr(z,r1) Sr(z,rL) 0 0
Jos el,ey, €, Sfr(z, 1) fr(z, L) Sfr(z, L) fr(z,r1)
Ji €,€y,€; Sfr(z,r1) Sfr(z,rL) 0 0

J> e ,e4, e, Sr(z, L) 0 0 0
Jos P+, PS8t 8% Sfr(z,r1) Sr(z, 1) Sfr(z,r1) Sfr(z, 1)
J, P, P8t 5% fr(z,rL) fr(z.rL) 0 0

J, P+, PS8t 5% Sfr(z,r1) 0 0 0

discussed in Refs. [22] and [23]. In the following, we extend
the previous discussion to the pairing channel and provide
general expressions for the p-p densities.

The p-h local density matrices fulfill the following symme-
try conditions:

(121a)
(121b)

pk(r) = pi(r) = pr(sa’r),
Swp(r) = s3,(r) = aysiy(ca’r),

fork=0,1,2,3,a=u,x,y,z, and b = x, y, z. The analo-
gous expressions for the p-p densities are

p(r) = p(ga’r), (122a)
Sop(r) = aysop(ca’r). (122b)

The differential local densities in both channels should now
be classified according to irreducible representations of the
point group Dy, [22]. Therefore, the vector notation used so
far is no longer useful. Instead, in this section we rely on

definitions (18), where the Cartesian components are explicitly
shown.

The p-h isoscalar and isovector kinetic densities (17a)
transform according to:

Tkpe (1) = T4, (1) = AjAL Tipc(5AT). (123)

The complex isovector component of p-p kinetic densities

(17b) obeys analogous symmetry conditions:

Fhe(r) = aaEpe(5a’r). (124)

The symmetries of the kinetic scalar densities (11) can be
obtained from Eqgs. (18a) and (18b).

The spin-kinetic and tensor-kinetic densities (17c) and
(17d) fulfill the symmetry conditions:
(125a)

(125b)

Tipea(r) = Thy,(r) = ayaiagTipeq(ca’r),
T opea(r) = apaca;Topca(calr).
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TABLE VI. Similar to Table V except for the particle-particle densities.

Symmetry Conserved (C) or broken (B)

S. B B B B
p-n B B C C

T B C B C

Basis Coefficient

Jodl 1 Je(z, ry) Sfr(z,r1) Je(z,ry) Sfr(z,r1)
P2 1 Jelz, r1) fi(z ry) fe(z,ry) fiz, ry)
23 1 fe(z, 1) Sfr(z,71) 0 0

T 1 Je(z, r1) fr(z,r1) Je(z,ry) Sfr(z,r1)
%) 1 fe(z,ry) fi(z,ry) fe(z,ry) fiz, ry)
2] 1 fe(z, 1) Sfr(z,71) 0 0

-{1 1 fe(z,ry) Sfr(z, 1) fe(z,ry) Sfr(z, L)
b 1 fe(z, 1) fi(z,r1) fe(z,r1) fr(z,ry)
Iy 1 fe(z,ry) fr(z,r1) 0 0

$o e,e4, e, fe(z, ry) fi(z,r1) 0 0
T, e,e4, e, fe(z, r1) fr(z,r1) 0 0
F, e, e4, €, fe(z, 1) fi(z,r1) 0 0

Jo e .e4, e, Sfe(z,ry) i1z, ry) 0 0

Ji e e, e, Sfe(z,ry) Sr(z,r1) Je(z,ry) Sr(z,rL)
J2 e ,e4, e, Je(z, r1) Ji1(z,rL) Je(z,ry) Sfi1(z,ry)
YE eJ_seqﬁa z Je(z, r1) fr(z,r1) 0 0
J, P+, Pt SL S” fe(z,ry) fr(z, 1) fe(z, ry) fr(z, r1)
J, Pt P St S fe(@ o) fiz.ry) fez.ry) fiz.r)
Js Pt P St s fe(z.ry) fr(z,71) 0 0

The transformation properties of the spin-kinetic densities (13)
and tensor-kinetic densities (15) are obtained by contractions
defined by Eqgs. (18¢)—(18f).

Finally, the symmetry conditions of the current and
spin-current densities in both channels are

Jiw(r) = ji,(r) = ¢ayj jw(sa’r), (126a)
Fop(r) = calfop(ca’r, (126b)
kac(") = kac(") = caga,Ju(ca’r), (126¢)
ch(") =gay anc(Sa r). (126d)

V. SYMMETRIES OF MULTIREFERENCE
TRANSITION DENSITIES

In analogy to Egs. (3) and (4), the transition p-h and p-p
density matrices are defined, respectively, as

(127)
(128)

pO(rst, r's't'y = (Walaf, ar | W1),
st r's't') = 4s't (Walay —g_pary | V1),

where |W;) and |W;) are two different independent-
quasiparticle states. The corresponding spin-isospin scalar
and vector transition densities, ,okt)(r r’) and s k) (r,r"), and
“(t)(r r’) and m(r r’), withk =0, ..., 3 are defined by re-
lations analogous to Egs. (9). The local transition densities are
defined in an identical way as the local densities Egs. (10)—(16)
and are denoted by the same respective symbols but with the
superscript (¢).

What are the differences in the symmetry properties of the
transition density matrices from those of the density matrices
discussed above? First, the p-h transition density matrix is not
Hermitian:

P (rst, r's't) = (Wila),, dr | Va)
# ("p2|arfs'ﬂar.vt|“pl)~

Consequently, Eqgs. (58) for the p-h nonlocal transition
densities are not fulfilled. On the contrary, the antisymmetry
property of the p-p density matrix is preserved:

(129)

s

8O(rst, r's't) = —16ss't' fO@' —s'—t',r —s —1). (130)

Hence, the p-p nonlocal transition densities obey relations (59).
The transformation rules for the transition matrices under
the single-particle unitary (and antiunitary) transformations U
(Uk) follow the transformation rules (27) for the creation and
annihilation operators and are given by Eqgs. (30), namely:

[)(t)U =Qe Ia(t) ° ﬁ-&—’ (131a)
PV =105 eiit. (131b)

Therefore, the discussion of density matrix symmetries pre-
sented in Sec. IV applies to transition densities, with the only
difference being that the p-h transition densities are, in general,
complex, unless the time-reversal invariance introduces some
restrictions. The time-reversal-invariant nonlocal p-h transi-
tion densities obey the following relations:

o, r) = p*r, 1), (132a)
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TABLE VII. Properties of local particle-hole rotationally symmetric [SO(3)-invariant] transition densities, depending on the
conserved (C) or broken (B) space-inversion ( P), proton-neutron (p-n), or time-reversal (7') symmetries. Generic real, imaginary,
or complex functions of the radial variable r are denoted fx(r), f1(r), or fc(r), respectively.

Symmetry Conserved or broken
P B B B C C C C
p-n B B C B B C C
T B C B B C B C
Py fe(r) fr(r) fe() fr() fe@) fr(r) fe(r) fr(r)
oy’ fe(r) fr(r) 0 fe(r) fr(r) 0 0
Py fe(r) fi(r) 0 fe(r) fi(r) 0 0
3 fe(r) fr(r) fe(r) fr(r) fe(r) fr(r) fe(r) fr(r)
7" fe(r) fr(r) 0 fe(r) fr(r) 0 0
) fe(r) fi(r) 0 fe(r) fi(r) 0 0
o fe(r) fr(r) fe() Fr(r) 0 0 0 0
JO fe(r) Fr(r) 0 0 0 0 0
7 fe(r) f1(r) 0 0 0 0 0
S0y fe(rle, fire, fe(re, fi(r)e, 0 0 0 0
sV fe(re, fi(re, 0 0 0 0 0
sy fere, Fr(re, 0 0 0 0 0
Ty, fe(rle, fire, fe(r)e, fi(r)e, 0 0 0 0
TV fe(re, fi(re, 0 0 0 0 0
Ty fe(e, fr()e, 0 0 0 0 0
F{) fe(rle, fi(re, fe(r)e, fi(r)e, 0 0 0 0
FY fe(re, fi(re, 0 0 0 0 0
FYy fe(e, fr(e, 0 0 0 0 0
Jos fe(re, fi(re, fe(re, fi(re, fe(e, fi(r)e, fe(re, fi(re,
it fe(r)e, fi(re, 0 fe(r)e, fi(r)e, 0 0
i3 fe(re, fr(r)e, 0 fe(re, fr(r)e, 0 0
Jf{)3 Je(re, Sr(r)e, Je(re, Sr(r)e, Je(re, Sr(re, Je(re, Sr(re,
JY fe(r)e, fr(r)e, 0 fe(r)e, fr(r)e, 0 0
J0 fe(re, fi(r)e, 0 fe(re, fi(r)e, 0 0
Jys fe(nS fx("S fer)S fx(MS 0 0 0 0
Jy fe(nS fr()S 0 0 0 0 0
Jy feS fi(nS 0 0 0 0 0

SI(C’)(,-, r)y=— si’)*(r, r), (132b) applications, the pairing interaction is often approximated by

for k=0, 1,3, the zero-range pairing force [34-37],
and Voairr, 1) = foaie(r)(r — 1), (133)
P ;’)(r 1) =—p g) (r.r), (132¢) where the density-dependent form factor reads
sO@, 1) = sV, 1), (132d)

which means that some transition densities are real, whereas
others are purely imaginary. Symmetry properties of the local
p-h transition densities are catalogued in Tables VII, VIII,
and IX. For the local p-p transition densities, the results in
Tables II, IV, and VI apply.

VI. DISCUSSION OF PAIRING CHANNELS AND
EXAMPLES OF PREVIOUS APPROACHES

The form of the most general EDF that is quadratic in local
isoscalar and isovector densities was proposed in I, where the
expressions for the p-h and p-p mean fields are given. In current

0o(r)

c

Jpair(r) = Vo {1 +x0 P — [ } a +x3f’“)}, (134)

and P? is the usual spin-exchange operator. When only the
isovector pairing is studied, the exchange parameters x, and
x3 are usually set to zero. However, in the general case of
coexisting isoscalar and isovector pairing correlations, nonzero
values of xy and x3 must be used.

In Ref. [38], the density-independent, zero-range pairing
force,

Voar(r, ') = Y [ pg 8(r — ') + pi K'8(r — r')k] Tz,
TS
(135)
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TABLE VIII. Properties of local axially and mirror-symmetric [ 0?1 (2)-invariant] particle-hole transition densities depending
on the conserved (C) or broken (B) proton-neutron (p-n) or time-reversal (7') symmetries. The z-simplex (S,) symmetry is
conserved. The vector and pseudovector densities take the form of an expansion in a basis of three vectors: ¥, z,and z X r .
The pseudotensor densities are linear combinations of the two symmetric pseudotensors: r; ® (z X r;)and z ® (z x ry ). The
expansion coefficients are real, imaginary, or complex functions of the two O*(2) scalars, z> and r2. Generic real, imaginary,
or complex coefficients are denoted fr(z2, r3), f1(z%,r?), or fc(z?, r?), respectively.

Symmetry Conserved or broken
S, C C C C
p-n B B C C
T B C B C
Basis Coefficient

o s 1 fe@.r}) fr@2 1} fe@r}) fr@2r})
oy’ 1 fe@.r}) fr@2r}) 0 0
0y’ 1 fe@.r?) fi@2,r}) 0 0
7 1 fe@,r?) fr@,r? fe@,r?) fr(@, D)
" 1 fe@rh) fo@. 13 0 0
7y 1 fr(22,12) fi@2, 1) 0 0
I 0 0 0 0 0
JO 0 0 0 0 0
J 0 0 0 0 0
S0 ZxrL fe@,r?) fi@2, ) fe@,rd) F1(22 %)
st ZxXry fe@, 1) fi@2,r}) 0 0
sy ZxXry fe@, 1) fr(@2r3) 0 0
Tg) Zxry fe@r?) fi2 ) fe(,r2) f1@2r2)
TV X1, fe@.rd) i@ r}) 0 0
T X1, fe@.r) fr@. 1) 0 0
Fy), ZxrL fe@.r) F122 ) fe@,rd) F1(22r2)
FYy ZxryL fe@2,r?) fi@22r}) 0 0
FY ZxryL fe(@2,r?) fr(@2, 1) 0 0
Joh ri.z fe@r?) fi@2,r2) fe(@,r2) £1G@2r2)
it ri.z fe@2,r?) fi@2 ) 0 0
Js riz fe@.rD) fr(@rD) 0 0
I riz fe@,r3) fr@, 1) fe@,r?) fr@ D)
JY ri.z fe@2,r?) fr(@2,r}) 0 0

o ri.z fe@, ) f1(22 1Y) 0 0
s rL®@xr).z®@xry) fe@.r1) fa@.r) fe@.r1) fa@.r2)
Jy ri®@xr),z®@xry) fe@,rh) fr(2,r%) 0 0
5 ri®@xr).z®@xry) fe@.r1) fi@.r2) 0 0

was employed to study the interplay between isoscalar and
isovector pairing within an axially symmetric HF + BCS
scheme. In Eq. (135), 17 stands for the spin-isospin projec-
tion operator, and pOT and pJ are coupling strengths adjusted
to the data.

As shown in (I-84) and (I-89), for the commonly used
pairing force (133), only two pairing densities come into play:
the isovector density B and the isoscalar p-p spin density
§0. The corresponding isovector p-p potential U(r) is simply
proportional to ,5, whereas the isoscalar p-p field To(r) is
proportional to the scalar product of the quasiparticle’s spin 6

and §y. Physically, ;3 represents the density of § = 0, neutron-
neutron, proton-proton, and proton-neutron pairs, whereas the
vector field § describes the spin distribution of § = 1 isoscalar
p-n pairs. Indeed, when expressing Eq. (12b) directly in terms
of thep-n pairs, one can see that §, containsthe S = 1, Mg = 0
component, whereas o, and §o, contain combinations of
Mg =1 and Mg = —1 pairs. The physical interpretation of
the isoscalar p-p mean-field Hamiltonian,

ho(r) =306 3§ -6, (136)

is the projection of the quasiparticle’s spin on the spin of
the p-n pairing field, with its local magnitude determined
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TABLE IX. Properties of local axially symmetric [SO*(2)-invariant] particle-hole transition densities depending on the
conserved (C) or broken (B) proton-neutron (p-n) or time-reversal (T') symmetries. The z-simplex (S;) symmetry is broken.
The vector, pseudovector, or pseudotensor densities take the form of an expansion in the vector (e, ey, e;) or tensor
(P*+, P*t, S*, S basis. The expansion coefficients are real, imaginary, or complex functions of cylindrical coordinates
r, and z. Generic real, imaginary, or complex coefficients are denoted fr(z,r.), fi(z,r.), or fc(z, r1), respectively.

Symmetry Conserved or broken

S, B B B B
p-n B B C C

T B C B C

Basis Coefficient

pé’_)g 1 fe(z,ry) fr(z, r1) fe(z, ry) fr(z, r1)
oy’ 1 fe(z,ry) fr(z,ry) 0 0
Py 1 fe(z,ry) filz,r1) 0 0
féf% 1 fe(z, ry) fr(z, 1) fe(z,ry) fr(z, 1)
7" 1 fel(z,ry) frlz,r1) 0 0
7" 1 fe(z,ry) filz,r) 0 0
I 1 fe(zry) Frz. ) fe(z ) Frz.r1)
7" 1 fe(z,r) frlz,r1) 0 0
7" 1 fel(z,ry) fiz,r1) 0 0
sé’é e, ey, €, fe(z,ry) fiz, ry) fe(z,ry) fiz, ry)
S(ll) €,€y,€; fe(z,ry) Sfi(z,r1) 0 0

s e, e ¢ fe(z,ry) fr(z, L) 0 0
TE,’,)S e, ey, e, fe(z, ry) fi(z,r1) fe(z, ry) fi(z,ry)
T(|1) €,€y,€; fe(z,ry) fi(z,r1) 0 0
T e ,eq, €. fe(z,ry) fr(z, ry) 0 0
Fy, e, ey e, fe(z.ry) fiz, 1) fe(z.ry) fiz,r0)
F(f) €,€y,€; fe(z,ry) Sfi(z,r1) 0 0
FYy e ,eq, €, fe(z, ry) fr(z, ry) 0 0
jf{)g e, ey, e, fe(z, ry) fi(z,r1) fe(z, ry) fi(z,ry)
it el ey e, fe(zry) fiz,r0) 0 0
Jjs el e e, fez,ry) fr(z.r1) 0 0
Jf{é e, ey, e, fe(z, ry) fr(z, r1) fe(z, ry) fr(z, r1)
J(ll) €,€y,€; fe(z,ry) fr(z, r1) 0 0
JY el e4 ¢ fe(z,ry) filz,ry) 0 0
Q(()t)z P+ pPtgst st fe(z,ry) fr(z, r1) fe(z, ry) fr(z, r1)
Jy Pt P* 8t s fe(z,ry) fr(z,r1) 0 0

Jy P+ P*s* s fe(z,ry) filz,ry) 0 0

by the HFB equations; hence, the SCSs are present in the
problem.

It is important to emphasize that the isoscalar density §g
contains all magnetic components of the S = 1 p-n pairing
field. When studying an individual component separately,
for example, in the context of the so-called @ — & or o —
pairing [39], one may arrive at erroneous conclusions that the
presence of isoscalar pairing must be associated with breaking
certain SCSs, such as axial symmetry or signature. The usual
argument, originally made in Ref. [39] and then repeated in
the literature [40—42], is that the individual components of the
S = 1 pair field are not invariant under rotations. For instance,
the pairing tensor k) does not commute with signature R,
(a=x,y,2) [42]

R, i, Ra = (— DMy, (137)

and this has led to the conclusion that the isoscalar pairing
must break signature.

Let us consider axial and mirror symmetry as SCS. As
reported in Table IV, the isoscalar pairing density §y vanishes
only if the p-n symmetry is conserved. In the generalized
pairing theory, which mixes proton and neutron orbits, the
solenoidal field §g is nonzero. The lines of field §, are shown
schematically in the left panel in Fig. 1. The right panel
shows that, whereas an individual vector §, at a given point is
not invariant with respect to symmetries S such as rotations
around the third axis or signature R, the field § is perfectly

covariant (2):
55(r) = 50(STrS). (138)

The scalar product (136) is actually invariant in both cases
shown in Fig. 1 (right). It is interesting to note that for
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FIG. 1. (Color online) Left: Schematic illustration of the isoscalar
vector field §, in the case of conserved axial and mirror symmetries.
The field is solenoidal, with a vanishing third component. Right:
Under rotation around the third (symmetry) axis, the field at point
r4 is transformed to position rg. Likewise, under R,, the field
is transformed to rc. Although neither of these operations leaves
the individual vector §y(r 4) invariant, the field as a whole does not
change; that is, it is covariant.

the geometry in Fig. 1, the third component §,, associated
with the M = 0 isoscalar pairing field vanishes. That is, the
solenoidal pairing field is created by the two components with
M = %1. Therefore, we conclude that the assumption of axial
symmetry, or signature, does not preclude the existence of
isoscalar pairing.

For the finite-range pairing forces and for the general
Skyrme p-p functional, other pairing densities appear in
addition to ,73 and §y. In order of importance, the next
crucial densities are the isoscalar vector current density

jvo(r) and the isovector spin-current tensor density Jr).
Both can be generated by the momentum-dependent term
in Eq. (135) and can be associated with the L = 1 pairing
field.

The isoscalar vector current density is solely responsible
for the isoscalar pairing field in the spherical, mirror sym-
metric case when time-reversal symmetry is broken. Indeed,
according to Table II, the L = O density §, vanishes in this
limit. It is only when the mirror symmetry is broken that §
becomes nonzero in spherical nuclei. Such a scenario could
be an interesting possibility in very neutron-rich nuclei, in
which, for example, the 1 ds,, and 1vfs; or 1 f72 and 1vgy/»
orbitals could appear near the Fermi surface. The isovector

tensor density J(r) is generally nonzero in spherical nuclei,
and it has a radial character.

In the axial, parity-conserving case }'O(r) is perpendicular
to §o. It is interesting to note that when the mirror symmetry
is broken, the densities §o and }'0 have all components (radial,
azimuthal, and vertical) nonzero but their geometries will
differ in general.

In the absence of spin polarization, that is, for time-reversal
invariant systems, the isoscalar pairing field §y is purely
imaginary. In the presence of rotation, the time-reversal
symmetry is internally broken. In this case, the pairing

PHYSICAL REVIEW C 81, 014313 (2010)

field is generally complex. Consequently, assuming the real
Bogoliubov transformation and real pairing tensor [40] may
limit the domain of self-consistent solutions.

Another factor that may impact the generality of conclu-
sions in Ref. [40] is the lack of p-n symmetry-breaking on
the HF level. Such an approximation does not seem to be
justified, as the self-consistent polarization between p-h and
p-p channels is well known in the isovector pairing case.
Originally, the condition that the p-h density matrix preserves
the p-n symmetry was proposed in Ref. [39] in the context of
BCS calculations for N = Z nuclei, where it was postulated
that the expectation value of isospin in the quasiparticle
vacuum is zero:

(W|T|¥) =0. (139)
We note that whereas the absence of p-n mixing in the p-h
sector automatically guarantees condition (139) for N = Z
nuclei in the absence of isospin-breaking interactions, the three
constraints (139) are in general not sufficient for all the t' = —¢
matrix elements of p to vanish.

In addition, the independent treatment of time-reversal and
isospin symmetries as done in Ref. [39] is not justified. Indeed,
as pointed out in Ref. [24], the time-reversal and the isospin
rotations do not commute. This implies that the relative phases
between proton and neutron wave functions in a p-n symmetry-
broken quasiparticle state cannot be chosen arbitrarily.

VII. CONCLUSIONS

In this study, we have investigated the symmetries of
nucleonic densities of the generalized nuclear DFT that
allows for the arbitrary mixing of protons and neutrons.
We considered the most important SCSs: spherical, axial,
space-inversion, and mirror symmetries. The main conclusions
of our work can be summarized as follows.

(1) The local pairing densities gy (isoscalar pairing density)
and § (isovector spin density) always vanish.

(i) One can always construct a phase convention for
which the local p-h densities are purely real [22]. In
the presence of particular SCSs, some p-h densities
vanish.

(iii) In the absence of SCSs, the local p-p densities are
complex. If time reversal is SCS, p-p densities become
either purely real or purely imaginary.

@iv) If p-nsymmetry is SCS (no explicit p-n mixing), the
k =1 and k = 2 isospin components of p-h densities
and the kK = 0 and k = 3 isospin components of p-p
densities vanish.

(v) When O(3) is SCS (spherical, mirror-symmetric case),
the local pseudoscalar, pseudovector, and pseudotensor
densities vanish. The only nonzero isoscalar-pairing
density is the current density J o(r). All these densities
can become nonzero in the SO(3) limit when the parity
is broken. See Tables I and II for a summary.

(vi) When SO(2) and S, are SCS (axial, mirror-symmetric
case), pseudoscalar and pseudotensor densities vanish.
If time reversal is SCS, p-p densities become either
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purely real or purely imaginary. Properties of local ax-
ially symmetric [O°1(2)-invariant] densities are listed
in Tables IIT and I'V.

(vii) When SO(2) is a SCS (axial case), all densities are
generally present. Properties of the SO(2)-invariant
local densities are listed in Tables V and VI.

(viii) When space inversion, three signatures, and three sim-
plexes are SCSs (D2Dh group), all densities are generally
present. Symmetry properties of p-h densities have
been discussed in Refs. [22] and [23]. The analogous
expressions for p-p densities are given in Sec. IV C.

(ix) The symmetry properties of the transition densities are
the same as those of the local densities. The only notable
difference is that the p-h transition densities can be, in
general, complex unless the time reversal is SCS and
some additional restrictions are present.

(x) The isoscalar pairing density §o is the main building
block of the T = 0 pairing field. In axial, reflection-
symmetric nuclei, this field is solenoidal and gives rise
to a paring potential that preserves signature.

(xi) The second most important building block of the
isoscalar pairing field is the current density fo. It is
solely responsible for the isoscalar pairing field in the
spherical, mirror-symmetric case when time-reversal
symmetry is broken. For axial systems, this field is
solenoidal.

(xii) Breaking space inversion or mirror reflection may have
profound consequences for the existence of isoscalar
pairing, as many isoscalar densities vanishing in a
parity-conserving limit can become nonzero.

The symmetry properties discussed in this work provide
the necessary, but not sufficient, conditions for the presence
of isoscalar pairing in nuclei. Whether or not such fields will
appear depends, of course, on the actual form of the EDF
and the values of coupling constants. In general, similarly to
the isovector pairing channel, a strong dynamical coupling
between p-h and p-p channels is expected. Consequently, to
fully benefit from the p-n symmetry-breaking mechanism, p-n
symmetry should already be broken on the level of the p-h
mean field. This is not what has usually been done in existing
calculations.

The main results of this paper, summarized in
Tables I-IX and in the relations in Sec. IV C, are symmetry
properties of the local p-h and p-p densities that are building
blocks of the generalized nuclear DFT formalism. These
results can be useful when building a microscopic framework,
rooted in the local density approximation, to describe various
phenomena occurring in N ~ Z nuclei.
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APPENDIX: GENERALIZATION OF THE
CAYLEY-HAMILTON THEOREM

When analyzing symmetries, we often meet the problem
of how to construct a tensor quantity in terms of another
tensor. Such a situation was first encountered in investigations
of phenomenological constituent equations for macroscopic
systems (see, e.g., [43]). The starting point in the analysis is
the Cayley-Hamilton theorem [44,45], by which an arbitrary
function f(A) of a3 x 3 matrix A can be expressed as

F(A)ap = Co(A)sap + C1(A)Agp + C2(A)AZ,

where the scalar functions C;(A) = C;(ay, a2, a3) (i =0, 1, or
2) depend only on three independent invariants of A: a; (trace
of A), ay (trace of A?), and a3 (determinant of A). In this
case, matrix A is a rank-2 (reducible) tensor (A = 2) and the
tensor field f(A) is also a rank-2 (reducible) tensor (L = 2).
Coupling of rank-2 tensors to L = 2 simply corresponds to
multiplying matrices, and then Eq. (A1) can be derived from
the Taylor expansion of f(A) combined with the observation
that every matrix obeys its own characteristic equation [any
power A" (n > 2) can be written as a linear combination of
AY A' and A?].

In applications presented in this study, we are interested in
spherical (irreducible) tensors and tensor fields corresponding
to the rotation group O(3),

(AL)

d(eBy) = ¢'v i bl gie; (A2)

compare Eq. (43a). In this case, x;, is called an irreducible
spherical tensor of rank A [46] if, in the rotated reference frame
it, can be expressed as

A
X =ld @By)xd@By)liw= Y D @BY)Xou  (A3)

u==2

where D,ﬁ, M(a,By) are the Wigner functions [46].
Now let ®; 4 be a tensor field of x;,:

L
Dy = Y Dipn(@By)®ru, (A4)
M=—L
which is a function of 2A 4 1 components of x;,,,
Dy = Py (), (A5)
such that
Q)= CDLM’(X)/\M')- (A6)

In other words, we are interested only in tensor fields being
the isotropic functions of x;,, [43].

Condition (A6) is essential: It states that the rotated tensor
field @} ,, can be obtained by calculating the original tensor
field @, at arguments that are the rotated tensor components
X, w Of X3 It means that functions (AS5), apart from depending
on x,,, donotdepend on any other tensor object (fixed material
tensor). If they did, values of the rotated tensor field & ,,,
could have been obtained by rotating the arguments x;, and
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all material tensors simultaneously, but otherwise the rotation
of arguments suffices.

From Eq. (Al) we derive the general form of the
quadrupole (L = 2) field ®,), being an isotropic function of
the quadrupole tensor x; [47]:

Dom(x2) = Ci(lx2 x x2lo> [x2 X X2 X x2lo)x2m
+ Ca[x2 X x2lo. [x2 x x2 X x2lo)x2 X x2lom-
(A7)

The notation [ x]; means the vector coupling to multipolarity
L. The symbols x and - for the vector and scalar products of
vectors, used previously in the paper, are, up to coefficients,
equivalent to [ x]; and [x ]y, respectively.

To generalize Eq. (A7) to arbitrary values of L and A,
one should first establish a (finite) complete system of i;
irreducible elementary tensors ¢, characteristic for a given
A. (Irreducible means that none of them can be expressed
rationally and integrally in terms of the others.) The highest
components (m =1[) of the elementary tensors are called
elementary factors. The elementary tensors are constructed by
successive vector couplings of n ;s to different intermediate
I’s (meaning that ! < n}):

i [c]
ehy = (D = [0 x - x x|, (A8)
—
n
fori =1,...,i,, where symbol [c], redundant in most cases,

stands for a specific coupling scheme. Tensor y; = s(kl) is

itself an elementary tensor. In the particular case of [ = 0, all
independent scalars are elementary factors. Completeness of
the system of elementary factors does not exclude the relations
(syzygies) between them. The syzygies can be written in the
form

ek o) =0,

for j =1,..., ji, where §; are rational integral functions.
Again, the number of independent syzygies is finite and
depends on A.

Having determined the elementary tensors, we align them
(i.e., couple to the maximal multipolarity) to get a tensor of
rank L:

(A9)

[8; X 8;” X "']L=l+l’+...' (A10)

Alignment of the elementary tensors means multiplication for
the elementary factors. Because of the existence of syzygies
(A9), some aligned tensors can be expressed in terms of others.
Using syzygies, we find a finite number k,; of independent
aligned tensors (p,’i u(&) (k=1,..., k), called fundamental
tensors. It turns out that an arbitrary tensor field of rank L being
the isotropic function of tensor x; can always be presented in
the form

kkL

LX) = Y Celeo)pf p(©),
k=1

(Al1)

where argument g of Cy, stands for all the independent scalars.
Scalar functions Cy can, in general, be, arbitrary. However, the
form of some Cy can be restricted. For instance, high powers
of some scalars 86 do not appear. This is because a syzygy can
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make an expression (g})" (el )" ... (el,,)"" for some i and
i’,...,i",;andnandn’, ..., n", dependent on other elementary
factors. We refer to Eq. (A11) as the GCH theorem.

An explanation of the procedure just presented can be traced
back to the theory of covariants of algebraic forms given by
Dickson [48], which, however, uses notations quite different
from those used here. Let us sketch the main points of the
theory [44]. Let the 2A-ic (of order 2A) algebraic form, binary
in variables x1, x;, be given by

Foo(x1, X25 Yo—ns -+ Xon)
A 1/2
2A _
=Y ( ) X TR (A12)
A—u
n=—A
with ), (u=—A,...,A) being the set of coeffi-

cients. Replacing the variables with a linear nonsingular
transformation,

(A13)

2
Xp = E Ak Yies
k=1

fori = 1,2, in the form of Eq. (A12), one obtains

Fo(x1, x2; x0) = G (y1, y2; X2)

ST
At A—
= (A_/) VanGoy "y

p=—2
(Al14)
where 1, is a new set of coefficients. The 2/-ic form,
" 1 21 \ 2
Hy (i xs ) = ) (l - m) i O™, (ALS)
m=—1
such that
Hy (1, y23 ¥2) = [det(A)]" Hy (x1, %25 ), (A16)

we call a (homogeneous) covariant of weight w of F.
Coefficients h;,':f are homogeneous polynomials of order n
(called the degree of the covariant) such that An =1+ w.
When [ = 0, H" = A% is an invariant of F. The polynomial
in front of the highest power of x; in Eq. (A15), hg’) is called a
semi-invariant of F. The theory of covariants of algebraic
forms shows that an arbitrary covariant can be expressed
rationally and integrally in terms of a finite, irreducibly
complete set of covariants, which can be related rationally
and integrally to each other by a finite system of independent
syzygies (Gordan-Hilbert finiteness theorem; see Ref. [44]).
The number of basis covariants for a few of the lowest A’s is
listed by Olver [49].

What do the covariants of algebraic forms have in common
with the tensor fields as functions of tensors? It turns out
that semi-invariant h;}”( x») forms the highest projection of a
tensor of rank / dependent on the tensor of rank A [the heaviest
state of an irreducible representation of SO(3) embedded in
an irreducible representation of SU(2A + 1)]. The remaining
polynomials in Eq. (A15), h;ﬁ;( X».), are other components of
the same tensor. Proof of this statement is outlined in Ref. [50].
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Constructive proof of Eq. (A11) can be performed by an
explicit construction of a basis in the space of functions of y;
and demonstration that it has the structure of Eq. (A11). In the
case of A = 1, we know that an arbitrary tensor field of rank
L, as a function of the position vector r, takes the form

Duy(r) = CLr)Yiw (4), (A17)

’
where #r2 =r -r and Y., is the spherical harmonic. From
Eq. (A17) we see immediately that, in the case of A = 1, there
are two elementary tensors (i; = 2), namely, vector r and
scalar 72, and no syzygy (j; = 0). For every given L there is
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only one fundamental tensor (k;, = 1) of the form [46]
go(le,I(r): [r XF X -+
L

r
O(I’LYLM (—)
r

Xr]LM

(A18)

In particular, Eq. (A17) shows that an arbitrary isotropic vector
field takes the form

®(r)=C(r)r. (A19)

Other examples are constructions of the oscillator bases in
cases of A = 2 (see Ref. [47] and references quoted therein)
and X = 3 [50].
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