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Time-odd mean fields in covariant density functional theory: Nonrotating systems
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Time-odd mean fields (nuclear magnetism) are analyzed in the framework of covariant density functional
theory (CDFT) by blocking the single-particle states with a fixed signature. It is shown that they always provide
additional binding to the binding energies of odd-mass nuclei. This additional binding only weakly depends on
the relativistic mean-field parametrization, reflecting good localization of the properties of time-odd mean fields
in CDFT. The underlying microscopic mechanism is discussed in detail. Time-odd mean fields affect odd-even
mass differences. However, our analysis suggests that the modifications of the strength of pairing correlations
required to compensate for their effects are modest. In contrast, time-odd mean fields have a profound effect on
the properties of odd-proton nuclei in the vicinity of the proton drip line. Their presence can modify the half-lives
of proton emitters (by many orders of magnitude in light nuclei) and considerably affect the possibilities of their
experimental observation.
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I. INTRODUCTION

The development of self-consistent many-body theories
aiming at the description of low-energy nuclear phenomena
provides the necessary theoretical tools for an exploration of
the nuclear chart into known and unknown regions. Theoretical
methods (both relativistic and nonrelativistic) formulated
within the framework of density functional theory (DFT)
and effective field theory (EFT) are the most promising
tools for the global investigation of the properties of atomic
nuclei. The DFT and EFT concepts in nuclear structure
models have been extensively discussed in a number of
recent articles [1–4]. The power of the models based on
these concepts is essentially unchallenged in medium- and
heavy-mass nuclei, where ab initio-type few-body calculations
are computationally impossible and the applicability of the
spherical shell model is restricted to a few regions in the
vicinity of double shell closures.

The self-consistent mean-field approach to nuclear structure
represents an approximate implementation of the Kohn-Sham
DFT [5–8], which is successfully employed in the treatment
of the quantum many-body problem in atomic, molecular, and
condensed matter physics. The DFT enables a description of
the nuclear many-body problem in terms of energy density
functionals (EDFs), and self-consistent mean-field models
approximate these functionals, which include all higher-
order correlations, with powers and gradients of ground-state
nucleon densities (see Refs. [3] and [9–12] and references
therein). EDFs are universal in the sense that they can be
applied to nuclei all over the periodic table. Although they
model the effective interaction between nucleons, EDFs are
not necessarily related to any nucleon-nucleon (NN) potential.
By employing these energy functionals, adjusted to reproduce
the empirical properties of symmetric and asymmetric nuclear
matter, and bulk properties of some spherical nuclei, the
current generation of self-consistent mean-field methods has
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achieved a high level of accuracy in the description of ground
states and properties of excited states in arbitrarily heavy
nuclei, exotic nuclei far from β stability, and nuclear systems
at the nucleon drip lines (see Refs. [10], [11], and [13] and
references therein).

Self-consistent methods (such as Hartree-Fock and Hartree-
Fock-Bogoliubov) based on zero-range Skyrme forces or
finite-range Gogny forces are frequently used in nuclear
structure calculations [10,14]. These approaches represent
nonrelativistic EDFs based on the Schrodinger equation for
the many-body nuclear problem [10].

On the other hand, one can formulate the class of relativistic
models based on the Dirac formalism, which can generally be
defined as covariant density functionals (CDFs) [11]. These
models, such as quantum hadrodynamics [9,15], are based on
concepts of nonrenormalizable effective relativistic field theo-
ries and DFTs, and they provide a very interesting relativistic
framework for studies of nuclear structure phenomena at and
far from the valley of β-stability [11]. Relativistic mean-field
(RMF) models [15] are analogs of the Kohn-Sham formalism
of the DFT [7], with local scalar and vector fields appearing
in the role of local relativistic Kohn-Sham potentials [1,9].
The EDF is approximated with the powers and gradients of
auxiliary meson fields or nucleon densities. The EFT building
of the EDT allows error estimates to be made, provides a
power counting scheme that separates long- and short-distance
dynamics, and, therefore, removes model dependences from
the self-consistent mean field approach [16]. In the description
of nuclear ground states and the properties of excited states
the self-consistent mean-field implementations of quantum
hadrodynamics, the relativistic Hartree-Bogoliubov (RHB)
model, and the relativistic (quasiparticle) random phase
approximation, and their subversions, are employed [11].

The mean field is a basic concept of every DFT. One can
specify time-even and time-odd mean fields [17,18], dependent
on the response of these fields to the action of a time-reversal
operator. The properties of time-even mean fields in nuclear
density functionals are reasonably well understood and defined
[10,11]. This is because (i) many physical observables such as
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binding energies and radii are sensitive only to these fields,
and (ii) the model parameters are fitted to such physical
observables.

On the other hand, the properties of time-odd mean fields,
which appear only in nuclear systems with broken time-
reversal symmetry, are still poorly understood. However, it
is already known that these fields are important for proper
description of rotating nuclei [17–21], band terminations
[22,23], magnetic moments [24], isoscalar monopole vibra-
tions [25], electric giant resonances [26], high-amplitude
collective dynamics [27], fusion process [28], the strengths
and energies of Gamow-Teller resonances [29], the binding
energies of odd-mass nuclei [30–32], and the additivity of
angular momentum alignments [33]. They also may play a
role in N = Z nuclei [30,34] and affect the definition of the
strength of pairing correlations [32,35].

There was a dedicated effort to better understand time-odd
mean fields in the framework of the Skyrme EDF theory
(see Refs. [17,19,22,29] and references therein). On the
contrary, much less attention has been paid to these fields
in covariant density functional theory (CDFT) [18,24,32,35].
This is because time-odd mean fields are defined through
the Lorentz invariance in the CDFT [11], and thus they do
not require additional coupling constants. On the other hand,
time-odd mean fields are not well defined in nonrelativistic
DFTs [17,29], and as a consequence, there are a number of
open questions related to these fields. The current article aims
for a better and systematic understanding of time-odd mean
fields and their impact on physical observables in nonrotating
nuclei in the framework of the RMF realization of the CDFT.
The results of the study of these fields in rotating nuclei will
be presented in a forthcoming article [36] that represents a
continuation of the current investigation.

The paper is organized as follows. The cranked RMF theory
and its details related to time-odd mean fields are discussed in
Sec. II. Section III is devoted to the analysis of the impact
of time-odd mean fields on binding energies of odd-mass
nuclei. The mass and particle number dependences of this
impact and their connections with odd-even mass staggerings
are also considered. The microscopic mechanism of additional
binding in odd-mass nuclei induced by time-odd mean fields
is analyzed in Sec. IV. The impact of time-odd mean fields on
the properties of proton-unstable nuclei is studied in Sec. V.
Section VI considers how time-odd mean fields modify the
properties of odd-odd nuclei. Finally, Sec. VII reports the main
conclusions of our work.

II. THEORETICAL FORMALISM

The results presented in the current article were obtained
using the cranked relativistic mean field (CRMF) theory
[21,37,38]. This theory has been successfully employed for
the description of rotating nuclei (see Ref. [39] and references
therein) in which the time-odd mean fields play an important
role, but it is also able to describe nuclear systems with
broken time-reversal symmetry in the intrinsic frame at no
rotation. In this theory pairing correlations are neglected,
which allows better isolation of the effects induced by time-odd

mean fields. The CRMF computer code is formulated in
the signature basis. As a result, the breaking of Kramer’s
degeneracy of single-particle states is taken into account in
a fully self-consistent way. This is important for an accurate
description of time-odd mean fields in fermionic channels (see
Sec. IV). The most important features of the CRMF formalism
related to time-odd mean fields are outlined here (for more
details see Refs. [37] and [38]) for the case of no rotation
(rotational frequency �x = 0).

In the Hartree approximation, the stationary Dirac equation
for nucleons in the intrinsic frame is given by

ĥDψi = εiψi, (1)

where ĥD is the Dirac Hamiltonian for a nucleon with mass
m:

ĥD = α[−i∇ − V (r)] + V0(r) + β[m + S(r)]. (2)

It contains the average fields determined by the mesons, that
is, the attractive scalar field S(r),

S(r) = gσσ (r), (3)

and the repulsive time-like component of the vector field V0(r),

V0(r) = gωω0(r) + gρτ3ρ0(r) + e
1 − τ3

2
A0(r). (4)

A magnetic potential V (r),

V (r) = gωω(r) + gρτ3ρ(r) + e
1 − τ3

2
A(r), (5)

originates from the space-like components of the vector
mesons. Note that in these equations, the four-vector com-
ponents of the vector fields ωµ, ρµ, and Aµ are separated into
time-like (ω0, ρ0, and A0) and space-like [ω = (ωx, ωy, ωz),
ρ = (ρx, ρy, ρz), and A = (Ax,Ay,Az)] components. In the
Dirac equation the magnetic potential has the structure of a
magnetic field. Therefore the effect produced by it is called
nuclear magnetism (NM) [37].

The corresponding meson fields and the electromagnetic
potential are determined by the Klein-Gordon equations,{−	 + m2

σ

}
σ (r) = −gσ

[
ρn

s (r) + ρp
s (r)

]
−g2σ

2(r) − g3σ
3(r), (6){−	 + m2

ω

}
ω0(r) = gω

[
ρn

v (r) + ρp
v (r)

]
, (7){−	 + m2

ω

}
ω(r) = gω[ jn(r) + jp(r)] (8)

{−	 + m2
ρ}ρ0(r) = gρ

[
ρn

v (r) − ρp
v (r)

]
, (9){−	 + m2

ρ

}
ρ(r) = gρ[ jn(r) − jp(r)], (10)

−	A0(r) = eρp
v (r), −	A(r) = e jp(r), (11)

with source terms involving the various nucleonic densities
and currents,

ρn,p
s (r) =

N,Z∑
i=1

[ψi(r)]†β̂ψi(r), (12)

ρn,p
v (r) =

N,Z∑
i=1

[ψi(r)]†ψi(r), (13)
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jn,p(r) =
N,Z∑
i=1

[ψi(r)]†α̂ψi(r), (14)

where the labels n and p are used for neutrons and protons,
respectively. In these equations, the sums run over the occupied
positive-energy shell model states only (no-sea approxima-
tion) [15,40]. Note that the spatial components of the vector
potential A(r) are neglected in the calculations because the
coupling constant of the electromagnetic interaction is small
compared with the coupling constants of the meson fields.

The magnetic potential V (r) in the Dirac equation as well
as the currents jn,p(r) in the Klein-Gordon equations do
not appear in the RMF equations for time-reversal systems
[15]. Similarly to the nonrelativistic case, their presence
leads to the appearance of time-odd mean fields. Thus, we
use the terms nuclear magnetism and time-odd mean fields
interchangeably throughout this article. The magnetic potential
is the contribution to the mean field that breaks time-reversal
symmetry in the intrinsic frame and induces nonvanishing
currents jn,p [Eq. (14)] in the Klein-Gordon equations
[Eqs. (8) and (10)], which are related to the space-like
components of the vector mesons. In turn, the space-like
components of the vector ω and ρ fields form the magnetic
potential (5) in the Dirac equation. Note that the current jn,p(r)
changes sign upon the action of the time-reversal operator [41].
Together with densities it forms the covariant four-vector
jµ = {ρ, j}. As a consequence, these two quantities (ρ and j )
do not transform independently under Lorentz transformation.
This explains why the structure of the Klein-Gordon equations
for time-like and space-like components of vector mesons is
the same [compare, e.g., Eqs. (7) and (8) for ω mesons] and
why the same coupling constant stands in front of the densities
and currents on the right-hand side of these equations.

The spatial components of the vector ω and ρ mesons lead
to the interactions between possible currents. For the ω meson
this interaction is attractive for all combinations (pp, nn, and
pn currents), and for the ρ meson it is attractive for pp and
nn currents but repulsive for pn currents. Within mean field
theory such currents occur only in the situations of broken
time-reversal symmetry.

Note that time-odd mean fields related to NM are defined
through the Lorentz invariance [11] and thus they do not
require additional coupling constants: the coupling constants
of time-even mean fields are used also for time-odd mean
fields.

The currents are isoscalar and isovector in nature for ω and
ρ mesons [Eqs. (8) and (10)], respectively. As a consequence,
the contribution of the ρ meson to the magnetic potential and
total energy is marginal in the majority of cases even at the
neutron drip line (see Sec. IV B for details). Thus, time-odd
mean fields in the RMF framework depend predominantly
on the spatial components of the ω meson. Neglecting the
contribution of the ρ meson, one can see that only two
parameters, namely, the mass mω and coupling constant gω

of the ω meson, define the properties of time-odd mean
fields [Eqs. (5), (8), and (10)]. Figure 1 clearly indicates that
these parameters are well localized in the parameter space for
parametrizations of the RMF Lagrangian in groups A, B, and
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FIG. 1. The mω and gω parameters of different modern
parametrizations of the RMF Lagrangian. They are combined into
four groups, dependent on how self- and mixed couplings are intro-
duced. Group A represents parametrizations that include nonlinear
self-couplings only for the σ meson. Group B contains parametriza-
tions that include self-couplings for σ and ω mesons (and ρ mesons in
the case of PK1R). Group C represents parametrizations that include
density-dependent meson-nucleon couplings for σ , ω, and ρ mesons.
The other parametrizations are included in group D. SVI and SVI-2
parametrizations neglect nonlinear self-couplings for the σ meson but
include isoscalar-isovector couplings. The other parametrizations in
group D include mixed interaction terms (such as isoscalar-isovector
couplings [52]) in addition to nonlinear self-couplings for the σ

meson. Parameters are taken from Refs. [40] (NL1), [42] (NL3), [43]
(NL3∗), [44] (NLZ), [45] (NLZ2), [47] (NLSH), [46] (NLRA-1), [48]
(PK1,PK1R), [49] (TMA), [50] (TM1), [51] (SVI1,SVI-2), [52]
(FSUGold), [53] (FSUGZ00,FSUGZ03,FSUGZ06), [54] (TW99),
[55] (DDME1), [56] (DDME2), and [48] (PKDD). Note that we
omitted mass-dependent terms for gω in the TMA parametrization,
which is a good approximation for heavy nuclei, as gω = 12.842 +
3.191A−0.4 [49].

C (see caption to Fig. 1 for group definitions). This suggests
that the parameter dependence of the impact of time-odd mean
fields on physical observables should be quite weak for these
types of parametrizations. Indeed, the analysis of terminating
states in Ref. [23] showed that time-odd mean fields are defined
with an accuracy of about 15% for parametrizations of the
RMF Lagrangian containing only nonlinear self-couplings for
the σ meson (group A).

On the other hand, Fig. 1 suggests that time-odd mean fields
may be less accurately defined in parametrizations in group
D, which include mixed interaction terms such as isoscalar-
isovector couplings. However, it is premature to make such
a conclusion because these parametrizations have not been
tested extensively even on nuclear structure data sensitive to
time-even mean fields. This is contrary to the parametrizations
of groups A–C, which have successfully passed this test.

Investigation of all these parametrizations is definitely
beyond the scope of this study. Thus, the present investigation
focused on the study of time-odd mean fields in the CDFT
with parametrizations of the RMF Lagrangian including
only nonlinear self-couplings of the σ meson (group A
parametrizations). The results of the study of time-odd mean
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fields in groups B–D parametrizations of meson-coupling
models as well as within point-coupling models is presented
in the forthcoming companion paper [36].

The total energy of the system is given in Refs. [37] and
[38]. To facilitate the discussion we split it into different terms
as1

Etot = Epart + Ecm − Eσ − EσNL − ETL
ω − ETL

ρ

− ESL
ω − ESL

ρ − ECoul, (15)

where Epart and Ecm represent the contributions from fermionic
degrees of freedom, whereas the other terms are related to
mesonic (bosonic) degrees of freedom. In Eq. (15)

Epart =
A∑
i

εi (16)

is the energy of the particles moving in the field created by the
mesons (εi is the energy of the ith particle and the sum runs
over all occupied proton and neutron states),

Eσ = 1

2
gσ

∫
d3rσ (r)

[
ρp

s (r) + ρn
s (r)

]
(17)

is the linear contribution to the energy of the isoscalar-scalar
σ field,

EσNL = 1

2

∫
d3r

[
1

3
g2σ

3(r) + 1

2
g3σ

4(r)

]
(18)

is the nonlinear contribution to the energy of the isoscalar-
scalar σ field,

ETL
ω = 1

2
gω

∫
d3rω0(r)

[
ρp

v (r) + ρn
v (r)

]
(19)

is the energy of the time-like component of the isoscalar-vector
ω field,

ETL
ρ = 1

2
gρ

∫
d3rρ0(r)

[
ρn

v (r) − ρp
v (r)

]
(20)

is the energy of the time-like component of the isovector-vector
ρ field,

ESL
ω = −1

2
gω

∫
d3rω(r)[ jp(r) + jn(r)] (21)

is the energy of the space-like component of the isoscalar-
vector ω field,

ESL
ρ = −1

2
gρ

∫
d3rρ(r)[ jn(r) − jp(r)] (22)

is the energy of the space-like component of the isovector-
vector ρ field,

ECoul = 1

2
e

∫
d3rA0(r)ρp

v (r) (23)

is the Coulomb energy, and

Ecm = −3

4
h̄ω0 = −3

4
41A−1/3MeV (24)

1We follow Refs. [57] and [58] in the selection of the signs of energy
terms.

is the correction for the spurious center-of-mass motion ap-
proximated by its value in a nonrelativistic harmonic oscillator
potential.

The total energy of the system can alternatively be written
as (similar to Refs. [57] and [58])

Etot = Ekin + Eint + Ecm, (25)

where the kinetic energy Ekin is given by

Ekin = Epart − 2(Eσ + ETL
ω + ETL

ρ + ECoul), (26)

and the interaction energy between nucleons Eint by

Eint = Eσ + ETL
ω + ETL

ρ + ECoul

− EσNL − ESL
ω − ESL

ρ . (27)

However, this representation of the total energy has a dis-
advantage compared with Eq. (15), as it does not provide
direct access to the particle energy Epart. The latter plays
an important role in the understanding of the breaking of
Kramer’s degeneracy of time-reversal orbitals in the presence
of time-odd mean fields (see Sec. IV A for details). Thus,
further discussion of the total energy is based mostly on
Eq. (15). However, we also provide the results of calculations
for the kinetic energy Ekin.

CRMF equations are solved in the basis of an anisotropic
three-dimensional harmonic oscillator in Cartesian coordi-
nates characterized by the deformation parameters β0 = 0.3
(β0 = 0.4 in the case of superdeformed states) and γ = 0◦
as well as the oscillator frequency h̄ω0 = 41A−1/3 MeV.
Truncation of the basis is performed in such a way that all
states belonging to shells up to fermionic NF = 12 and bosonic
NB = 16 are taken into account in the calculations of light- and
medium-mass nuclei. The fermionic basis is increased up to
NF = 14 in calculations of actinides. Numerical analysis indi-
cates that this truncation scheme provides sufficient numerical
accuracy for the physical quantities of interest.

Single-particle orbitals are labeled [Nnz�]�sign. [Nnz�]�
are the asymptotic quantum numbers (Nilsson quantum num-
bers) of the dominant component of the wave function. The
“sign” superscripts to the orbital labels are sometimes used to
indicate the sign of the signature r for that orbital (r = ±i).
The majority of the calculations are performed with the NL3
parametrization [42] of the RMF Lagrangian.

Many-particle configurations (hereafter, nuclear configu-
rations or configurations) are specified by the occupation
of available single-particle orbitals. In calculations without
pairing, the occupation numbers n are integers (n = 0 or 1).
In odd nuclei, all single-particle states with the exception
of one are pairwise occupied. We call this occupied single-
particle state of fixed signature, for which its time-reversal
(signature) counterpart state is empty, the blocked state to
simplify the discussion. The total signature and the parity of
the configuration are the same as those of the blocked state.
In the CRMF code, it is possible to specify the occupation of
either the r = +i or the r = −i signature of the single-particle
state. Specification of the nuclear configuration by means of
listing all occupied single-particle states is impractical. Thus,
we label the nuclear configuration in odd-mass nuclei by the
Nilsson label and the signature of the blocked state. Note that

014309-4



TIME-ODD MEAN FIELDS IN COVARIANT DENSITY . . . PHYSICAL REVIEW C 81, 014309 (2010)

many physical observables, such as additional binding owing
to NM, do not depend on the signature of the blocked state in
odd-mass nuclei. In these cases, we omit the signature from the
configuration label. In odd-odd nuclei, the Nilsson labels of
the blocked proton and neutron states and their signatures are
used for configuration labeling. Note that labeling by means
of Nilsson labels is performed only when the calculated shape
of the nuclear configuration is prolate or near-prolate.

To investigate the impact of NM (time-odd mean fields)
on physical observables, CRMF calculations are performed in
three calculational schemes for fixed configurations.

(i) Fully self-consistent calculations with NM included
(hereafter denoted NM calculations),2 which take into
account spacelike components of the vector mesons
[Eqs. (8), (10) and (5)], currents [Eqs. (8), (10), and
(14)], and magnetic potential V (r) [Eq. (5).

(ii) Fully self-consistent calculations without NM (here-
after denoted WNM calculations),3 which omit space-
like components of the vector mesons [Eqs. (8), (10)
and (5)], currents [Eqs. (8), (10), and (14)], and
magnetic potential V (r) [Eq. (5)]. Note that the results
of the NM and WNM calculations are always compared
for the same nuclear configuration.

(iii) Perturbative calculations (physical quantities of interest
are indicated by the superscript “pert”). Fully self-
consistent calculations with NM provide a starting
point. Using their fields as input fields, only one
iteration is performed in calculations without NM: this
provides perturbative results. Time-even mean fields are
the same in both (fully self-consistent and perturbative)
calculations. Thus, the impact of time-odd mean fields
on calculated quantities [e.g., different terms in the
total energy; see Eq. (15)] is defined as the difference
between the values of this quantity obtained in these two
calculations. In this way, the pure effects of time-odd
mean fields in fermionic and mesonic channels of the
model are isolated because no polarization effects are
introduced into time-even mean fields.

These are the ways in which the effects of time-odd
mean fields can be studied, and as such they are frequently
used in DFT studies, in both relativistic and nonrelativistic

2This method is equivalent to the Hartree-Fock method of Ref. [31].
3The difference between the WNM method of the present paper

and the HFE method of Ref. [31] is only technical: it is related
to the treatment of the occupation of the pair of energy degenerate
states by an odd particle. The opposite signature states of this pair
are occupied by an odd particle with probability 0.5 (in the filling
approximation) in the HFE method (see Sec. IIC of Ref. [31]). On the
contrary, one signature state of this pair is occupied with probability
1, whereas the other is empty, in the WNM method. However, time-
reversal invariance is conserved in both approaches. This means that
the Kramer’s degeneracy of the single-particle levels is not violated
and time-odd mean fields are not introduced into the system. As
a consequence, if employed within the same framework, these two
methods lead to the same results in calculations without pairing, as
polarization and other effects induced by odd particles do not depend
on the signature of the occupied state.

frameworks [17,18,21,23,24,30,31,59]. One should keep in
mind, however, that if time-odd fields are neglected, the
local Lorentz invariance (Galilean invariance in nonrelativistic
frameworks [12,17]) is violated. The inclusion of time-odd
mean fields restores the Lorentz invariance.

III. BINDING ENERGIES IN ODD-MASS NUCLEI

The time-reversal invariance is conserved in the ground
states of even-even nuclei. The nucleon states are then pairwise
degenerated, and the contribution of the state to the currents
cancels with the contribution of its time-reversed partner.
Time-odd mean fields reveal themselves in odd- and odd-odd
mass nuclei and in two-(multi-)quasiparticle states of even-
even nuclei. This is because an unpaired (odd) nucleon breaks
the time-reversal invariance in the intrinsic frame and produces
the contribution to the currents and spin. In this case, the
Kramer’s degeneracy of time-reversal partner orbitals is also
broken.

Modifications of the binding energies and quasiparticle
spectra are the most important issues when considering time-
odd mean fields in nonrotating systems. Binding energies
are important in nuclear astrophysics applications [60], and
their modifications owing to time-odd mean fields may have
considerable consequences for r- and rp-process abundances.
Thus, it is important to understand the influence of time-odd
mean fields on binding energies of odd- and odd-odd mass
nuclei, especially in the context of mass table fits [61]. With the
current focus on spectroscopic-quality DFT [62], knowledge
of how time-odd mean fields influence the relative energies
of different (quasi)particle states in model calculations is also
needed.

Whereas there has been considerable interest in the study
of time-odd mean fields in odd- and odd-odd mass nuclei at
no rotation within the Skyrme EDF [30,31], relatively little
is known about their role in the framework of the CDFT. So
far, the impact of time-odd mean fields on binding energies
has been studied in the CDFT framework only in odd-mass
nuclei around doubly magic spherical nuclei [63] and in a few
deformed nuclei around 32S [64] and 254No [32].

A. Binding energies in light nuclei

The impact of NM on the binding energies of light odd-mass
nuclei is shown in Fig. 2. One can see that in all cases the
presence of NM leads to additional binding, the magnitude of
which is nucleus and state dependent. The absolute value of
this additional binding is typically below 200 keV and only
reaches 300 keV in some lower-mass nuclei. On average, the
magnitude of additional binding owing to NM is inversely
correlated with the mass of the nucleus; it is the largest in the
lightest nuclei and the smallest in the heaviest nuclei. For each
isotope chain, it is the largest in the vicinity of the proton drip
line and the smallest in the vicinity of the neutron drip line. The
polarization effects induced by NM and the energy splitting
between the blocked state and its unoccupied signature partner
induced by NM decrease with the increase in mass (compare
Tables I and II below). This explains the observed trends in
additional binding owing to NM.
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FIG. 2. (Color online) Impact of NM on binding energies of
light odd-mass nuclei. Calculations were performed with the NL3
parametrization of the RMF Lagrangian. They cover nuclei from the
proton drip line up to the neutron drip line.

Figure 3 shows that additional binding owing to NM only
weakly depends on the RMF parametrization; this is also seen
in the analysis of terminating states in Ref. [23]. In both cases,
the largest deviation from the NL3 results is observed in the
case of the NLSH parametrization.

It is interesting to compare these results with those obtained
in the Skyrme EDF (see Fig. 4 in Ref. [30]). The modifications
of total binding energy owing to time-odd mean fields are
given by the quantity Eto in Ref. [30], which is an analog of
the ENM − EWNM quantity. The general dependence of both
quantities on N − Z is similar in odd-mass nuclei, apart from a
few cases such as 43Ti and 43Sc in the SLy4 Skyrme EDF (Fig. 4
in Ref. [30]). Neither RMF nor Skyrme EDF calculations in
odd-mass nuclei indicate the enhancement of time-odd mean
fields in the vicinity of the N = Z line. This is contrary to
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FIG. 3. (Color online) The same as Fig. 2 but for results obtained
with the indicated parametrizations of the RMF Lagrangian in Ar
isotopes. The structure of the ground states is shown by the Nilsson
labels. Only when the structure of the ground state is the same as in the
NL3 parametrization the results obtained with other parametrizations
are shown.

Ref. [30], which suggested that the effects of time-odd mean
fields are enhanced at the N = Z line. The absolute values of
the Eto and ENM − EWNM quantities are similar, being below
300 keV in the majority of cases. The principal difference
between the RMF and the Skyrme EDF lies in the fact that
time-odd mean fields are always attractive and show very
little dependence on parametrization in the RMF calculations
(this is also supported by analysis of terminating states; see
Ref. [23]), whereas they can be both attractive (SLy4 force) or
repulsive (SIII force) and show considerable dependence on
parametrization in the Skyrme EDF [30].

B. Binding energies in Ce (Z = 58) isotopes

The role of time-odd mean fields is studied here in medium-
mass Ce isotopes to facilitate comparison with the results
obtained within the Skyrme EDF with the SLy4 force in
Ref. [31]. This reference represents the most detailed study
of time-odd mean fields in odd-mass nuclei within the Skyrme
EDF. We consider the lowest configurations of positive and
negative parities, whereas Ref. [31] studies only the lowest
configurations in each nucleus.

Figures 4 and 5 show the additional binding owing to NM.
Comparison with the Skyrme EDF results in Ref. [31] reveals
a number of important differences. First, similar to the results
in light nuclei (Sec. III A) and in the actinide region (Sec. VI
H in Ref. [32]), time-odd mean fields are attractive in RMF
calculations for Ce isotopes. On the contrary, they are repulsive
in the SLy4 parametrization of the Skyrme EDF [31]. Note
that the SLy4 force produces attractive time-odd mean fields
in light nuclei [30]. This mass dependence of the effects of
time-odd mean fields in the Skyrme EDF may be because of the
competition between isovector and isoscalar effects [31]. The
average absolute magnitude of the change in binding owing to
time-odd mean fields in RMF calculations is only half that seen
in the Skyrme calculations with the SLy4 parametrization. It
was also checked in some examples that additional binding
owing to NM only weakly depends on the parametrization of
the RMF Lagrangian.

Second, the results of the calculations do not reveal a
strong dependence of additional binding owing to NM on
deformation. For example, the deformation of the ν[615]11/2
configuration in the 173−181Ce chain changes drastically from
β2 ∼ 0.23 down to β2 ∼ 0.06 (Fig. 4, bottom panel), but
the additional binding owing to NM remains almost the
same (Fig. 4, top panel). The ν[523]7/2 and ν[505]11/2
configurations are other examples of this feature (Fig. 5).

Third, the binding energy modifications owing to time-
odd mean fields are completely different in the RMF and
Skyrme EDF calculations. In the Skyrme EDF calculations,
the magnitude of these binding energy modifications is related
to three properties of the blocked orbital. In decreasing order
of importance, they are [31] a small � quantum number, a
down-sloping behavior of the energy of the single-particle state
with mass number A, and a large total angular momentum j

for the spherical shell from which the single-particle state
originates. For example, the binding energy modifications
owing to time-odd mean fields will be larger for a configuration
based on a blocked single-particle state with a small �

than for a configuration with a large � of the blocked
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FIG. 4. Impact of NM on the binding energies of positive-
parity configurations in odd-mass Ce (Z = 58) nuclei. The up-
per panel shows additional binding ENM − EWNM owing to NM
and its configuration dependence. Configurations are labeled with
the Nilsson labels of the blocked states; configurations at and
to the right of the Nilsson label up to the next Nilsson label have
the same blocked state. The bottom panel shows the corresponding
deformations of the configurations. Calculations were performed with
the NL3 parametrization of the RMF Lagrangian. They cover nuclei
from the proton drip line up to the neutron drip line.

state if both blocked states belong to the same j shell. On
the contrary, RMF calculations do not reveal this type of
correlation between additional binding owing to NM and
the structure of the blocked state. Indeed, the configurations
that have the largest changes in binding energies owing to
NM (|ENM − EWNM| � 0.1 MeV) are [413]5/2, [404]7/2,
[640]1/2, [631]3/2, [505]9/2, and [501]1/2.

C. Current distributions

When discussing current distributions, it is important
to remember that calculations are performed in the one-
dimensional cranking approximation. Although the rotational
frequency is equal to zero in the calculations, the results for
currents still obey the symmetries imposed by the cranking
approximation. This is clearly seen when considering the
signature quantum number in the limit of vanishing rotational
frequency �x (see Ref. [77]). In this case definite relations
exist between the states |ν, rν〉 of good signature rν (ν denotes
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FIG. 5. The same as Fig. 4 but for negative-parity configurations.

the set of additional quantum numbers) and the single-particle
states employed, usually in the low-spin limit. For the latter
states in axially symmetric nuclei, we obtain doubly degenerate
single-particle states |ν,�ν〉 and |ν, �̄ν〉, where �ν denotes the
projection of the angular momentum on the symmetry axis.
Here, |ν,�ν〉 is an eigenstate with definite angular momentum
projection �ν , whereas |ν, �̄ν〉 denotes the time-reversed state
(with angular momentum projection −�ν). In the limit of
vanishing rotational frequency �x = 0, the states |ν, rν〉 with
definite signature rν become linear combinations of the states
|ν,�ν〉 and |ν, �̄ν〉:

|ν, rν = −i〉 = 1√
2
{−|ν,�ν〉 + (−1)�ν−1/2|ν, �̄ν〉},

(28)
|ν, rν = +i〉 = 1√

2
{(−1)�ν−1/2|ν,�ν〉 + |ν, �̄ν〉}.

These relations may be considered as a transformation between
two representations of the single-particle states: the one with
good projection �ν (the |ν,�ν〉 representation) and the other
with good signature r (cranking representation). In the |ν,�ν〉-
representation the alignment of the angular momentum vector
of a particle is specified along the axis of symmetry. As a result,
the axial symmetry is conserved and only azimuthal currents
with respect to the symmetry axis are present. In the cranking
formalism (which also allows triaxial shapes), alignment of
the angular momentum vector of a particle is specified along
the x axis perpendicular to the axis of symmetry. As a result, the
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FIG. 6. (Color online) Total neutron current distributions jn(r) in the intrinsic frame in the y–z plane at x = 0.48 fm for several
configurations with signature (r = +i) in Ce nuclei. The only exceptions are the [413]5/2± configurations in 119Ce, for which both signatures
are shown in (d) and (e). Nilsson quantum numbers [Nnz�]� indicate the blocked state. Currents in (d) and (e) are plotted at arbitrary units
for better visualization. Currents in other panels are normalized to the currents in (d) and (e) by using factor F. This factor was chosen in such
a way that the current distribution for every nucleus is clearly shown. The shape and size of the nucleus are indicated by density lines, which
are plotted in the range 0.01–0.06 fm−3 in steps of 0.01 fm−3. The panels are arranged so that the � value of the Nilsson label of the blocked
state increases on going from (a) to (h).

currents follow the symmetries of the cranking approximation
and have the distributions discussed here.

Total neutron current distributions in the configurations of
selected nuclei having similar quadrupole deformations are

shown in Figs. 6 and 7. They are predominantly defined by
the currents generated by the blocked orbitals. This is clearly
visible from a comparison of Figs. 6 and 8: the latter figure
shows the currents produced by a single neutron in different
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FIG. 7. (Color online) The same as
Fig. 6 but for neutron current distributions
jn(r) in the z–x plane (at y = 0.48 fm)
and in the y–x plane (at z = 0.53 fm) for
the ν[413]5/2+ configuration of 119Ce.
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FIG. 9. (Color online) Neutron (a) and proton (b) dependences of additional binding owing to NM. Open and filled circles are used for
odd-proton and odd-neutron nuclei, respectively.

Nilsson states of the ν[660]1/2 configuration in 171Ce. Neutron
currents are characterized by complicated patterns in different
cross sections of the nucleus. Figure 8 clearly shows that
these patterns are defined by the density distributions of the
blocked states. Moreover, there are clear correlations between
the patterns of the currents in the y–z plane (z is the symmetry
axis and x is the rotation axis in the CRMF theory) and the �

value of the Nillson label of the blocked orbital (Figs. 6 and 8).
At � = 1/2, the single-particle densities are concentrated in
the vicinity of the axis of symmetry, and as a consequence, the
currents show circulations (vortices) that are concentrated in
the central region of the nucleus. However, with increasing �,
the densities (and, as a consequence, the currents) are pushed
away from the axis of symmetry of the nucleus toward the
surface area. In addition, the strength of the currents correlates
with �. As follows from the values of factor F the strongest
currents appear for the � = 1/2 states. These orbitals are
aligned with the axis of rotation (x axis) already at no rotation.
As a result, the single-particle angular momentum vector of the
� = 1/2 orbitals performs the precession around the x axis,
thus orienting the currents predominantly in the y–z plane.
This extra mechanism is not active in other configurations.
The strength of the currents decreases with the increase in
�. For example, currents generated by the blocked � = 11/2
orbitals are weaker by a factor of almost 200 than currents
generated by the blocked � = 1/2 orbitals (compare scaling
factors F in Fig. 6 for blocked states with different � values).

In the x–y plane, the majority of the configurations show
the current pattern (although with different strengths of the
currents and their localization in space) illustrated in Fig. 7(b);
the typical pattern of currents in the x–z plane is shown in
Fig. 7(a). Figures 6(d) and 6(e) show that the change of the
signature of the blocked orbital leads only to a change in the
direction of the currents.

D. Particle number dependences of additional binding owing
to nuclear magnetism

Neutron and proton number dependences of additional
binding owing to NM (the |ENM − EWNM| quantity) are

presented in Fig. 9. These figures are based on the results
obtained in Sec. III A and Sec. III B and on some extra
calculations. These extra calculations include odd-Z nuclei
with N = 94, odd-N nuclei with Z = 98, and odd-Z nuclei
with N = 154 and cover these isotope and isotone chains from
proton to neutron drip lines.

Calculations of nuclei around 249Cf were also performed to
check the impact of pairing on the (ENM − EWNM) quantity.
For the same blocked states, the (ENM − EWNM) values
obtained in the calculations without pairing in the present
article were compared with those obtained in the relativistic
Hartree-Bogoliubov calculations in Ref. [32] (see Table IV in
Ref. [32]). Although the pairing decreases additional binding
owing to NM in most cases, there are still one (quasi)-particle
configurations in which the |ENM − EWNM| quantity is smaller
in the calculations without pairing. This is a consequence of
the complicated nature of the ENM − EWNM quantity defined
by (i) the interplay of time-odd mean fields and the polarization
effects (Sec. IV) and (ii) the differences in the impact of pairing
on different terms of the total energy.

The calculated |ENM − EWNM| quantities were fitted by
simple parametrization,

	E = c

Qα
, (29)

where Q is equal to either proton Z or neutron N numbers.
Note that the |ENM − EWNM| values from odd-proton (odd-
neutron) nuclei were used in the fit of Z (N ) dependence of
	E. The results of the fits are shown by solid lines in Fig. 9.
One can see that the powers α are similar for different fits
(proton or neutron). On the other hand, the magnitudes c differ
considerably between proton and neutron quantities, indicating
weaker additional binding owing to NM for odd-proton nuclei.
This result is consistent with the analysis in Sec. VI.

The three-point indicator [66],

	(3)(N ) = πN

2
[B(N − 1) + B(N + 1) − 2B(N )], (30)

is frequently used to quantify the odd-even staggering (OES)
of binding energies. Here πN = (−1)N is the number parity
and B(N ) is the (negative) binding energy of a system with N
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particles. In Eq. (30), the number of protons Z is fixed, and N

denotes the number of neutrons, that is, this indicator gives the
neutron OES. The factor depending on the number parity πN

is chosen so that the OESs centered on even and odd neutron
number N will both be positive. An analogous proton OES
indicator, 	(3)(Z), is obtained by fixing the neutron number
N and replacing N with Z in Eq. (30).

The 	(3)(N ) [and, similarly, the 	(3)(Z)] quantity will be
modified in the presence of time-odd mean fields as

	
(3)
TO(N ) = 	

(3)
WTO(N ) + δETO, (31)

where the subscripts TO and WTO indicate the values obtained
in calculations with and without time-odd mean fields, and
δETO is the contribution coming from time-odd mean fields.
If the 	(3)(N ) quantity is centered at an odd-N nucleus, the
δETO quantity represents the change in binging energy of this
odd-mass nucleus induced by time-odd mean fields. This is
because the time-odd mean fields have no effect on the binding
energies of the ground states of even-even nuclei. Note that
with such selection δETO is negative if the time-odd mean
fields provide additional binding in the odd-mass nucleus.

In the CDF theory, the δETO quantity is equal to ENM −
EWNM and thus it is always negative: This result does not
depend on the RMF parametrization (see Sec. III A for
the dependence of the ENM − EWNM quantity on the RMF
parametrization). In addition, the magnitude of the δETO quan-
tity depends only weakly on the RMF parametrization. On the
contrary, the sign and the magnitude of δETO depends strongly
on the parametrization in the Skyrme EDF calculations. For
example, in calculations with the SLy4 force the δETO quantity
is positive for medium-mass nuclei [31,67,68] but negative
in light nuclei [30]. On the other hand, the δETO quantity
will be positive in light nuclei in calculations with the SIII
parametrizations [30].

It is interesting to compare the averaged effects of time-
odd mean fields as given by the 	E quantity with the
experimental global trends for OES as shown by dashed lines
in Fig. 2 in Ref. [67]. The latter trends were obtained using
phenomenological parametrization with the same functional
dependence as in Eq. (29) with c = 4.66 MeV (4.31 MeV)
and α = 0.31 for neutron (proton) data sets. Comparison
of theory and experiment suggests that time-odd mean-field
contributions to OES can be as large as 10% in light systems
and about 5%–6% in heavy systems. These are non-negligible
contributions that have to be taken into account when the
strength of the pairing interaction is defined from the fits to
experimental OES. The analysis of Sn isotopes in Ref. [35]
showed that time-even and time-odd polarization effects
induced by odd nucleons produce OES reduced by about 30%
compared to that obtained in standard spherical calculations.
As a consequence, an enhancement of pairing strength by about
20% is required to compensate for that effect. Our calculations
show a much smaller reduction of OES, in part because
the polarization effects in the time-even channel are already
taken into account in the calculations without NM. Thus, the
current calculations suggest that a much smaller increase in the
strength of pairing (by approximately 5%) would be required to

compensate for the reduction in OES owing to time-odd mean
fields.

IV. THE MECHANISM OF ADDITIONAL BINDING OWING
TO NUCLEAR MAGNETISM IN ODD-MASS NUCLEI

In this section, a detailed analysis of the impact of NM on
the energies of single-particle states and on different terms in
the total energy expression [Eq. (15)] is performed to better
understand the microscopic mechanism of additional binding
owing to NM. We use the ν[413]5/2 configuration of 119Ce as
an example in this analysis.

A. Energy splittings of time-reversal counterpart single-particle
states in the presence of nuclear magnetism

Figure 10 shows that the presence of time-odd mean fields
leads to the energy splitting 	Esplit(i) of the single-particle
states that are time-reversal counterparts. This corresponds to
the removal of the Kramer’s degeneracy of these states. One
of these states moves up by ≈	Esplit/2 compared with its
position in the absence of NM, whereas another moves down
by ≈	Esplit/2.

Detailed analysis of the single-particle spectra in 119Ce
and 123Xe reveals general features that are also found in
other nuclei. The 119Ce nucleus is axially symmetric (γ = 0◦),
whereas 123Xe is triaxial with γ = −26◦. This difference in the
symmetry of the nucleus results in important consequences:
the energy splittings appear in all single-particle states in
triaxial nuclei, whereas only states with � = �bl (the subscript
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FIG. 10. Columns (1) and (3): energy splittings 	Esplit between
different signatures of single-particle states in the presence of NM.
Results of the calculations are shown for configurations of 119Ce in
which either the ν[413]5/2− [column (1)] or the ν[413]5/2+ [column
(3)] states are blocked. These signatures are degenerated in energy in
calculations without NM [column (2)]. Note that the single-particle
states of interest are shown at arbitrary absolute energy in column
(2). Filled and open circles indicate occupied and unoccupied states,
respectively. Solid and dotted lines are used for the r = +i and
(r = −i) states, respectively.
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“bl” indicates the blocked state) experience such splittings in
axially symmetric nuclei. The former feature is because �

is not a good quantum number in triaxial nuclei and each
single-particle state represents a mixture of the basic states
with different values of �.

It is important to mention that occupied and unoccupied
states as well as proton and neutron states show energy
splittings (Fig. 10). Splittings of the proton and neutron states
of the same structure are similar. This is because the largest
contribution to the magnetic potential [Eq. (5)] is due to
space-like components of the ω-meson fields that do not
depend on the isospin. In addition, the occupied state is always
more bound than its unoccupied time-reversal counterpart.

A change in the signature of the blocked state leads to an
inversion of the signatures in all pairs of time-reversal orbitals
[compare columns (1) and (3) in Fig. 10]. The explanation
of this process is as follows. The change in the signature of
the blocked state results in a change in the direction of the
currents to the opposite one [compare Figs. 6(d) and 6(e)].
This leads to a change in the direction of the vector potential
V (r) in the Dirac equation to the opposite one, which in turn
causes inversion of the signatures in all pairs of time-reversal
orbitals. However, the additional binding owing to NM (the
ENM − EWNM quantity) does not depend on the signature of
the blocked state in odd-mass nuclei.

B. Polarization effects induced by nuclear magnetism

The polarization effects induced by NM were investigated
by considering its impact on different terms of the total energy
[Eq. (15)]. The results of this study are reported in Table I. One
can see that the total energy terms can be split into two groups,
dependent on how they are affected by NM. The first group
includes the EσNL, ETL

ρ , ESL
ρ and ECoul terms, which are only

TABLE I. Impact of NM on different terms of the total
energy [Eq. (15)] in the [413]5/2+ configuration of 119Ce.
Column (2) lists the absolute energies (MeV) of different energy
terms in the case where NM is neglected. Columns (3) and (4)
list the changes 	Ei = ENM

i − EWNM
i (MeV) in the energies of

these terms induced by NM in self-consistent [column (3)] and
perturbative [column (4)] calculations. Note that only nonzero
quantities are listed in column (4). Relevant quantities are also
listed for the kinetic energy Ekin [Eq. (26)] in the last row.

Quantity EWNM
i 	Ei 	E

pert
i

(1) (2) (3) (4)

Epart −2849.889 −0.410 −0.237
Eσ −17079.532 −2.231
EσNL 343.341 −0.017
ETL

ω 14356.156 2.054
ESL

ω 0.0 −0.124 −0.124
ETL

ρ 2.044 0.003
ESL

ρ 0.0 −0.010 −0.010
ECoul 481.196 0.017
Ecm −6.252 0.0
Etot −959.349 −0.104 −0.103
Ekin 1630.386 −0.099 −0.237

weekly influenced by NM, and thus, they are not discussed in
detail.

The second group is represented by the Epart, Eσ , ETL
ω ,

and ESL
ω terms, which are strongly affected by NM. The ESL

ω

term is directly connected with the nucleonic currents [see
Eq. (21)]. The Eσ and ETL

ω terms depend only indirectly on
time-odd mean fields: the minimization of the total energy in
the presence of time-odd terms leads to a very small change
in equilibrium deformation induced by NM. The quadrupole
and hexadecapole moments change by 10−4 of their absolute
value when the NM is switched on; a similar magnitude of
changes is seen also in Eσ and ETL

ω . One should keep in mind
that only the Eσ + ETL

ω quantity has a deep physical meaning,
as it defines a nucleonic potential; this sum is modified by NM
only at −177 keV.

The largest modification (by −410 keV) is seen in the
Epart energy, with half of it coming from the change in the
single-particle energy (by ≈−200 keV) of the blocked orbital
(the ν[413]5/2 orbital) in the presence of NM. Note that
because both signatures of other pairs of time-reversal orbitals
below the Fermi level are occupied, the large energy splittings
Esplit seen for some of them do not have a considerable impact
on Epart [see Eq. (16)], as this splitting is nearly symmetric
with respect to the position of these orbitals in the absence
of NM. Thus, the rest of the modification of Epart is related
to small changes in the single-particle energies of occupied
states caused by the changes in the equilibrium deformation
induced by NM.

This detailed analysis clearly indicates that the ENM −
EWNM quantity is defined by both time-odd mean fields and
the polarization effects in time-even mean fields induced by
time-odd mean fields. ENM − EWNM = −104 keV is a result
of near-cancellation of the contributions owing to fermionic
(−410 keV) and mesonic (−306 keV) degrees of freedom.
Note that the latter appears with a negative sign in Eq. (15).
The fermionic degrees of freedom are represented by the
Epart and Ecm terms, whereas the other terms of the total
energy are related to the mesonic degrees of freedom. The
fermionic contribution to ENM − EWNM is defined by more
or less equal contributions from time-odd mean fields and the
polarization effects in time-even fields. On the contrary, time-
odd mean fields define only approximately one-third (ESL

ω =
−0.124 keV) of the mesonic contribution to ENM − EWNM,
whereas the rest is caused by polarization effects in time-even
mean fields.

It turns out that these contributions are highly correlated,
as can be seen from the ratio 	Esplit/(ENM − EWNM) in the
Ce isotope chain (Fig. 11). 	Esplit depends only on time-odd
mean fields in the fermionic channel, whereas (ENM − EWNM)
depends both on time-odd mean fields and on the polarizations
effects in time-even mean fields in fermionic and mesonic
channels. One can see that 	Esplit/(ENM − EWNM) ≈ 4 for the
majority of nuclei. A similar relation also exists in the Skyrme
EDF calculations for Ce isotopes (see Eq. (7) in Ref. [31]).

The impact of NM on different terms of the total energy
in the ν[606]13/2+ configuration of the 183Ce nucleus, which
is located at the neutron drip line, is reported in Table II. A
comparison of Tables I and II clarifies the microscopic origin
of the general trend, which shows the decrease in the impact of
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TABLE II. The same as Table I but for the [606]13/2+

configuration of 183Ce.

Quantity EWNM
i 	Ei 	E

pert
i

(1) (2) (3) (4)

Epart −4139.512 −0.157 −0.095
Eσ −23720.872 −0.608
EσNL 541.423 −0.004
ETL

ω 19696.151 0.538
ESL

ω 0.0 −0.043 −0.043
ETL

ρ 236.863 0.009
ESL

ρ 0.0 −0.005 −0.005
ECoul 437.326 0.002
Ecm −5.416 0.0
Etot −1335.818 −0.045 −0.047
Ekin 2561.558 −0.045 −0.095

NM [reflected in the (ENM − EWNM) quantity] with increasing
particle (proton, neutron, or mass) number (see Figs. 2
and 9). In the 183Ce nucleus, the impact of NM on the ESL

ω and
ESL

ρ terms, which directly depend on time-odd mean fields,
decreases by factors of close to 3 and 2 relative to the 119Ce
case (see Table I), respectively. The impact of NM on the
Eσ , EσNL, ETL

ω , ETL
ρ , ECoul terms, which depend on time-odd

mean fields only through polarization effects, decreases even
more dramatically (by a factor of close to 4). Note that the
contribution of the ρ meson to the (ENM − EWNM) quantity is
marginal even at the neutron drip line. Other investigated cases
also indicate a decrease in the impact of NM with increasing
particle number.

The general trend of a decrease in the impact of NM
on binding energies with increasing particle number can be
understood in the following way. The effects attributable to
NM are produced by an odd particle that breaks time-reversal
symmetry. With increasing particle (proton, neutron, or mass)
number the nucleus becomes larger and thus more robust to
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FIG. 11. The ratio 	Esplit/(ENM − EWNM) in Ce isotopes. The
structure of blocked states is shown by the Nilsson labels; the states
at and to the right of the Nilsson label up to the next Nilsson label
have the same blocked state.

time-odd and polarization effects induced by the odd particle
(or, in other words, the effective impact of the single particle
on the total nuclear properties becomes smaller).

It is interesting to compare the results of self-consistent and
perturbative calculations. The 	Ei = ENM

i − EWNM
i quan-

tities are used for simplicity in further discussion. These
quantities are listed in columns (3) and (4) in Tables I
and II. The 	Eσ , 	EσNL, 	ETL

ω , and 	ETL
ρ quantities are

zero in perturbative calculations. 	ECoul = 0 for odd-neutron
systems in perturbative calculations (Tables I and II), but it
can differ from zero in systems containing an odd number of
protons (Tables III and IV). The results of self-consistent and
perburbative calculations for the 	ESL

ω and 	ESL
ρ quantities

are the same with the exception of configuration B in 34Cl,
where only a small difference exists (Tables I, II, and IV).

It is evident from Tables I and II that

	Eself-const
tot ≈ 	E

pert
tot (32)

for odd-neutron nuclei. Note that the superscript “self-const”
refers to fully self-consistent results. Figure 12 shows that this
equality is fulfilled in the majority of nuclei of the Fe and Ce
isotope chains with a high degree of accuracy (compared with
the ENM − EWNM quantities). These results clearly indicate
that the additional binding owing to NM (the ENM − EWNM

quantity) is defined mainly by time-odd fields and that the
polarization effects in fermionic and mesonic sectors of the
model cancel each other to a large degree.

As a consequence it is important to understand the relations
between different polarization effects. The particle energy
Eself-const

part obtained in self-consistent calculations can be split
into two parts: the part ETO

part, which directly depends on

time-odd mean fields, and the part E
pol
part, which is defined by

the polarization effects in the fermionic sector of the model.
Thus, Eself-const

part = ETO
part + E

pol
part and E

pert
part ≈ ETO

part. Taking into
account Eq. (15) and the afore-mentioned features of the
	E

pert
i terms, one can conclude that

	E
pol
part = 	Eself-const

σ + 	Eself-const
σNL + 	ETL[self-const]

ω

+	ETL[self-const]
ρ + 	Eself-const

Coul . (33)

This relation clearly indicates that the polarization effects in the
fermionic (Epol

part term) and mesonic (	Eself-const
σ , 	Eself-const

σNL ,
	ETL[self-const]

ω , and 	ETL[self-const]
ρ terms) sectors of the model

are strongly correlated. Equation (33) also clarifies the physical
origin of 	E

pol
part. The terms on the right-hand side are related

to the change in the nucleonic potential induced by NM. This
change leads to modifications of the single-particle energies
of all occupied states (compared with the case when NM is
absent), which are reflected in 	E

pol
part. On the contrary, the

	ETO
part is caused by the breaking of the Kramer’s degeneracy

between the blocked state and its unoccupied time-reversal
counterpart. Note that 	ETO

part ≈ − 1
2	Esplit (the minus sign

reflects the fact that the blocked state is always more bound in
the presence of NM) and the 	Esplit values obtained in self-
consistent and perturbative calculations are the same for the
pairs of time-reversal counterpart states involving the blocked
state.
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FIG. 12. (Color online) The 	Eself-const
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tot and ENM − EWNM quantities for odd-neutron Fe and Ce nuclei.

A relation similar to Eq. (32) also exists in odd-proton
nuclei, but in this case it has to be corrected for the 	E

pert
Coul

energy change:

	Eself-const
tot ≈ 	E

pert
tot + E

pert
Coul. (34)

Figure 13 shows that this relation is fulfilled in odd-proton
N = 94 nuclei with a high degree of accuracy (compared with
the ENM − EWNM quantities). Equation (34) also leads to the
condition of Eq. (33) and to the interpretation of E

pol
part discussed

previously.

V. THE IMPACT OF TIME-ODD MEAN FIELDS ON THE
PROPERTIES OF PROTON-UNSTABLE NUCLEI

The blocked state always has a lower energy than its
unoccupied time-reversal counterpart in calculations with NM;
this fact does not depend on the signature of the blocked state
(Sec. IV A). The energy of the blocked state in the presence
of NM is lower by ≈	Esplit/2 than the energy of the same
state in the absence of NM. This additional binding will affect
the properties of the nuclei in the vicinity of the proton drip
line via two mechanisms, discussed here. They are illustrated
schematically in Fig. 14.

In the first mechanism, the nucleus, which is proton
unbound (state A in Fig. 14) in calculations without NM,
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FIG. 13. (Color online) The same as Fig. 12, but for odd-proton
N = 94 nuclei.

becomes proton bound in calculations with NM (state A’ in
Fig. 14). The necessary condition for this mechanism to be
active is the requirement that the energy of the single-particle
state in the absence of NM is less than 	Esplit/2. This
mechanism can be active in both the ground and the excited
states of the nuclei in the vicinity of the proton drip line.

In the second mechanism, the energy of the single-particle
state (state B’ in Fig. 14) is lower in the presence of NM,
but the state still remains unbound. This will affect the
decay properties of proton emitters and the possibilities of
their observation. Indeed, the lowering of the energy of the
single-proton state will decrease the probability of emission
of the proton through a combined Coulomb and centrifugal
barrier. Many results on the physics of proton emitters are
conventionally expressed in terms of the Qp energies, which
depend on the difference in the binding energies of parent
(odd-proton) and daughter (even-proton) nuclei. Note that for
simplicity we consider here only even-N nuclei. NM leads to
an additional binding in an odd-proton nucleus but it does not
affect the binding of an even-proton nucleus. Thus, the Qp
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FIG. 14. Schematic illustration of the impact of time-odd mean
fields on the properties of odd-proton nuclei in the vicinity of the
proton drip line. The single-proton states, involved in the mechanisms
discussed in the text, and proton nucleonic potential (which also
includes the Coulomb potential) are shown.
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values are lower by the value of this additional binding when
the NM is taken into account.

Two consequences follow from lower Qp values. First,
experimental observation of proton emission from the nucleus
becomes impossible if the Qp value moves outside the Qp

window favorable for the observation of proton emission
or becomes possible if the Qp value moves into the Qp

window favorable for the observation of proton emission.
The size of the Qp window for rare-earth proton emitters
is about 0.8–1.7 MeV, whereas it is much smaller in lighter
nuclei [69,70]. Large Qp values outside this window result in
extremely short proton-emission half-lives, which are difficult
to observe experimentally. On the other hand, the decay width
is dominated by β+ decay for low Qp values, below the Qp

window. This consequence of the lowering of Qp owing to
NM is especially important in light nuclei, where the impact
of NM on binding energies is especially pronounced and the
Qp window is narrow.

Second, the lowering of the Qp values owing to NM will
increase the half-lives of proton emitters. For example, the
lowering of Qp owing to NM will be around 50 keV in the rare-
earth region, as this is a typical value for additional binding
owing to NM in odd-mass nuclei in this region (Sec. III B).
This can increase the half-lives of proton emitters by a factor
of ≈2 at the upper end of the Qp window and by a factor of ≈4
at the lower end of the Qp window (see Fig. 5 in Ref. [70]).
The effects of NM have been neglected in the existing RHB
studies of proton emitters with Z � 50 (see, e.g., Ref. [71]) but
this should not introduce significant error in this mass region.

On the other hand, the impact of NM on the half-lives
of proton emitters in lighter nuclei can be dramatic. This is
attributable to two factors, namely, (i) the general increase in
additional binding owing to NM and the magnitude of the
	Esplit with decreasing mass and (ii) the narrowing of the Qp

window with the decrease in mass caused by the lowering of the
Coulomb barrier. This can be illustrated by several examples.
The change in proton energy of around 300 keV in 69Br
causes a change in the proton decay lifetime of 11 orders of
magnitude [69]. This effect is even more pronounced in lighter
systems. The half-life window of 10 to 10−4 s corresponds to
proton energies of 100–150 keV in nuclei around Z = 20 [72],
whereas the variation of the Qp value between 3 and 50 keV
in 7B changes the half-lives by 30 orders of magnitude [70].
The energy changes quoted in these examples are either of a
similar magnitude as or even smaller than the changes in the
energies of single-proton states and the Qp values induced by
NM. As a result, one can conclude that the effects of time-odd
mean fields have to be taken into account when attempting to
describe the properties of proton emitters in light nuclei.

VI. ODD-ODD MASS NUCLEI: A MODEL STUDY OF THE
IMPACT OF NUCLEAR MAGNETISM ON BINDING

ENERGIES

The nuclei around 32S in superdeformed minima are
considered in the present section. Their selection is guided
in part by the desire to compare the CRMF results with those
obtained in the Skyrme EDF in Ref. [73], where the signature
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FIG. 15. Neutron single-particle energies (Routhians) as a func-
tion of the rotational frequency �x . They are given along the
deformation path of the doubly magic SD configuration π32ν32

in 32S. Solid, short-dashed, dot-dashed, and dotted lines indicate
(π = +, r = −i), (π = +, r = +i), (π = −, r = +i), and (π =
−, r = −i) orbitals, respectively. At �x = 0.0 MeV, single-particle
orbitals are labeled by means of the asymptotic quantum numbers
[Nnz�]� (Nilsson quantum numbers) of the dominant component
of the wave function.

separation induced by time-odd mean fields has been found
in the excited SD bands of 32S. The CRMF calculations have
been performed for some SD configurations in 32S and in
neighboring nuclei. The starting point is the doubly magic
SD configuration π32ν32 in 32S (hereafter, SD core) (see
Ref. [64]), in which all single-particle orbitals below the
N = Z = 16 SD shell gaps are occupied (Fig. 15). Here the
configurations are labeled by the numbers of occupied proton
(p) and neutron (n) high-N intruder orbitals (the N = 3 orbitals
in our case): this is commonly accepted shorthand notation
πNnνNp of the configurations in high-spin physics [38].
Then the configurations in the nuclei under consideration
(Fig. 16) are created by either adding particles into the
[202]5/2± orbital(s) and/or creating holes in the [330]1/2±
orbitals: these are the orbitals active in signature-separated
configurations discussed in Ref. [73].

Similar to the results shown in Sec. III A and Sec. III B, NM
leads to additional binding in the configurations of odd mass
nuclei (the configurations in 33S and 33Cl created by adding
a particle to the SD core or the configurations in 31P and 31S
created by removing a particle from the SD core; see Fig. 16).
This additional binding does not depend on the signature of
the blocked state.

Figure 16 shows that additional binding owing to NM is
smaller for the configurations with a blocked proton state
compared with those with a blocked neutron state. For
example, the configurations in 31P and 31S are built on the same
blocked Nilsson state. However, additional binding owing to
NM is smaller in the odd-proton nucleus (31P) than in the
odd-neutron one (31S). A similar situation also exists in 33S and
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33Cl. These results are consistent with a general systematics
(Sec. III D) showing that additional binding owing to NM is
smaller in the proton subsystem than in the neutron one.

The results of perturbative calculations for the configuration
with the proton hole in π [330]1/2− in the odd-proton 31P
nucleus and for the configuration with the neutron hole in
ν[330]1/2− in the odd-neutron 31S nucleus are reported in
Table III. These hole configurations are formed by removing
either a proton (31P) or a neutron (31S) from the N = Z 32S SD
core. One can see that the decrease in additional binding owing
to NM on going from a neutron to a proton configuration of
the same structure can be traced to the changes in the particle
energy 	E

pert
part , from −0.349 MeV in the odd-neutron 31S

nucleus to −0.250 MeV in the odd-proton 31P. This explains
the major part of the change in the 	E

pert
tot quantity on going

from the odd-neutron 31S (	E
pert
tot = −0.165 MeV) to the

TABLE III. The 	E
pert
i = (ENM

i − EWNM
i )pert quantities for

different terms of the total energy [Eq. (15)] for configurations
discussed in the text. Only terms affected by NM in perturbative
calculations are listed here.

Quantity 31S 31P 33S 33Cl
(1) (2) (3) (4) (5)

	E
pert
part −0.349 −0.250 −0.198 −0.136

	ESL[pert]
ω −0.168 −0.148 −0.093 −0.080

	ESL[pert]
ρ −0.016 −0.015 −0.010 −0.009

	E
pert
Coul 0.0 0.013 0 0.010

	E
pert
tot −0.165 −0.100 −0.095 −0.057

	E
pert
kin −0.348 −0.276 −0.198 −0.155

odd-proton 31P (	E
pert
tot = −0.100 MeV). The contributions

of other terms to 	E
pert
tot on going from the odd-neutron

31S to the odd-proton 31P nucleus are smaller: 0.020, 0.001,
and 0.013 MeV for the 	ESL

ω , 	ESL
ρ , and 	ECoul terms,

respectively.
In perturbative calculations, the changes in particle energy

	E
pert
part can be easily related to the energy splitting 	Esplit

between the blocked state and its unoccupied time-reversal
counterpart through 	E

pert
part ≈ − 1

2	Esplit, as the sum over
the energies of other occupied single-particle states is the
same in calculations with and without NM because the
polarization effects are absent (Sec. IV B). Energy splittings
between different signatures of the blocked [330]1/2 state
are 	Esplit = 0.653 MeV and 	Esplit = 0.476 MeV for odd-
neutron (31S) and odd-proton (31P) nuclei, respectively. This
result clearly indicates that the contributions of the Coulomb
force to the proton single-particle energies in the presence
of NM are at the origin of the fact that additional binding
owing to NM is smaller for odd-proton nuclei compared with
odd-neutron ones. Analysis of 33S and 33Cl leads to the same
conclusions.

The situation is more complicated in odd-odd nuclei (30P
and 34Cl), in which considerable energy splitting between
the r = +1 and the r = −1 configurations is obtained in
the calculations. The microscopic mechanism of binding
modifications is illustrated in Table IV on the example of
configurations A and B of 34Cl.

NM provides additional binding of about 0.4 MeV in
configuration A, which has signature r = −1. In this configu-
ration, proton and neutron currents owing to the occupation of
proton and neutron 5/2[202]− states are in the same direction,
which results in an appreciable total baryonic current. This
baryonic current leads to sizable modifications in the Epart, Eσ ,
ETL

ω , and ESL
ω terms (Table IV). These are precisely the same

TABLE IV. Changes 	Ei = ENM
i − EWNM

i in different terms
of the total energy [Eq. (15)] in the SD configurations
A ≡ π [202]5/2− ⊗ ν[202]5/2− (r = −1) and B ≡ π [202]5/2+ ⊗
ν[202]5/2− (r = +1) of 34Cl induced by NM [columns (3)–(6)].
Column (2) lists the absolute energies (MeV) of different energy
terms in the case where NM is neglected. Configurations are given
with respect to the doubly magic SD configuration of 32S. Fully
self-consistent [columns (2), (3), and (5)] and perturbative [columns
(4) and (6)] results are presented.

Quantity EWNM
i (A, B) 	Ei(A) 	E

pert
i (A) 	Ei(B) 	E

pert
i (B)

(1) (2) (3) (4) (5) (6)

Epart −835.845 −1.471 −0.791 −0.004 −0.003
Eσ −4415.660 −7.862 +0.004
EσNL 84.884 −0.036 −0.001
ETL

ω 3698.240 7.126 −0.003
ESL

ω 0.0 −0.414 −0.414 0.0 −0.001
ETL

ρ 0.061 0.0 0.0
ESL

ρ 0.0 0.0 −0.043 −0.043
ECoul 59.832 0.052 0.025 −0.002 −0.003
Ecm −9.492 0.0 0.0
Etot −272.693 −0.376 −0.402 0.041 0.043
Ekin 479.210 −0.103 −0.841 −0.002 0.003
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terms that are strongly affected by NM in odd-mass nuclei; see
Sec. IV B. The fermionic contribution to ENM − EWNM (the
	Epart term) is defined by more or less equal contributions
from time-odd mean fields and polarization effects in time-
even mean fields. On the contrary, time-odd mean fields define
only approximately one-third (	ESL

ω = −0.413 MeV) of the
mesonic contribution to ENM − EWNM, whereas the rest is
caused by the polarization effects in time-even mean fields
(the 	Eσ and 	ET

ω terms).
NM leads to the loss of binding in configuration B, which

has r = +1. In this configuration, the proton and neutron
currents owing to the π [202]5/2+ and ν[202]5/2− states are
in opposite directions, so the total baryonic current is very
close to zero. As a result, the impact of NM is close to
zero for the majority of terms in Eq. (15) (see Table IV).
The only exception is the ESL

ρ term, which represents the
space-like component of the isovector-vector ρ field. This
term depends on the difference of proton and neutron currents
[Eq. (22)], which, for the present case of opposite currents,
gives a nonzero result. As follows from Table IV, this term
is predominantly responsible for the loss of binding owing to
NM in configuration B.

It is well known that many physical quantities are additive
in calculations without pairing (see Ref. [33] and references
therein). The additivity principle states that the average value
of a one-body operator Ô in a given many-body configuration
k, O(k), relative to the average value in the core configuration,
Ocore, is equal to the sum of the effective contributions oeff

α

of the particle and hole states by which the kth configuration
differs from that of the core [33],

δO(k) = O(k) − Ocore =
∑

α

cα(k)oeff
α . (35)

Coefficients cα(k) [cα(k) = 0, or + 1, or − 1] define the
single-particle content of configuration k with respect to
the core configuration (see Ref. [33] for details). Let
us check whether additional binding owing to NM (the
	Etot = ENM − EWNM quantity) is additive. The doubly
magic SD configuration π32ν32 in the even-even 32S nucleus
is used as a core for this analysis: The effective contribu-
tions δEeff

i of the particle state(s) to 	Etot are given by
δEeff

i = [Ei(nucleus A) − Ei(core)]NM − [Ei(nucleus A) −
Ei(core)]WNM = ENM

i (nucleus A) − EWNM
i (nucleus A) =

	Ei(nucleus A) because the core configuration is not
affected by NM. Thus, the additivity implies that 	Etot

[34Cl(r = +1)] = 	Etot(33S) + 	Etot(33Cl) {	Etot[34Cl(r =
−1)] = 	Etot(33S) − 	Etot(33Cl)} for the situation when the
proton and neutron currents in 34Cl are in the same (opposite)
directions. Figure 16 clearly shows that additivity conditions
are not fulfilled and that additional binding owing to NM
is not additive in self-consistent calculations. The analysis
involving odd-odd 30P and odd 31P, 31S nuclei leads to the
same conclusion (see Fig. 16).

The additivity is also violated in perturbative calcu-
lations: Comparison of Tables III [columns (4) and (5)]
and IV [columns (4) and (6)] reveals that the conditions
	E

pert
i [34Cl(r = ±1)] = 	E

pert
i (33S) ± 	E

pert
i (33Cl) are vio-

lated both for the total energy (i = tot) and for the individual
components of the total energy (i = part, SL

ω , SL
ρ , Coul). The

analysis of 	E
pert
part (this term provides the largest contribution

to 	E
pert
tot ; see Tables III and IV) allows understanding of the

origin of the violation of additivity for the 	E
pert
tot quantity. In

the odd-proton 31Cl nucleus, 	E
p[pert]
part ≈ − 1

2	E
p

split (	E
p

split
is the energy splitting between the blocked proton state and
its signature counterpart) and 	E

p

split depends predominantly
on the proton current induced by the odd proton. The
same is true in the odd-neutron 33S nucleus, where 	En

split
depends predominantly on the neutron current induced by
the odd neutron. Additivity principle implies 	E

odd-odd[pert]
part ≈

− 1
2	E

p

split + 1
2	En

split for the 34Cl(r = +1) configuration, in
which the proton and neutron currents are in the same direction.
However, proton 	E

p[odd-odd]
split (neutron 	E

n[odd-odd]
split ) energy

splitting between the blocked proton (neutron) state and its
time-reversal counterpart in odd-odd nuclei depends on the
total baryonic (proton + neutron) current in this configuration.
On the contrary, the additivity principle implies that these
proton and neutron quantities depend on the individual proton
and neutron currents in the odd-odd nucleus, respectively. This
total current is approximately two times stronger than the
individual (proton or neutron) currents in odd-mass nuclei.
As a consequence, the 	E

p[odd-odd]
split and 	E

n[odd-odd]
split values in

the odd-odd mass nucleus are larger than the same quantities
(	E

p

split and 	En
split) in odd-mass nuclei by a factor of close

to 2. As a result, 	E
pert
part [

34Cl(r = +1)] ≈ 2[	E
pert
part (

33S) +
	E

pert
part (

33Cl)] (see Tables III and IV), which clearly indicates

the violation of additivity for the 	E
pert
part quantity (and for the

	E
pert
tot quantity).

Figure 16 also shows the results for the four-particle excited
SD states π (ab) ⊗ ν(ab) in 32S, for which the calculated
rotational structures display the signature separation induced
by time-odd mean fields [64,73]. These configurations are
formed by exciting proton and neutron from the [330]1/2−

orbitals below the N = 16 and Z = 16 SD shell gaps into the
[202]5/2± orbitals located above these gaps. They have the
π31ν31 structure in terms of intruder orbitals. When NM is
neglected these four configurations are degenerated in energy.
This degeneracy is broken and additional binding, which
depends on the total signature of the configuration (0.907 MeV
for r = +1 configurations and 0.468 MeV for r = −1 con-
figurations in calculations with the NL3 parametrization), is
obtained when NM is taken into account. The NL1 and NLSH
parametrizations of the RMF Lagrangian give very similar
values for additional binding owing to NM. The essential
difference between the relativistic and the nonrelativistic
calculations lies in (i) the size of the energy gap between the
r = +1 and the r = −1 configurations and (ii) the impact of
time-odd mean fields on the energy of the r = −1 states. This
energy gap is about 2 MeV in the Skyrme EDF calculations
with the SLy4 force [73], whereas it is much smaller, around
0.45 MeV, in CRMF calculations with the NL1, NL3, and
NLSH parametrizations. The energies of the r = −1 states
are not affected by time-odd mean fields in the Skyrme EDF
calculations [73], whereas appreciable additional binding is
generated by NM for these states in CRMF calculations
(Fig. 16).
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FIG. 17. (Color online) Impact of NM on binding energies of the
lowest configurations in odd-odd Al nuclei. (a) The ENM − EWNM

quantity for different signatures. Structures of the blocked states are
shown by the Nilsson labels only in cases where the configurations
are near-prolate. The same state is blocked in the proton subsystem of
all nuclei. (b) The β2 and γ deformations of the configurations under
study.

Figures 17 and 18 show the results of the calculations
for ground-state configurations in odd-odd Al and Cl nuclei.
The calculations suggest that signature separation owing to
time-odd mean fields is also expected in the configurations
of odd-odd nuclei located at zero or low excitation energies.
The signature separation is especially pronounced in N = Z
26Al (the π [202]5/2 ⊗ ν[202]5/2 configuration) and 34Cl
nuclei. This is because proton and neutron currents in these
configurations are almost the same both in strength and in
spatial distribution. As a result, their contribution to the total
energy is large when these currents are in the same direction
(r = −1 configurations) and close to zero when these currents
are in opposite directions (r = +1 configurations). Note that
26Al is axially deformed, whereas 34Cl is triaxially deformed,
with γ ∼ 30◦. However, both of them show enhancement of
the signature separation at N = Z.
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FIG. 18. (Color online) The same as Fig. 17 but for the lowest
configurations in odd-odd Cl nuclei.
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FIG. 19. (Color online) Impact of NM on binding energies of the
configurations in odd-odd nuclei in the vicinity of the N = Z line
as a function of proton number Z. (a) Results for configurations
with different blocked proton and neutron states; (b) results for
configurations with the same blocked proton and neutron states.
Structures of the blocked states are shown by the Nilsson labels
only in cases where the configurations are near-prolate. Note that in
(b), only one Nilsson label is shown, as the blocked proton and neutron
states have the same structure. Results are shown only in cases where
convergence has been achieved for both N = Z and N = Z − 2 (or
N = Z + 2) nuclei.

The signature separation is rather small for the majority of
nuclei away from the N = Z line. This is a consequence of the
fact that the strength of the currents in one subsystem (and thus
the impact of NM on binding energies) is much stronger than
that in another subsystem. As a result, there is no big difference
(large signature separation) between the cases in which proton
and neutron currents are in the same and opposite directions.
However, some nuclei away from the N = Z line also show
appreciable signature separation. These are 38Al and 38,48,50Cl
nuclei (Figs. 17 and 18), for which the strengths of proton and
neutron currents (but not necessarily the spatial distribution of
the currents) are of the same order of magnitude.

It was suggested in Ref. [30] that the effects of time-odd
mean fields are enhanced at the N = Z line. However, Fig. 19
clearly shows that the enhancement of signature separation is
not restricted to the N = Z line. Indeed, signature separation of
the configurations based on the same combination of blocked
proton and neutron states are very similar in N = Z and N =
Z ± 2 nuclei despite the fact that the deformations of compared
nuclei sometimes differ appreciably. There is considerable
signature separation in the configurations based on the same
blocked proton and neutron states in N = Z and N = Z − 2
nuclei [Fig. (19b)]. On the other hand, almost no signature
splitting is observed in N = Z and N = Z + 2 nuclei when
the configurations are based on different blocked proton and
neutron states [Fig. 19(a)]. This suggests that the enhancement
of signature splitting is due to similar proton and neutron
current distributions (see discussion in previous paragraph).

When considering odd-odd nuclei one has to keep in
mind that the present approach takes into account only the
portion of the correlations between the blocked proton and
neutron and neglects the pairing. In particular, the residual

014309-18



TIME-ODD MEAN FIELDS IN COVARIANT DENSITY . . . PHYSICAL REVIEW C 81, 014309 (2010)

interaction of the unpaired proton and neutron leading to
Gallagher-Moshkowski doublets of two-quasiparticle states
with K> = �p + �n and K< = |�p − �n| [74,75] is not
taken into account. Thus, future development of the model is
required to compare the experimental data on odd-odd nuclei
directly with calculations. This question is discussed in more
detail in the companion paper [36].

VII. CONCLUSIONS

Time-odd mean fields (nuclear magnetism) have been
studied at no rotation in a systematic way within the framework
of CDFT by blocking the single-particle states with a fixed
signature. The main results can be summarized as follows.

(i) In odd-mass nuclei, nuclear magnetism always leads to
an additional binding, indicating its attractive nature in
the CDFT. This additional binding only weakly depends
on the parametrization of the RMF Lagrangian. On
the contrary, time-odd mean fields in Skyrme EDF
can be attractive and repulsive and show considerable
dependence on the parametrization of the density
functional. This additional binding is larger in odd-
neutron states than in odd-proton ones in the CDFT
framework. The underlying microscopic mechanism
of additional binding owing to NM has been studied
in detail. The perturbative results clearly indicate that
additional binding owing to NM is defined mainly
by time-odd fields and that the polarization effects in
fermionic and mesonic sectors of the model cancel each
other to a large degree.

(ii) Additional binding owing to NM can have a profound
effect on the properties of odd-proton nuclei in the
ground and excited states in the vicinity of the proton
drip line. In some cases it can transform a nucleus
that is proton unbound (in calculations without NM)
into a nucleus that is proton bound. This additional
binding can significantly affect the decay properties of
proton-unbound nuclei by (i) increasing the half-lives

of proton emitters (by many orders of magnitude in light
nuclei) or (ii) moving the Qp value inside or outside
the Qp window favorable for experimental observation
of proton emission.

(iii) Relative energies of different (quasi)particle states
in medium- and heavy-mass nuclei are only weakly
affected by time-odd mean fields. This is because ad-
ditional bindings owing to NM show little dependence
on the blocked single-particle state. As a result, the
present investigation suggests that time-odd mean fields
can be neglected in the fits of CDFs aimed at accurate
description of the energies of single-particle states.

(iv) The phenomenon of signature separation [73] and
its microscopic mechanism have been investigated in
detail. It is shown that this phenomenon is active also
in the configurations of odd-odd nuclei. It is enhanced
for configurations having the same blocked proton and
neutron states; this takes place either at ground state
or at low excitation energy in nuclei at or close to
the N = Z line. Some configurations away from the
N = Z line also show this effect but the signature
separation is appreciably smaller.

The present investigation has focused on the study of time-
odd mean fields in the CDFT with nonlinear parametrizations
of the Lagrangian. Point coupling [76] and density-dependent
meson-nucleon coupling [56] models are other classes of CDF
theories. It is important to compare them to make significant
progress toward a better understanding of time-odd mean
fields. Work in this direction is in progress, and the results
will be presented in the forthcoming companion article [36].
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