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Structure of even-even nuclei using a mapped collective Hamiltonian and the D1S Gogny interaction
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A systematic study of low energy nuclear structure at normal deformation is carried out using the Hartree-Fock-
Bogoliubov theory extended by the generator coordinate method and mapped onto a five-dimensional collective
quadrupole Hamiltonian. Results obtained with the Gogny D1S interaction are presented from drip line to drip
line for even-even nuclei with proton numbers Z = 10 to Z = 110 and neutron numbers N � 200. The properties
calculated for the ground states are their charge radii, two-particle separation energies, correlation energies, and the
intrinsic quadrupole shape parameters. For the excited spectroscopy, the observables calculated are the excitation
energies and quadrupole as well as monopole transition matrix elements. We examine in this work the yrast levels
up to J = 6, the lowest excited 0+ states, and the two next yrare 2+ states. The theory is applicable to more than
90% of the nuclei that have tabulated measurements. We assess its accuracy by comparison with experiments on
all applicable nuclei where the systematic tabulations of the data are available. We find that the predicted radii
have an accuracy of 0.6%, much better than can be achieved with a smooth phenomenological description. The
correlation energy obtained from the collective Hamiltonian gives a significant improvement to the accuracy of
the two-particle separation energies and to their differences, the two-particle gaps. Many of the properties depend
strongly on the intrinsic deformation and we find that the theory is especially reliable for strongly deformed
nuclei. The distribution of values of the collective structure indicator R42 = E(4+

1 )/E(2+
1 ) has a very sharp peak

at the value 10/3, in agreement with the existing data. On average, the predicted excitation energy and transition
strength of the first 2+ excitation are 12% and 22% higher than experiment, respectively, with variances of the
order of 40–50%. The theory gives a good qualitative account of the range of variation of the excitation energy of
the first excited 0+ state, but the predicted energies are systematically 50% high. The calculated yrare 2+ states
show a clear separation between γ and β excitations, and the energies of the 2+ γ vibrations accord well with
experiment. The character of the 0+

2 state is interpreted as shape coexistence or β-vibrational excitations on the
basis of relative quadrupole transition strengths. Bands are predicted with the properties of β vibrations for many
nuclei having R42 values corresponding to axial rotors, but the shape coexistence phenomenon is more prevalent.
The data set of the calculated properties of 1712 even-even nuclei, including spectroscopic properties for 1693
of them, are provided in CEA Web site and EPAPS repository with this article [1].
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I. INTRODUCTION

A present-day goal in nuclear theory is to develop a
universal theory of nuclear structure, in the sense that it is
well-founded in its methodology and is applicable across
the chart of nuclides. The most promising starting point is
self-consistent mean field, but the theory must be extended
in some way to treat excitations and nuclear spectroscopy.
For any candidate theory or methodology, one needs to know
its performance on known observables to be confident about
predictions to unknown nuclei or regions of the nuclear
chart. It is our purpose to provide and document this in-
formation for one particular theory, the constrained-Hartree-
Fock-Bogoliubov (CHFB) theory together with a mapping to
the five-dimensional collective Hamiltonian (5DCH), using the
Gogny D1S interaction in the nuclear Hamiltonian [2,3]. The
results presented here are a major extension of the our study of
one particular observable in the CHFB+5DCH theory, the low-
lying quadrupole excitation [4]. Since that work and during the
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course of the present calculations two new parametrizations of
the Gogny force have been published [5]. These are aimed at
removing systematic deviations of calculated binding energies
from measurements using the D1S force. However, for our
purposes, the global assessment of spectroscopy properties, it
is more important at this stage to benchmark the predictions of
a stable and widely tested Hamiltonian. The present results
will therefore serve as a baseline for comparisons with
the next generation of similar structure calculations based
on the new parametrizations. We mention that the present
era of global calculations within self-consistent mean-field
theory using a fixed interaction started with the calculations
of Tajima et al. [6] and Lalazissis et al. [7]. Also, the
mapping to 5DCH has recently been adapted and applied
to the Skyrme and the relativistic mean-field Hamiltonians
[8,9].

The CHFB+5DCH theory is one of several paths that
could be taken to extend mean-field theory to describe
spectroscopic properties such as excitation energies. Rather
than constructing a collective Hamiltonian from the CHFB
solutions, the constrained wave functions may be projected on
good angular momentum and then used directly to construct
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a discrete basis Hamiltonian. This technology in now fairly
well developed [10,11] and has recently been applied to the
global study of correlation energies [12] and the lowest 2+
excitations [13]. In principle, it should give similar results
to the CHFB+5DCH theory applying the same Hamiltonian.
However, in the present implementations the discrete-basis
wave functions do not include triaxial deformations and
the effective rotational inertias arising from the Hamiltonian
matrix element are not self-consistent. However, discrete basis
methods do not rely on the Gaussian overlap approximation
that we require for our Hamiltonian mapping. There is a
third path to introduce dynamics into mean-field theory, the
quasiparticle random-phase approximation (QRPA). That has
also been applied to many nuclei, but so far global surveys
have been restricted to spherical nuclei [14].

The methodology in the present work has two stages,
the CHFB calculations to set up the 5DCH input, and the
solution of the 5DCH equations. For the first part, we perform
CHFB calculations on a large triaxial grid of quadrupole
deformations. These provide a potential energy surface and
the inertial masses needed for the 5DCH. Positive-parity
solutions are extracted for about 1700 even-even nuclei with
proton numbers Z = 10 to Z = 110 and neutron numbers
N � 200. These calculations span most of the periodic table
from drip line to drip line. One purpose of our work is to
establish benchmarks for the accuracy and reliability of the
theory for energies and properties of the low excitations.
We therefore make systematic comparisons with experimental
data, especially when it is available as a tabulation from a
published critical review or data repository. The quantities that
we can easily compare are two-nucleon separation energies
and gaps, excitation energies of the lowest excited states
including yrast spectra up to J = 6, and transition rates of
the lowest 2+ and excited 0+ states. Since no effective charge
is involved, our predictions are free of parameters beyond
those contained in the Gogny D1S interaction. We hope these
calculations will be helpful to understand the limitations of
the theory and ultimately find improved methodologies and
Hamiltonians. One important question deals with shell gaps
and magic numbers. Far from stability, dedicated experiments
have shown that the N = 20, 28 shell gaps experience erosion
and that N = 16 may become magic number at the oxygen
neutron drip line [15]. Other experiments are underway to
investigate whether shell quenching takes place too in the
vicinity of the N = 50 gap, a critical issue for the path followed
by the r-process of the nucleosynthesis. The predictions for the
shell gaps and associated observables coming from the Gogny
interaction have previously been reported [16,17].

Another purpose of this work is to provide a set of
predictions for nuclei to be studied in the future. The advent
of unstable nuclear beam facilities has opened up a new
and exciting area in exploring the structure of exotic nuclei.
Of particular interest are the nuclei near or at the border lines
of stability, the proton and neutron drip lines. These nuclei
often display properties that are not present in nuclei located
in the vicinity of the β-stability line, and questions are raised
as to whether the nuclear structure models and effective forces
tailored over the past 70 years remain valid in the present
context. Thus, strong deviations of the experimental findings

with respect to the benchmarked predicted accuracy would
signal new phenomena in nuclear structure.

Several caveats should be mentioned that limit the domain
of validity of the theory. A basic approximation made here is to
require the HFB fields to conserve parity and signature. There
is no strong evidence that these symmetries are violated in the
HFB ground states, but there may be some nuclei for which it
happens. Another limitation arises from the neglect of two- and
higher-order quasiparticle (qp) excitations. The GCM theory
(with or without the Gaussian overlap approximation) does not
include these degrees of freedom that will inevitably affect the
spectrum at higher excitation energies. Also, the Hamiltonian
is an adiabatic one, with parameters calculated in the vicinity
of zero rotational frequency. This affects the reliability of the
calculated excitations with high angular momentum. Finally,
the application of the 5DCH requires further that the overlaps
be semilocalized in the (β, γ ) quadrupole deformation plane
[coherence length be small compared to dimensions of the
arena in (β, γ ) in which the wave function has significant
amplitude]. Indeed, the mapping of the HFB to the collective
Hamiltonian is problematic for very rigid nuclei, such as the
doubly magic ones. For these reasons, we concentrate on the
lowest excited states in this work in nondoubly magic nuclei,
and restricting angular momentum to J � 6.

II. REMINDER OF FORMALISM AND COMPUTATIONAL
IMPLEMENTATION

For completeness, we recall here the equations to be solved.
The derivation and some aspects of the implementation are
presented in more detail in Ref. [18]. The potential energy
surface that goes into the 5DCH is obtained from constrained
Hartree-Fock-Bogoliubov calculations (CHFB) based on the
Gogny D1S interaction. The CHFB equations to solve are

δ〈�(q0, q2)|Ĥ − λ0Q̂0 − λ2Q̂2 − λZẐ − λNN̂ |�(q0, q2)〉
= 0. (1)

Ĥ is the Hamiltonian, and the other terms are linear constraints
to obtain particle numbers N,Z and quadrupole moments
q0, q2 according to

〈�(q0, q2)|Q̂i |�(q0, q2)〉 = qi,
(2)

〈�(q0, q2)|Ẑ(N̂ )|�(q0, q2)〉 = Z(N ).

Here we define the quadrupole operators as Q̂0 = 2z2 − x2 −
y2 and Q̂2 = x2 − y2. The CHFB equations are solved for each
set of deformations by expanding the single-particle states in
a triaxial harmonic oscillator (HO) basis.

The triaxial oscillator basis is subject to truncation accord-
ing to

(nx + 1/2)h̄ωx + (ny + 1/2)h̄ωy + (nz + 1/2)h̄ωz

� (N0 + 2)h̄ω0,

where (h̄ω0)3 = h̄ωxh̄ωyh̄ωz, with h̄ωi(i = x, y, z) as oscilla-
tor basis parameters, and ni(i = x, y, z) as quantum numbers.
The basis is determined as follows. For a nucleus with Z

protons and N neutrons, the number N0 is such that N , the
number of single-particle states in the Hartree-Fock scheme,
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is eight times the number of levels occupied by the larger
among the Z or N values. N is a function of N0, fulfilling the
empirically established equation

N = 2.1N2
0 + 0.0072N4

0 ,

from which N0 is deduced. In general N0 is not an integer.
Instead of using the h̄ωi parameters, we adopt in the HFB

calculations the parameters h̄ω0, P and Q, with P = h̄ωx/h̄ωy

and Q = h̄ωx/h̄ωz. These parameters need be determined
to define the oscillator basis at each point of the grid. The
parameters P and Q are determined using formulas based on
a liquid drop parametrization of nuclear shape. These formulas
depend on β and γ deformations in the constrained HFB
calculations and write as

P = exp[−x
√

3 sin γ ],
(3)

Q = exp

(
x

[
3

2
cos γ −

√
3

2
sin γ

])
,

where x = β/(2β + 1).
h̄ω0 is obtained through minimization of the HFB energy.

This is made for γ = 0◦ and 60◦ at a fixed β to take advantage
of our axially symmetric HFB code that is running much faster
than the triaxial code. To get h̄ω0 values over the triaxial plane,
we use the interpolation formula

ω0(β, γ ) = 1
2 [ω0(β, γ = 0◦) + ω0(β, γ = 60◦)]

+ 1
2 [ω0(β, γ = 0◦) − ω0(β, γ = 60◦)] cos(3γ ).

For the basis truncation, a fine tuning of P and Q values
is performed so as to maximize the number of particle states
without altering the numbers of oscillator shells in each of the
three directions as obtained with Eq. (4). Typically, the number
of major shells N ranges from 6 to 16 in the present study.

The Bogoliubov space is restricted by imposing the self-
consistent symmetry T̂ π2, with π2 the reflection with respect
to the xz plane, and T̂ the time-reversal symmetry. The HFB
nuclear states have also been taken invariant under the left-
right symmetry [19]. One technical point should be mentioned.
Since there are many points to calculate, it is important to have
an efficient algorithm to perform iterative solution of the CHFB
equations. From the early days, we found it very helpful in this
respect to use first order perturbation theory to update the linear
constraints. During the iterative procedure the obtained mean
value qj differs from the imposed value q

(0)
j , the corrections

applied to the Lagrange parameters are [20]

δλi =
∑
j=0,2

(
Mij

−1

)−1(
q

(0)
j − qj

)
. (4)

The moments M of the off-diagonal quadrupole operators in
the constrained HFB configurations are defined as

Mij

k (q) =
∑
µν

〈�q |ηµηνQ̂i |�q〉〈�q |ηµηνQ̂j |�q〉
(Eν + Eµ)k

, (5)

where µ, ν label quasiparticles with destruction operators η

and energies Eµ and Eν , respectively.
The potential energy surface is then determined from the

expectation value of the Hamiltonian, corrected for the one-

and two-body center-of-mass (c.m.) energy

V (q0, q2) = 〈�(q0, q2)|Ĥ − P̂ 2

2mA
|�(q0, q2)〉. (6)

It is convenient to use the dimensionless deformation param-

eters (β, γ ) which are defined through β = √
5π

√
q2

0 +3q2
2

3A5/3r2
0

and

γ = arctan
√

3 q2

q0
, with r0 = 1.2 fm. Typically, the constrained

HFB equations are solved on the domain (0 < β < 0.9;
0 < γ < π/3) with mesh spacings 
β = 0.05 and 
γ = 10◦.

The final 5DCH is expressed [18]

Ĥcoll = 1

2

3∑
k=1

Ĵ 2
k

Jk

− 1

2

∑
m,n=0 and 2

D−1/2 ∂

∂am

D1/2(Bmn)−1

× ∂

∂an

+ V (a0, a2) − 
V (a0, a2), (7)

where we have made another change of deformation parame-
ters from (β, γ ) to a0 = β cos γ and a2 = β sin γ , and where
D is the metric [21]. There are three rotational inertia and
three quadrupole mass parameters in the 5DCH. These are all
computed from the local properties of the CHFB solutions at
the grid points. To calculate the rotational inertia we implement
additional constraining fields ωĴk to Eq. (1), where Ĵk is the
angular-momentum operator about the k axis. Calling the new
self-consistent solution �ω

q , we calculate the inertias Jk as

Jk =
〈
�ω

q

∣∣Ĵk

∣∣�ω
q

〉
ω

. (8)

In the limit ω → 0, this expression is equivalent to the
Thouless-Valatin inertia. In practice we take ω = 0.002 MeV
to approximate the limit. The quadrupole mass parameters Bij

are calculated in the cranking approximation [18],

Bij (q) = 1

2

Mij

−3(q)[
Mij

−1(q)
]2 , (9)

with Mij

k (q) the moment defined in Eq. (5). It is important to
mention that the cranking approximation is not self-consistent
in the sense that the dynamical rearrangement is not taken into
account and we should expect some deficiencies in the theory
as a result.

The zero-point energy (ZPE) correction to the potential,
Eq. (6), is associated with the nonlocality in the quadrupole
coordinates. It is calculated according to the formulas given in
Refs. [18,22],


V (q) = 1

4

∑
i,j

Mij

−2(q)

Mij

−3(q)
.

Here the sum runs over the sets (i, j ) = (0, 0), (2, 2), (0, 2) for
the vibrational ZPE and (i, j ) = (1, 1), (−1,−1), (−2,−2)
for the rotational ZPE, following the notation of Ref. [18].
This includes only the part of the ZPE arising from the kinetic
energy operator. There is also a part due to the potential, which
we neglect. This is expected to be small in typical situations
with shallow minima in the potential energy surface; it might
be significant near magic numbers where the curvature of the
surface is higher.
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Eigenstates and eigenenergies are obtained as numerical
solutions of

Ĥcoll|JM〉 = E(J )|JM〉. (10)

The orthonormalized eigenstates |JM〉 with angular momen-
tum J and projections M on the third axis in the laboratory
frame are expanded as

|JM〉 =
∑
K

gJ
K (a0, a2)|JMK〉, (11)

with |JMK〉 a superposition of Wigner rotation matrices. The
probability P (K) of the different K components of the wave
function gives a useful indicator of its character. This is defined
as

P (K) =
∫

da0da2

∣∣gJ
K (a0, a2)

∣∣2
. (12)

We refer to Ref. [18] for further numerical details on solving
the 5DCH equations. Here we use the value mmax = 28 for
the order parameter in the power expansion of vibrational
amplitude. This secure a 2% precision on relative energies in
collective spectra. We calculate radii and quadrupole matrix
elements assuming that the coordinate operators are local in the
collective coordinates [21]. For example, the matrix element
of the quadrupole operator Mm = ∑Z

i r2
i Y 2

m(r̂) is calculated
as

〈J ′M ′|Mm|JM〉 = (
(2J + 1)(2J ′ + 1)

)1/2 × (13)
∑

K,K ′,k

(
J ′ 2 J

−M ′ m M

)(
J ′ 2 J

−K ′ k K

) ∫
da0da2g

J ′
K ′(a0, a2)

× gJ
K (a0, a2)〈�(a0, a2)|Mk|�′(a0, a2)〉. (14)

This is an approximation, but we have no reason to doubt its
reasonableness.

The correlation energy is defined as

Ecorr = Emin
HFB − E5DCH, (15)

where Emin
HFB is the minimum of the energy at the HFB

level and E5DCH is the energy of the collective ground state
obtained from the 5DCH calculations. For nuclei near magic
numbers, the calculated correlation energy may come out
negative, which is unphysical. We have kept these nuclei in the
accompanying table, but we exclude them when we compare
the calculated properties with experiment.

Also, the accuracy of the calculations will not be as high
at the extremes of the nuclear chart, due to the incipient shape
instability associated with fission, as well as the limitations
of the harmonic oscillator basis for drip-line orbitals. In the
accompanying tables, we include the ground-state properties
when the calculated deformation is consistent with a non
vanishing fission barrier in the (β, γ ) plane. This will include
some nuclei that would have vanishing fission barrier when
more shape degrees of freedom are permitted.

III. EXAMPLES

To show the scope of the theory, we begin with two
examples of nuclei that illustrate the complexity of nuclear

structure that can be addressed with the 5DCH. The first is
76Kr, which is considered as an example of a soft nucleus. The
second is 152Sm, which has a near rotational spectrum but is
also considered to be a transitional nucleus.

A. 76Kr

We begin with 76Kr, a nucleus with a complex spectrum of
low-lying excitations providing evidence for shape coexistence
phenomena. A few calculated spectroscopic properties of this
nucleus were already reported in Ref. [23]. The ground state
of 76Kr is spherical in the HFB approximation but becomes
highly deformed in the CHFB+5DCH wave function, with
mean deformation values of 〈β〉 = 0.33 and 〈γ 〉 = 24◦. The
variances of the deformations are also of interest, namely

δβ =
√

〈β2〉 − 〈β〉2; δγ =
√

〈γ 2〉 − 〈γ 〉2, (16)

where 〈γ 2〉 and 〈γ 〉 are calculated over the sextant 0 < γ <

π/3. The values of these quantities in the 76Kr ground state are
δβ = 0.10 and δγ = 13◦, suggesting that the nucleus is fairly
rigid in β but with some soft triaxiality. Due to the triaxiality,
one does not expect to see a rigid rotor spectrum, despite the
large deformation.

In this work, we will examine systematically the
0+

1 , 2+
1 , 0+

2 , 2+
2 , 4+

1 , 2+
3 , 3+

1 , and 6+
1 excitations. These are

shown for the 76Kr nucleus together with the additional states
that could form a γ -vibrational structure in Fig. 1 [23,24].

The experimental spectrum is also shown in the figure, and
one sees that excitation energies are reproduced very well.
The calculated excitation energy of the first excited state, the
2+

1 , is only 21% higher than experiment. The other states are
proportionally even closer: the energies of the yrast 4+

1 and
6+

1 states are within 10% of the experimental values. Even
the nonyrast excited state energies come out well. We shall
later examine systematically the 0+

2 , 2+
2 , and 2+

3 excitations; in
76Kr their predicted energies are all within 20% of experiment.
For the transition strengths, the predicted B(E2; 2+

1 → 0+
1 ) is

within 20% of the experimental value and the higher transitions
along the yrast ladder are within 10%.

The second excited state in the 76Kr system is the 0+
2

level at 0.77 MeV. The calculated energy is 0.92 MeV, close
enough to make a correspondence between the two states. Its
mean deformation parameters are close to those of the ground
state, suggesting a β-vibrational interpretation. The transition
rate to the 2+

1 state is large and in very good agreement
with experiment. The 2+

3 excitation corresponds in excitation
energy fairly well to experimentally measured state. The 2+

3
wave function has a large probability P (K = 0), suggesting
that it be placed with the 0+

2 level as member of the K = 0
excited structure. Its transition strength to the 0+

2 is large
and in qualitative accord with experiment. Experiment and
calculation for the spectroscopic quadrupole moment Q(2+

3 )
are also in accord for both magnitude and sign. The sign is
opposite to that for Q(2+

1 ), nullifying any interpretation of
the K = 0 excited structure as β-vibrational band and giving
weight to the interpretation of shape coexistence between
prolate and oblate band structures.
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FIG. 1. Experimental and theoretical spectra (MeV) and transition strengths (e2 fm4) of 76Kr showing the excitations that we examine in
the present global study. The experimental spectrum, on the left, is from Ref. [23] as well as from data repository for the 3+ and 4+ members
of the γ band [24]. Calculated values are those from Ref. [23].

From the energetics, the 2+
2 level might be assigned at a

two-phonon excitation of the ground state. The calculated 2+
2

wave function has a large probability for K = 2 [P (2) = 0.77],
suggesting that this level instead is the bandhead of a
γ structure. However, the experimental data on the transition
strengths between the 2+

2 and the 0+
2 , 2+

1 , and 3+
1 states are very

far from the theoretical predictions. Since transition strengths
of γ vibrations are very sensitive to K-band mixing, the
disagreement of transition strengths does not rule out the γ -
vibrational interpretation. For more discussions, see Ref. [23].

We finally mention the highest excitations, some of which
will be beyond the scope of our global survey. There is good
accord between theory and experiment for the energetics of the
6+

1 state as well as for those for the 3+
1 and 4+

2 levels that both
form a quasi-γ band structure on top of the 2+

2 state. The 6+
1

and 4+
2 states have strong transitions to the 4+

1 and 2+
2 states,

respectively, in both theory and experiment.
To summarize, the CHFB+5DCH theory provides a very

good description of low-lying excited states 76Kr spectrum.
While not all aspects are reproduced, many of the energies and
relative transition strengths are given to good accuracy. The
complex spectra of the Kr isotopes have often been discussed
as a shape coexistence phenomenon, and the theory does rather
well in describing these features as well as shape transitions
in this region [25].

B. 152Sm

The nucleus 152Sm lies at the start of the deformed
lanthanide region of the nuclear chart and is considered as
landmark in the identification of first-order quantum phase
transition between spherical and axially deformed nuclei
[26,27]. Its experimental level scheme is shown in the left-hand
panel of Fig. 2, taken from Ref. [24] and our calculated level
scheme is in the right-hand panel. We first note that the yrast
band is well reproduced. The 2+

1 excitation energy is within 2%
of the experimental one, and the experimental ratio of the 4+

1 to
the 2+

1 energies is R42 = 3.0, slightly lower than the rigid axial
rotor value 10/3. The 5DCH ratio is 3.0, reproducing the slight

deviation from rigidity. The yrast spectrum is intermediate
between that for harmonic vibrators and axial rotors, consistent
with predictions from the X(5) model designed as analytic
description of critical point structures in N � 90 isotones
[28,29]. For a review, see Ref. [30].

We now come to the predictions for the 0+
2 excitation and

the collective structure built on it. The calculated deformation
of that state is 〈β〉 = 0.29, almost the same as the ground state
deformation, 〈β〉 = 0.30. This suggests an interpretation as a
β vibration. One expects that the fluctuation in β would be
larger in the vibrational excitation than in the ground state;
in the harmonic limit, 〈n|β2|n〉 = (n + 1/2)/B00ω, giving a
ratio of

√
3. In fact, the fluctuation in the calculated wave

functions is larger for the excited state by a factor 1.58. Thus,
the theoretical wave function has the main characteristics to
be a β vibration.

Comparing experimental and calculated spectra, we first
note that the calculated excitation energy of the 0+

2 state is quite
a bit higher than observed experimentally by nearly 40%. As
we will see later, this is a common feature of the CHFB+5DCH
theory as presently implemented. The experimental energy
splitting between the 2+

2 and 0+
2 states is nearly identical to

that of the ground-state band, while the theoretical splitting is
larger by 40%. This discrepancy is in keeping with that of the

0+2+

4+

6+
0+
2+

4+

6+

2+
3+
4+
5+

6+

0+2+

4+

6+
0+2+
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4+
5+
6+

0.0

0.5

1.0

1.5

2.0

E
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M
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)

Exp 5DCH

gs gs

FIG. 2. Experimental and theoretical spectra (MeV) of 152Sm.
The experimental spectrum is based on Ref. [24].
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X(5) model [30]. We conclude that the theory confirms in an
approximate manner the existence of a band structure based on
the 0+

2 excitation but in detail deviates from the β-vibrational
limit in the in-band energetics.

The CHFB+5DCH theory also predicts a 2+
3 excitation

and collective structure on it. This sequence is interpreted as
a quasi-γ -vibrational band, with head level energy slightly
higher than that observed in this nucleus. Our calculated
third 2+ state has the same average 〈β〉 deformation as the
ground state, supporting a vibrational interpretation. If it were
a true γ vibration, it should have high probability for the
K = 2 component of the wave function. This probability is
0.64 compared with 0.002 and 0.35 for the 2+

1 and 2+
2 levels,

respectively. Thus, the 2+
3 state has a qualitative character as a

γ vibration but this is diluted by other components. This is to
be expected for a transitional nucleus such as 152Sm.

Important indicators for structure properties are the
strengths for intra- and interband E2 reduced transition
probabilities. B(E2; Ii → If )’s measured by the Georgia
Tech. and Yale collaborations are shown in Table I together
with the CHFB+5DCH calculations. As the two sets of
experimental data display differences, comparison between
B(E2) predictions and measurements necessarily has a global
character. The figure of merit of our theory for 152Sm is as
follows: (i) the intraband transition strengths have right order
of magnitude, especially for the ground-state band; (ii) the
transition between γ and the ground state as well as between
the γ and β bands are too collective; and (iii) the β to
ground-state band transitions display a mixed character. The
theory for the 0+

2 → 2+
1 transition strength is about 60% too

high. Nevertheless, we conclude that the 0+
2 excitation is a

β vibration in 152Sm.
Our present conclusion is that the structure of the ground

state, β, and quasi-γ bands is globally as the 5DCH theory
predicts, but there are probably other components in the
wave functions, such as two-quasiparticle excitations and
pairing isomerism [35] that may have an important large
effect on the out-of-band transitions. More accurate B(E2)
measurements that are underway [36] will be a valuable asset
for making definite statements on the predictive character of
present 5DCH calculations and for disclosing which degrees
of freedom might be missing in the structure models including
the 5DCH one.

TABLE I. Experimental and theoretical E2 transition strengths
B(E2; Ji → Jf ) (e2 fm4) of 152Sm. From left to right: Exp1 and Exp2
are for B(E2) experimental data from Ref. [31] and [29,30,32–34],
respectively, and Th are for 5DCH calculations.

J π
i → J π

f Exp1 Exp2 Th

6+
1 4+

1 11795(347) 11805(241) 12042
4+

1 2+
1 10061(277) 10071(144) 10171

2+
1 0+

1 6938(144) 6938(144) 6671

0+
2 2+

1 1589(194) 1590(110) 2539

2+
2 0+

2 8048(763) 5156(1300) 4732
4+

1 867(97) 915(96) 768
2+

1 277(28) 265(24) 1066
0+

1 46(4) 43(5) 1.2

4+
2 2+

2 12488(2081) 9830(1831) 7505
6+

1 763(208) 193(96) 655
4+

1 291(55) 260(63) 977
2+

1 36(6) 48(9) 27

2+
3 0+

1 179(12) 174(8) 430
2+

1 451(28) 448(24) 77
4+

1 34(3) 38(2) 686
0+

2 2(0.2) <2.4 1376
2+

2 604(42) 1301(193) 7382

3+
1 2+

1 337–819 479
4+

1 337–867 389
2+

2 <25 1974
2+

3 2987–38451 6627

4+
3 2+

1 28(8) 228
4+

1 265(77) 4384
6+

1 58(19) 663
2+

2 9(3) 140
4+

2 <1686 1209
2+

3 2409(723) 5045
3+

1 <12046 4384

IV. GROUND-STATE PROPERTIES

A. Nuclear shapes

We begin by displaying in Fig. 3 the set of nuclei that we
have calculated and included in our tables. This comprised all
even-even nuclei that are stable with respect to two-particle

20 40 60 80 100 120 140 160 180 200
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 sign[cos(3 )]
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(a)
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60

80

100
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< > sign cos(3< >)
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(b)

FIG. 3. (Color online) Chart of nuclides showing ground state deformations. (a) HFB minimum; (b) expectation value in the 5DCH ground
state. The black curve shows the β-stability line.
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FIG. 4. Distributions of β and γ in ground states. [(a) and (c)] Distribution of the HFB minima. Several nuclei at Z ∼ 108 have minima at
β ∼ 0.75 and are not shown. [(b) and (d)] Distributions of 〈β〉 and 〈γ 〉 in the CHFB+5DCH ground state. The distribution of γ in the lower
left figure includes only nuclei with nonspherical minima. The histogram on the lower right includes nuclei having spherical HFB minima as
well. Units for γ and 〈γ 〉 are degrees.

emission and that have positive correlation energies in the
CHFB+5DCH theory. Among the Z > 96 nuclei, some ones
close to the proton drip line have been removed from the
chart as their inner potential barriers are too low for inhibiting
fission decay. For now, we remark that the two-particle stability
is almost completely determined by the HFB energies. The
correlation energy Ecorr contribution [see Eq. (15)] changes it
for only a few nuclei on the borders. The next general remark
is that the criterion of positive correlation energy affects only
nuclei at magic numbers. These are visible as the absence
of colored circles along some of the magic number dotted
lines.

In the figure, the color coding shows the deformation β

of the ground state, with a ± sign according to the value
of γ . For the HFB ground states, shown in the left-hand
panel, one sees the familiar landscape of nuclear shapes,
with nuclei near magic numbers having small or vanishing
deformation (dark and medium green), and two large deformed
regions located at the lanthanides and actinides. Additional
regions of deformation are centered at nuclei with (Z,N) =
(12, 12), (38, 40), (40, 60), and (60, 80), the heavy nuclei with
N ∼ 150 and the superheavy nuclei with N > 190. It is also
apparent that single magic numbers do not enforce sphericity.
For example, the Sn isotopes are spherical in the region
below N ∼ 82, become deformed for neutron numbers in
the range N ∼ 100–112, and get back to spherical shapes

beyond N ∼ 114 up to the neutron drip line. The right-hand
panel shows the expectation value 〈β〉 for the CHFB+5DCH
calculation, with the sign determined by the expectation value
of cos(3〈γ 〉).

The 5DCH wave functions have larger deformations on
average with fewer nuclei near sphericity. To better see how
the 5DCH changes the deformation properties, we show in
Fig. 4 histograms of the distributions of β and γ . The result
for the distribution of β in the HFB theory is shown on the
upper left-hand panel. Among the 1712 nuclei in the calculated
data set, roughly 30% are spherical. The rest has a broad
distribution of deformations peaking at β ≈ 0.25. Except for
the very heaviest nuclei, the largest deformation of the survey
was found for the nucleus 24Mg, with β = 0.54. The lower
left-hand panel shows the corresponding distribution of γ .
For this plot, we restricted the nuclei to those with β > 0.1,
because γ is ill defined in spherical nuclei. One sees that the
great majority of the nuclei are prolate and axially symmetric,
i.e., γ � 0. There is also a small peak for oblate shapes,
γ = 60◦, comprising about 15% of the deformed nuclei.
The paucity of oblate deformations compared to prolate is
well known in mean-field calculations [6,37]. However, it
should be mentioned again that our calculated nuclei include
only those having positive correlation energies. The others
are all near magic numbers and are likely to be spherical.
Turning to the 5DCH 〈β〉 distributions shown in the upper
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FIG. 5. Distribution of rigidity parameters, namely 〈β〉/δβ in (a) and 〈γ 〉/δγ in (b).

right-hand panel of Fig. 4, we see essentially all the nuclei
become deformed, with deformation broadly distributed in
the range 0.05 � 〈β〉 � 0.4. The corresponding distribution
of axial asymmetries 〈γ 〉 in the lower left-hand panel shows
that axial symmetry disappears in the 5DCH wave functions,
with average asymmetries going up to 30◦.

Additional information about shape fluctuations is provided
by the variances in the deformation parameters, Eq. (16).
In principle, the value γ = 30◦ could arise from a potential
energy surface that is very soft in the γ coordinate or from
one that has a strong triaxial minimum. Figure 5 shows
the distribution of rigidity measures 〈β〉/δβ and 〈γ 〉/δγ for
β and γ , respectively. The β rigidity goes to very high
values, 〈β〉/δβ ∼ 10 in the deformed actinides. We will find
that such high values are present when the nucleus has a
well-developed rotational spectrum. However, the γ rigidity
is much smaller and is never more than ∼3. Without a clear
peaking at very large values, it will be problematic to char-
acterize the nuclei in terms of the simple models for triaxial
shapes.

B. Radii

We now examine the predicted charge radii, which we com-
pare with the tabulated experimental data from Refs. [38,39].
The mean-square charge radii r2

c are calculated as [40]

r2
c = 1

Z

∫
r2d3rnp(r) + r2

p + N

Z
r2
n − r2

c.m., (17)

where np(r) is the point-proton density and r2
p = 0.63 fm2

and r2
n = −0.12 fm2 are the rms proton and neutron charge

radii, respectively. The center-of-mass correction is computed
as r2

c.m. = 3h̄2/2mωA fm2 (see Eq. (4.3) in Ref. [40]), with
ω = 1.85 + 35.5/A1/3 MeV. We show in Fig. 6 the comparison
of calculated and experimental charge radii, plotted as the
relative error

ε = r th
c

/
rexp
c − 1. (18)

The upper and lower panels show the HFB and the
CHFB+5DCH results, respectively, with lines connecting

nuclei in isotopic chains. We see that the theory is remarkably
accurate at the HFB level, and the CHFB+5DCH hardly
changes the predictions. Among the heaviest nuclei, we find
that the U isotopes are reproduced very well. The theory seems
to be high for the Cm isotopes, but it should be noted that these
radii were based on systematics in the absence of any direct
measurement [41].

Nucleus-to-nucleus variations in radii can be attributed to
deformation changes [42] as well as other nuclear structure
effects [43–45]. The effects of deformation can be easily seen
in individual isotopic chains. An example is the Sr isotopic
chain, shown in Fig. 7. Experimentally, one sees a slight
decrease in the radius from N = 40 to the N = 50 magic
number, followed by a much steeper increase in radii as more
neutrons are added. The HFB minima are spherical below
N = 50 and deformations increase to very large values at the
heaviest isotopes in the figure. That results in almost monotone
increase in radius from the lightest to the heaviest isotopes.

Turning to the CHFB+5DCH results, we find that the main
effect is in the lighter nuclei, and it is to increase the charge
radius. This is to be expected, since deformations increase
the radius and the average deformations are systematically
larger in the CHFB+5DCH. The largest increase, by 4%,
is in the nucleus 30Si. Here the HFB minimum is spherical,
while the CHFB+5DCH ground state has a mean deformation
〈β〉 = 0.48. Returning to the Sr isotopic chain, the correlations
associated with the CHFB+5DCH bring the theory in very
good overall agreement with data. This comes about from two
effects. In the very light isotopes, the CHFB+5DCH predicts
large deformations instead of the spherical shape of the HFB
minimum, increasing the radii. On the other end of the isotopic
chain the nuclei are also deformed, but the average deformation
in the CHFB+5DCH wave functions (〈β〉 ∼ 0.3 − 0.35) is
less than in the HFB minima (β ∼ 0.45).

Table II shows the performance of the theory, using
as a quantitative measure the rms dispersion σ about the
mean ε̄, σ = 〈(ε − ε̄)2〉1/2. Both HFB and the CHFB+5DCH
treatments, suitably renormalized, are accurate to 0.6%. For
a comparison, the two-parameter “finite surface” model [38]
taking rc = r0A

1/3 + r1A
−1/3 fm is shown in the third row of

the table. Here the error is about twice as large.
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FIG. 6. Charge radii. Plotted are
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[(a) and b)] The results of the HFB
and the CHFB+5DCH theories, re-
spectively. Experimental data are from
Refs. [38,46,47] (see Ref. [39]) and
includes 313 nuclei.

C. Correlation energies

A key observable that theory should describe is nuclear
masses or equivalently their binding energies. We shall
consider the binding energy to be composed of two terms,
the binding energy of the mean-field minimum calculated in
an unconstrained (with respect to shape) HFB calculation, and
the correlation energy associated with the spread of the wave
function over the quadrupole shape degrees of freedom. For an
orientation, we show in Fig. 8 these two contributions and their
sum, displayed as difference between experimental [49] and
theoretical energies (i.e., residuals). One can see that the shell
effects at N = 82 and 126 are too large in the HFB theory,
and the correlation energies vary in a way to reduce the shell
effects to a level closer to that needed.
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FIG. 7. Charge radii rc of Sr isotopes. Experimental: circles
joined by solid line; HFB: triangles joined by dot-dashed line;
CHFB+5DCH: squares joined by dotted line.

The overall performance of the theory with respect to
masses depends extremely sensitively on the parameters of
the functional, and any useful theoretical mass table requires
that the force parameters be refitted. This has been recently
carried out for the Gogny D1N and D1M parametrizations
[5]. However, in the present study we will keep the original
D1S interaction and evaluate the performance with respect to
differential quantities, which are much less sensitive to the
precise parameters of the interaction. The first quantity we
examine is the two-nucleon separation energy defined as

S2n(N,Z) = E(N − 2, Z) − E(N,Z),

2n separation energy,
(19)

S2p(N,Z) = E(N,Z − 2) − E(N,Z),

2p separation energy.

In the left- and right-hand panels of Fig. 9 we show the
two-nucleon separation energies S2n and S2p for the HFB and

TABLE II. Comparison of calculated charge radii with experi-
ment: ε̄ is the mean of ε [see Eq. (18)]; σ is its rms dispersion about
the average. Three hundred thirteen nuclear radii were included in
the comparison as in Fig. 6. In the column “HFB (new)” we use the
modern value rp = 0.875 fm for the proton charge radius [48].

Theory ε̄ σ

HFB 0.001 0.006
HFB (new) 0.005 0.007
CHFB+5DCH 0.006 0.007
Finite surface 0.0000 0.012
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FIG. 8. (a) Residuals of the HFB binding energies with respect to experiment, plotted as a function of neutron number with nuclei of the
same Z connected by lines. (b) Correlation energy, Eq. (15). (c) Residuals including correlation energies. Experimental data are from Ref. [49].

the CHFB+5DCH calculations, presenting the calculations in
a similar way as was done in Ref. [50]. The shell gaps are
quite obvious, and one can see that they are reduced in the
CHFB+5DCH theory. The available experimental data are
shown on the bottom panels. One can see that the shell gap
varies with the number of nucleons of opposite isospin. In
particular, it is observed in the right-hand panel for the proton
separation energies that the Z = 50 and Z = 82 shell gaps
disappear at high neutron excess. As mentioned earlier, the
ground states become deformed in these neutron-rich nuclei.

In the left-hand panel for S2n one also sees a gradual opening
of the N = 162 spherical shell gap for proton numbers Z > 96.
This gap 2.5 MeV wide for Z = 110 should increase stability
of superheavy elements (SHEs). Our predictions are consistent
with those based on calculated shell correction energies [51]
and with the observation of a minimum in α-decay energies of

SHEs at N = 162 (for a review see Ref. [52]). Impact of this
neutron gap on calculated S2p values is also seen for N � 162
in the right-hand panel. Finally we note that interacting boson
model calculations are also supporting evidence for a neutron
spherical gap in close vicinity of N = 162 [53].

Another phenomenon is the enhancement of the gap near
doubly magic nuclei. This phenomenon, called mutually
enhanced magicity [54], is reproduced much better by the
CHFB+5DCH theory than by the HFB. The best example is
the Z = 82 gap of the S2p systematics in the bottom right-hand
panel, which becomes larger near N = 126. Unfortunately,
the Gaussian overlap approximation does not permit us to
calculate the doubly magic nuclei.

In Table III we show the rms residuals of the calculated
separation energies with respect to experiment. The experi-
mental data are from Ref. [49], including only nuclei whose
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FIG. 9. (Color online) (a) Two-neutron separation energies; (b) two-proton separation energies. The three rows show the HFB theory, the
CHFB+5DCH theory, and experiment, respectively. Experimental data are from Ref. [49].

binding energies are given with experimental error of less than
200 keV. As already mentioned, our theory only includes nuclei
whose correlation energy is positive. This excludes only about
10% of the nuclei in the experimental data set. The number
of nuclei in the comparison is given on the first line of the
table. The first comparison, with the HFB energies, shows
rms residuals of slightly less than 1 MeV for both separation
energies and gaps. The performance here is slightly better
than was found in the survey based on the Skyrme energy
functional Sly4, reported in Ref. [12]. The bottom line of the
table shows the energies of the full CHFB+5DCH theory,
i.e., with the correlation energy included. The improvement is
about 25%. This is surprisingly comparable to the results found

TABLE III. Two-nucleon separation energies and gaps. Sizes of
the compared data sets are given on the first line. Rms residuals with
respect to experiment are given on the third and fourth lines, for the
HFB and CHFB+5DCH theories, respectively. Energies are in MeV.

S2n S2p δ2n δ2p

Size
Theory 455 433 396 358

Exp. 492 467 444 392
Theory

HFB 1.00 0.91 1.06 0.98
CHFB+5DCH 0.72 0.71 0.68 0.61

in Ref. [12], despite that correlation energy was calculated in
a completely different way.

We also carried out the statistics on the two-nucleon gaps.
This quantity is defined by the next higher order difference,

δ2n(N,Z) = S2n(N + 2, Z) − S2n(N,Z), 2n gap,

δ2p(N,Z) = S2p(N,Z + 2) − S2p(N,Z), 2p gap.
(20)

As a particular example, there has been much discussion
of evolution of the Z = 28 gap for high neutron numbers.
We find that the CHFB+5DCH energies are below the HFB
values, thus weakening any shell effect at Z = 28. There is
a peaking at N = 28 that could be attributed to “mutually
enhanced magicity” or to an Z = N symmetry effect, the
“Wigner energy.” Experimentally, there is a slight peaking
in the gap at N = 40, but we find that it is smooth in the
CHFB+5DCH theory.

The overall statistics for the performance of the theories
with respect to two-nucleon gaps are also shown in Table III.
The results are somewhat better than those for the separation
energies.

V. YRAST SPECTRUM

In this section we report the predictions for the lowest
excitations of angular momentum J = 2, 4, and 6. For the
quantitative measure of the global performance of the theory,
we will use the same figures of merit as in Ref. [4]. Because the
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TABLE IV. Summary of the performance statistics of the
CHFB+5DCH for excitation energies and transition properties. See
text for definitions of R̄ and σ . The column “Number” gives the
number of nuclei in the comparison data set.

Observable Number R̄ σ

E(2+
1 ) 513 0.11 0.35

B(E2; 2+
1 → 0+

1 ) 311 0.20 0.42
R42 480 0.03 0.14
R62 427 0.08 0.21
E(2+

2 ) 352 0.19 0.30
E(0+

2 ) 317 0.31 0.36
〈0+

2 |r2
p|0+

1 〉 87 2.1 1.9

quantities span a large range values, we examine the statistics
of the logarithmic ratio of theory to experiment, namely

Rx = log(xth/xexp), (21)

for a quantity x. We present its average over the data set R̄x as
well as the dispersion about the average,

σx ≡ 〈(Rx − R̄x)2〉1/2. (22)

The results for the properties we can compare with tabulated
experimental data are discussed individually below and in Sec.
VI, and are summarized in Table IV in Sec. VII.

A. The first 2+ excitation

The first physical property we examine is the fraction of
the energy-weighted sum rule (EWSR) contained in the 2+

1
excitation. That quantity is governed more by the inertial and
mass properties of the CHFB+5DCH than by the topology
of the potential energy surface. The sum rule fraction is often

expressed with respect to Lane’s isoscalar sum rule [55]

S(I ) =
∑

i

E(2+
i )B(E2; 0+

1 → 2+
i ) = 25

4π

(
h̄2

m

)
A〈r2〉,

(23)

where m is the nucleon mass and 〈r2〉 is the mean-square
mass radius. It is also common to make the approximation
〈r2〉 = 1.22A2/3 fm2 [56] but we shall rather use our calculated
mass radius. The charged part of the isoscalar sum rule is
derived from S(I ) assuming that the charge current and mass
current are proportional [56]

S(II ) = S(I )

(
Z

A

)2

. (24)

The fraction s(X) of the sum rules carried by the 2+
1 excitations

is calculated as

s(X)=E(2+
1 )B(E2; 0+

1 →2+
1 )/e2S(X), with X = I, II.

(25)

Histograms of s(I) and s(II) are shown in the left-hand panel
of Fig. 10. Individually, the excitation energies and transition
strengths vary over several orders of magnitude. But their
product scaled by s(X) compresses the rms variation down
to about a factor of 2. This may be seen in the histograms
of s(I) and s(II) shown in the left-hand panel of Fig. 10.
The fraction of strength in each sum rule is about 1.5%
for S(I) and 10% for S(II). As is well known, most of the
strength is carried by the giant quadrupole resonance. One
can also see from the histograms that the scaling with S(II)
produces more compressed distribution than scaling with S(I).
A scatter plot of the theory versus the experimental values of
S ≡ E(2+

1 )B(E2; 0+
1 → 2+

1 ) is shown on the right-hand panel
of Fig. 10. There is a concentration of points on the diagonal
that show very good agreement; these mostly correspond
to strongly deformed nuclei. Overall, the theory somewhat
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FIG. 10. (a) Distribution of sum rule fraction s(X), Eq. (25), in the CHFB+5DCH theory, for the 1609 calculated nuclei. Solid and dashed
lines show the fraction of the S(I) and S(II) sum rules, respectively. (b) Calculated S ≡ E(2+

1 )B(E2; 0+
1 → 2+

1 ) versus experimental, for 311
nuclei. Experimental data are from Refs. [56,57]. S values are in MeV e2b2 units.
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FIG. 11. (a) Theoretical 2+
1 excitation energies of 537 even-even nuclei as a function of their experimental values. (b) Theoretical

B(E2; 0+
1 → 2+

1 ) transition strengths of 320 even-even nuclei as a function of their experimental values. Several cases showing deviations are
labeled by the nucleus. Experimental data are from Refs. [56,57].

overestimates the fraction of the EWSR carried by the 2+
1

state.
We now turn to the comparison of excitation energies and

transition strengths with experiment. The results were reported
already in Ref. [4], but we since discovered that the code we
had been using to solve the 5DCH did not have the desired
precision for smallest excitation energies. In the present work
we report recalculated energies using a more accurate code
described in Refs. [18,58]. The comparison of experiment
[56,57] and the calculation is shown in the left-hand panel of
Fig. 11. The points at the lower left correspond to the deformed
lanthanides and actinides, and one sees that the theory does
very well there.

Right-hand panel of Fig. 11 shows a similar comparison
for the B(E2; 0+

1 → 2+
1 ) transition strength. The points on the

upper right side of the figure correspond to the very deformed
actinide nuclei. Again, the theory is seen to be remarkably
accurate under the conditions of a large static deformation.
The global performance figures of merit for the 2+

1 energy and
the B(E2; 0+

1 → 2+
1 ) strength are given on the first two lines

of Table IV posted in Sec. VII.

B. The first 4+ excitation and R42

An important signature of the character of the excitation
spectrum is the relationship of the lowest 4+ excitation and
the 2+

1 below it. A very useful indicator is the ratio of the two
excitation energies E(Jπ

n ),

R42 = E(4+
1 )

E(2+
1 )

. (26)

The R42 indicator has been much used, particularly in dis-
cussing complex spectra. The value R42 = 10/3 is character-
istic of an axial rotor, R42 = 2 of a vibrator, and R42 = 5/2 of
a γ -unstable rotor or the O(6) algebraic model [59]. In Fig. 12
we display histograms of the experimental and theoretical
ratios side by side. One sees a very narrow peak at 10/3,
showing that one can make a nearly unambiguous assignment
of axial rotors. In the algebraic models the three simple limits
mentioned above represent extremes in the parameter space of
the models, and it is interesting to see which ones are favored in
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FIG. 12. (a) Histogram of experimental R42 ratios, Eq. (26), for 501 even-even nuclei, with data from Ref. [24]. (b) Histogram of calculated
R42 ratios for 1609 even-even nuclei calculated in the CHFB+5DCH theory.
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FIG. 13. (Color online) The ratio R42

as a function of the mean deformation 〈β〉
(a) and the β-softness parameter δβ/〈β〉
(b) for the calculated nuclei in their ground
states. Dotted lines show the rigid rotor
value R42 = 10/3.

the global systematics. While the axial rotor is clearly special,
neither the harmonic vibrator nor the γ -unstable rotor shows
a corresponding accumulation in the experimental data. The
CHFB+5DCH theory, however, does show a second peak just
below the γ -unstable value, R42 = 5/2.

It is interesting to see how well the physical structure
indicator R42 correlates with the intrinsic shape properties
of the CHFB+5DCH wave functions. Let us first examine
the relationship between R42 and mean deformation 〈β〉. This
is shown in the left-hand panel of Fig. 13. One can see that
the value of 〈β〉 by itself does not determine whether the
yrast spectrum has a rotational character. The R42 has the
rotational value for 〈β〉 in the range 0.2–0.45, but nuclei
with nonrotational spectra are common with 〈β〉 values up
to 0.3. In fact the highest value of 〈β〉 in our calculations
is found for a nucleus (26Mg) for which R42 = 2.4, both
theoretically and experimentally. Evidently, what is needed
as well to determine the rotational properties is a measure
of the rigidity of the shape. For that purpose, we use the
β-softness parameter, rβ = δβ/〈β〉. The R42 values are plotted

with respect to rβ in the right-hand panel of Fig. 13. As may
be seen from the figure, this provides a much better separation
between the rotational and nonrotational spectra. Effectively,
the β-softness parameter should be less than 0.2 for a rotational
spectrum.

We turn to the performance of the theory of the 4+
1

level, comparing energies to experimental data. Of the
484 nuclei with tabulated experimental energies [24], 480
meet the criteria to be included in our theoretical database.
The left-hand panel of Fig. 14 shows the comparison of the
theory to experiment as a scatter plot for R42. For most nuclei
the R42 values in both measurements and calculations fall
between R42 = 2 and R42 = 10/3 limits of the vibrational
and rotational models, respectively. Values of R42 less than
one are certainly possible when the spectrum is dominated by
two-quasiparticle excitations, which is common near magic
numbers.

Statistical performance for the data set is given in Table IV.
The average value of the ratio R42 comes out very well, only
3% higher than the measured average. The dispersion about

 1

 2

 4

 1  2  4

T
he

or
et

ic
al

Experimental

(a) 42

 0

 100

 200

 300

 400

 500

 1  1.5  2  2.5  3  3.5  4

  N
um

be
r 

of
 n

uc
le

i

 R42(B)

(b)
 R

FIG. 14. (a) R42 comparison of theory and experiment for 480 nuclei. Arrows indicate the rigid rotor value R42 = 10/3. Experimental data
are from Ref. [24]. (b) Distribution of R42(B) for CHFB+5DCH wave functions of 1693 nuclei.
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the mean is also quite good, better than the predictions for the
absolute energies of the 2+

1 excitations.
In the subsections below, we will analyze the properties of

other excitations with respect to the rotational character of the
ground state. Since the R42 measure is very clear, we shall
make much use of it to examine the connections.

It is of interest to examine the transition strengths
B(E2; 4+

1 → 2+
1 ), even in the absence of a critical review and

evaluated tabulation of the experimental data. To interpret this
quantity we take the ratio to the 2+

1 → 0+
1 transition, defining

R42(B) as

R42(B) = B(E2; 4+
1 → 2+

1 )

B(E2; 2+
1 → 0+

1 )
.

Two anchor points to interpret R42(B) are the axial rotor model
for which R42(B) = 10/7, and the harmonic vibrator model
for which R42(B) = 2. The distribution of calculated values
is shown as a histogram in the right-hand panel of Fig. 14.
There is a peak at the axial rotor value, but no peak at the
vibrator value or anywhere else. The calculated R42(B) range
from 1.43 for the nucleus 240Cm to 5.7 for the nucleus 180Pb.
There are no calculated nuclei with R42(B) smaller than the
axial rotor value.

C. The first 6+ excitation

The last excitation we shall examine in the yrast spectrum
is the 6+

1 level. If the 0+
1 , 2+

1 , and 4+
1 levels form a band with

energies close to the axial rotor limit, the 6+
1 state is also part of

the band in the vast majority of cases. Deviations of its energy
from the rotational limit can also be extrapolated from the R42

values using the Mallman systematics [60,61], namely the em-
pirical correlation of the ratios R62 = E(6+

1 )/E(2+
1 ) and R42.

The correlation associated with the CHFB+5DCH energies is
shown in Fig. 15, left-hand panel, based on theoretical energies
from 1609 nuclei. The scatter plot follows a line from about
(R42, R62) = (1.5, 2.0) to the value (10/3, 7) corresponding
to the rotational limit. The plot shows an accumulation of

points at the axial rotor limit, as well as a somewhat broader
peaking near (2.3, 3.7). For orientation, the positions of the
γ -unstable limit and the harmonic vibrator limit are for
(5/2, 4.5) and (2, 2), respectively. The experimental scatter
plot of R62 vs. R42 is shown in the right-hand panel of Fig. 15.
It shows data for 458 nuclei, obtained from the Brookhaven
database [24]. We also show in the middle panel the calculated
nuclei corresponding to the experimentally known ones. The
experimental points form a line very much like the one seen
in the theory plot. The correlation is also very narrow for the
upper half of the line, but it becomes broader at lower values
of R42 and R62. The experimental plot extends to lower values
than we find in the theory. One possible explanation is the
neglect of two-quasiparticle configurations in the theoretical
wave functions. Such configurations can produce high angular
momentum at relatively little energy cost and therefore can
give values of R42 and R62 close to 1. Also, the nuclei with
such low R62 values may have failed our criteria to keep in the
theoretical database.

The global figures of merit of the observable R62 are
reported in Table IV. The reliability of the theory is quite
high, although it does not do as well as for the lower 2+ and
4+ yrast excitations.

VI. NONYRAST EXCITATIONS

This section will examine in some detail the physical
properties of 0+

2 and 2+
2 excited states but is also concerned

with their possible role as head levels of collective bands,
traditionally referred to as β- and γ -vibrational bands, re-
spectively. In order to do this we will also need to consider
the 2+

3 excitation, which can very often be considered as
part of a K = 0 excited band. The specific indicators we
will examine in this context are the excitation energy with
respect to band head, the in-band transition rate compared to
that for the ground-state band, and the relative out-of-band
transition matrix elements. Unfortunately, the data tabulations
do not exist to make a systematic comparison to experiment.
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FIG. 15. Ratios of yrast excitation
energies, R62, as a function of R42.
(a) CHFB+5DCH theory for 1609
nuclei. (c) Experimental ratios for
456 nuclei, with data from Ref. [24].
(b) Theoretical values for the nuclei
shown in the right-hand panel.
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FIG. 16. (Color online) Chart of the computed nuclei showing
the probability of K = 2 component in the wave function of the 2+

2

levels. The 2+
2 states with more than 75 % of K = 2 components in

wave functions are considered as γ vibrations. The black curve shows
the β-stability line.

However, the band character has been much discussed in the
rare-earth region, and we can compare some out-of-band rates
there. As the 2+

3 levels are almost systematically members of
the excited K = 0 bands, an alternative to β-vibrational band
interpretation is suggested, namely that of coexisting band
structure inside nuclei. A detailed discussion of the γ -degree of
freedom and associated collective band excitations is deferred
to a later publication.

A. The 2+
2 excitation

The lowest nonyrast excitation typically has J = 2, and it is
often interpreted in the collective model as a shape excitation
in the γ degree of freedom. A theoretical indicator for that
character is the K content of the wave function. This is
shown visually in Fig. 16 indicating the probability P (K)
by the coloring of the nuclides. Apart from nuclei close to
magic numbers, the vast majority of second 2+ states have
P (K = 2) > 0.75 and can be considered as γ vibrations. In
the upper right corner of Fig. 16 is a domain without coloring.
In this narrow mass region the inner potential barrier is not
high enough to sustain excited states, and the nuclei go to
fission. For a more quantitative view of the K distributions

we show them by histograms in Fig. 17 for the second and
third J = 2 states in the spectrum. For the 2+

2 state (left-hand
panel), there is a sharp peak close to P (K = 2) = 1, together
with a broader distribution of lower probabilities.

For the most part, the nuclei within the sharp peak have R42

close to the axial rotor value. Thus, for these nuclei we have a
clear identification of the 2+

2 level as a γ excitation.
The plot for the 2+

3 state in the right-hand panel shows that
this level may be viewed as a β excitation in many nuclei.
Here the strong peak is at P (K = 2) = 0. Interestingly, there
are a few nuclei for which the roles of the second and third
state are reversed, as can be seen in Fig. 16. It happens that
our example 152Sm in Sec. III is of this kind. In the discussion
below, we will designate the second or third 2+ state with
the larger P (K = 2) the 2+

γ level, if P (K = 2) > 0.75 for all
nuclei with R42 � 2.3 even though we know that γ vibration
is a designation specific to well-deformed nuclei.

The systematics of the 5DCH 2+
γ energies are shown

in Fig. 18 (open circles) as a function of neutron number.
The distribution of excitation energies displays sharp struc-
tures with maxima near N � 50 magic numbers, for which
R42 < 2.3. Minima are found, as expected, halfway between
major closed shells and they reach very low values (Ex �
200 keV) in heavy nuclei with Z � 98. The performance of
the CHFB+5DCH on the energies of the 2+

2 levels is shown
in Fig. 19 through comparing the calculations to the evaluated
data for 354 nuclei [24].

The theory clearly reproduces the variation of the exper-
imental energies, which range over more than an order of
magnitude. The colored symbols in this figure are for 2+

2
states identified as 2+

γ levels in the CHFB+5DCH calculations.
On average the theoretical energies are somewhat high. The
figures of merit, given in Table IV, show that the theoretical
energies average about 25% higher than the experimental ones.
Interestingly, the variance σ is smaller than that for the 2+

1
excitations.

B. The 0+
2 excitation

In the framework of the CHFB+5DCH theory, the 0+
2

excitation can arise in several ways: as a β vibration, as
a coexisting state of very different shape, or something in
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FIG. 17. Probability of K = 2 component in the wave functions of the second (a) and third (b) excited 2+ states.
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FIG. 18. (Color online) Excitation energy of the CHFB+5DCH
2+ level with P (K = 2) � 0.75 as a function of neutron number N .
Open symbols in blue and red colors indicate the 2+

2 and the 2+
3 levels

for nuclei with R42 � 2.3, respectively. These levels are defined as
2+

γ excitations. Dots are for nuclei with R42 < 2.3.

between. To be a β vibration, the excitation should have nearly
the same 〈β〉 as the ground state but a larger dispersion δβ.
The excitation in this limit is very dependent on the calculated
mass parameters for the β degree of freedom, which have been
calculated using the Inglis-Belyaev formula. This treatment
has known deficiencies and we expect that the predicted
excitation energies would be somewhat lower if the Thouless-
Valatin prescription were used. The other likely structure for
the 0+

2 excitation arises from the coexistence of vastly different
deformation at nearly the same energy. The latter mechanism is
prominent in light doubly magic nuclei [62,63] and also in the
actinides where the superdeformations occur at low excitation
[64–66]. A phenomenological signature of coexistence would
be a low excitation energy. In fact there are a number of known
nuclei for which the 0+

2 level is the first excited state, but we
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FIG. 19. (Color online) Excitation energy of the second J = 2
excitation, comparing 352 nuclei. Experimental data are from
Ref. [24]. The 2+

γ levels are marked with red color.

 1

 10

 1  10

T
he

or
et

ic
al

  (
M

eV
)

Experimental  (MeV)

0+
2

FIG. 20. Excitation energy of the 0+
2 state compared with

experiment [24].

do not find such a low excitation energy in our calculations.
However, this observation does not at all mean that the present
theory is not able to provide reliable predictions for nuclei
where shape coexistence and shape transition are present and
characterized by many measurements. Such features are well
described by our theory for the neutron-deficient Kr isotopes
[23,67]. That the present theory does not predict 0+

2 state as
first excited state in a nucleus obviously means that degrees of
freedom other than collective quadrupole ones are at play and
cannot be ignored.

The theoretical and experimental excitation energies of the
0+

2 excitation are compared in Fig. 20. The experimental data
set of 332 nuclei was obtained from the Brookhaven database
[24]. Of the 332 tabulated nuclei, 317 are in the CHFB+5DCH
calculated nuclei and are shown in the figure. One sees that
the theory reproduces the overall variation over one order of
magnitude but that the calculations are systematically too high.
The figures of merit for the performance of the theory are
given in Table IV. The average RE is given by R̄E = 0.38 and
corresponds to predicted energies that are too high by ∼50%.
The rms fluctuation about renormalized theoretical energies
is given by σE in the table. Its value, 0.30, corresponds to a
fluctuation +35% −25% in the error.

We now examine the 0+
2 energy as a function of de-

formation, following the work of Chou et al. [68]. These
authors observed that there is a strong empirical correlation
between the ratio R02 = E(0+

2 )/E(2+
1 ) and R42 measurements

as shown in the right-hand panel of Fig. 21. The left-hand panel
shows a scatter plot of these quantities for the CHFB+5DCH
calculations. Indeed, one sees a strong correlation between
the two ratios. The R02 ratio is flat with a value in the range
1–5 until R42 approaches the axial rotor value, and then it can
become very large. However, the width of the curve at fixed R42

is too broad to use this plot in a predictive way. The overall
shape of the curve comes mostly from the variation of the
denominator in the ratio E(0+

2 )/E(2+
1 ) for both measurements

and calculations. We show in Fig. 22 a plot of E(0+
2 ) itself

versus R42, which is also informative. Here one sees three
categories of nuclei. At one extreme are the spherical nuclei,
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FIG. 21. (Color online) (a) Ratio
E(0+

2 )/E(2+
1 ) as a function of R42 for the

calculated nuclei. (c) Experimental data
are from Ref. [24]. (b) CHFB+5DCH
values for the nuclei shown in the right-
hand panel. Color code is for mean
ground-state deformation.

having R42 ∼ 2, which have the highest excitations for the 0+
2

levels, typically in the range of 2–4 MeV. At the other extreme
are the axial rotor nuclei with 0+

2 energies in the range of
1–2 MeV. Interestingly, the nuclei in between favor lower
energies, in the range of 0.5–1.5 MeV. Those nuclei are likely to
be soft ones, and that would be reflected in both the excitation
energy of the 0+

2 levels and the range of values of R42.

1. Criteria for the occurrence of β-vibration

As said above, the 0+
2 excitation in nuclei can arise as a

β vibration, as a coexisting level with deformation different
from that for lower-lying states, or something intermediate
between these two extreme structures. Here we would like to
place the above discussion in a broader perspective.

First we consider relationships between quadrupole transi-
tion matrix elements calculated in our theory for the 2+

1 → 0+
2 ,

2+
3 → 2+

1 , and 2+
3 → 0+

1 transitions. If the spectrum truly
exhibits a β-vibrational band, the quadrupole transitions
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FIG. 22. (Color online) CHFB+5DCH excitation energy (MeV)
of the 0+

2 state as a function of the ratio R42. Color code is for mean
ground-state deformation. The vertical line (red color) indicates the
rotational limit R42 = 10/3.

between it and the ground state should be governed by a single
parameter, the matrix element of the quadrupole operator
between the two intrinsic states. Under these circumstances
the spectroscopic transition matrix elements are related by
Clebsch-Gordan coefficients, cf. [Ref. [69], Eq. (4)-219]:

〈βJβ ||M(E2)||gJg〉
= (2Jg + 1)1/2(Jg020|Jβ0)〈β|M(E2)|g〉. (27)

Here the ground-state and the β-vibration bands are
labeled by g and β, respectively. We examine now
the three CHFB+5DCH cross-band transitions, (Jβ, Jg) =
(0, 2), (2, 0), (2, 2), to see how well Eq. (27) is satisfied.
According to the model, the magnitudes |MJβ,Jg

| should satisfy

|M02| = |M20| =
√

7

10
|M22|. (28)

To display the deviations of the computed matrix elements
from these conditions, we take the ratio of the three quantities

|M02|, |M20|,
√

7
10 |M22| to their total. The fractions are plotted

in Fig. 23 as points within a triangle, the fraction given by
the distance to a side of the triangle. We see that there is a
concentration of points at the center point of the triangle; of
the 1707 calculated nuclei, 398 have values of the relative
matrix elements within 15% of equality. The distribution of
these nuclei in Z and N is shown in Fig. 24. One sees four
regions where the condition is well satisfied, including the
strongly deformed rare earths and actinides.

We conclude that the CHFB+5DCH theory predicts that
β-vibrational bands should be quite common, taking as a
criterion that Eq. (26) be approximately satisfied. There is
also a concentration of points at the upper apex of the triangle
in Fig. 23. For these nuclei, the 0+

2 → 2+
1 matrix element is

much larger than the two matrix elements involving the 2+
3

excitation, suggesting that the excitations behave more like
independent phonons.
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FIG. 23. Crossover matrix elements. Relative magnitudes of

the three quantities |M02|, |M20|,
√

7
10 |M22| are shown by distances

to the sides of the triangle. The vertexes of the triangle correspond to
the case where only the labeled transition is nonzero.

2. 0+
2 → 2+

1 transition

We now focus on the experimental situation with respect
to the 0+

2 → 2+
1 transition strength. This is an important

observable in an ongoing controversy about the existence of
β bands in deformed nuclei [70,71].

In Ref. [70], it is concluded that the observed β- to ground-
state-band transitions are orders of magnitude weaker than
those predicted by collective models for deformed rare-earth
nuclei, except for very few. To assess the performance of the
CHFB+5DCH at least in this limited region, we have com-
pared the CHFB+5DCH calculations of the B(E2; 0+

2 → 2+
1 )

strengths with the experimental data on the nine nuclei com-
piled in Ref. [70]. For all of these nuclei, the CHFB+5DCH
theory predicts a β-vibrational band that satisfies the criteria
discussed in the previous subsection. For four of the nuclei
(152,154Sm, 154Gd, and 168Yb), the calculated B(E2)’s are of
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FIG. 24. Chart of nuclei (full circles) in the vicinity of the center
point of the triangle shown in Fig. 23. The continuous curve is for the
β-stability line, and dots are for nuclei between drip lines as shown
in the left-hand panel of Fig. 3.

the same order as the experimental ones but somewhat higher
by up to a factor of 2 or so. However, for the remaining five
nuclei (158Gd, 166,168Er, and 172,174Yb), the experimental values
are an order of magnitude smaller and in strong disagreement
with the CHFB+5DCH theory. Thus, for these nuclei at
least, the observed band built on the 0+

2 states does not
correspond to the β vibration calculated in the CHFB+5DCH
theory.

Recent measurements have shown that many 0+ excited
states are present at low excitation energy in the deformed
rare earths [72]. This suggests that the 0+ levels described by
the CHFB+5DCH may be quite fragmented. For example,
the β-vibrational mode couples to such modes as pairing
vibrations and/or incoherent two-quasiparticle excitations. In
the algebraic models, efforts have been made to explain
the extra 0+ states by introducing many-particle many-hole
excitations [73,74]. Other regions of deformed nuclei like the
actinides and transactinides would be worth investigating to
check whether they also are missing the coherent β-vibrational
structure predicted by the CHFB+5DCH theory.

3. 0+
2 → 0+

1 transition

Another observable relevant to the structure of the 0+
2 level

is its monopole transition strength to the ground state. The
strength is conventionally expressed in terms of the quantity
ρ2 defined as [75]

ρ2(E0; 0+
2 → 0+

1 ) =
∣∣∣∣∣
〈0+

2 | ∑Z
i=1 r2

i |0+
1 〉

R2
0

∣∣∣∣∣
2

, (29)

with R0 = 1.2A1/3 fm. We calculate the required matrix
element as

〈0+
2 |

Z∑
i=1

r2
i |0+

1 〉 =
∫

da0da2g
01
0 (a0, a2)g02

0 (a0, a2)

×〈�(a0, a2)|
Z∑

i=1

r2
i |�(a0, a2)〉. (30)

We find rather interesting systematics with respect to the
neutron number as shown in Fig. 25.

The calculations display oscillatory structures with broad
maxima located near midshell closures (N � 40, 64, 100, and
150) and sharp minima in the vicinity of shell closures with
N � 20, 28, 50, 82, 126, and 184. Except for light nuclei, all
these minima take place for mean ground-state deformations
〈β〉 with small values, that is for spherical equilibrium shapes.
These features are globally consistent with IBA calculations
for E0 transitions: the ρ2(E0; 0+

2 → 0+
1 ) values raise sharply

in the shape transition regions and then remain large for
well deformed nuclei [76]. Other minima in E0 strengths are
found below N � 126 and N � 184 neutron shell closures.
Those associated with N � 162 and weak 〈β〉 values are
correlated with the opening of the neutron shell closure in
transactinide nuclei, as discussed previously in Sec. IV C. The
other two minima take place in open shell nuclei at mean
ground-state deformation in the ranges 〈β〉 � 0.19–0.26 and
〈β〉 � 0.26–0.30 for neutron numbers N � 116 and N � 158,
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FIG. 25. (Color online) Systematics of the calculated squared
monopole transition matrix element ρ2(E0; 0+

2 → 0+
1 ) as a function

of neutron number N . Color code is for proton number.

respectively. These features as well as similar ones identified
in light nuclei with N � 20 and N � 28 indicate that the
existence of minima in the E0 strengths over the (N,Z) plane
are not exclusively correlated with shell closure and spherical
ground states. Finally we note that the E0 strength values
are at a maximum near N = 132 and N = 190 and decrease
with N increasing. These features are relevant to the Z > 96
isotopic chains for which mean ground-state deformations
display strong variations (see right-hand panel in Fig. 3).

We have compared our ρ2(E0) transition strengths to 87
of the 91 nuclei tabulated in Ref. [77]. The result for R

figure of merit is given in Table IV. We see that experimental
matrix elements are on the average very small compared to
theory. This suggests that the experimental 0+

2 levels may
have a very different structure than the calculated ones. It
may be that configurations ignored by the CHFB+5DCH,
such as two-quasiparticle excitations, may be important in
the nonyrast spectrum [78]. This problem with the parameter-
free CHFB+5DCH theory that globally overestimates the
E0 strengths by an order of magnitude is shared by other
models of nuclear structure. For example, enforcing realistic
model descriptions of M1 and E2 transitions or charge
radii, it is not uncommon that calculated E0 strengths are
up to 10 times stronger than experimental values [79–81].
The actual nature of E0 transitions remains an elusive
issue pointing to major improvements required in structure
models.

4. Coexistence between bands

We have seen above that the conditions for the occurrence
of β vibration impose the medium- and heavy-mass deformed

nuclei to lay in specific (Z,N) regions (see Fig. 24). One is
then left with the issue as to what can be learned on collective
excited K = 0 band properties for nuclei that do not belong to
this sample. For this purpose we define an important indicator
of band structure through the ratio

R20(BB ′) = B(E2; 2+
3 → 0+

2 )

B(E2; 2+
1 → 0+

1 )
(31)

for all nuclei of present interest with the provision that 2+
3 levels

have preponderant K = 0 component [i.e., P (K = 0) > 0.75]
in their wave functions that unambiguously makes them
members of excited K = 0 bands. This ratio displays marked
structures only if plotted versus neutron number. It is shown
in Fig. 26 where open and solid symbols are for R42 � 2.3
and R42 < 2.3, respectively. R20(BB ′) values in the vicinity
of R20(BB ′) = 1 are representative of the points concentrated
at the center point of the triangle shown previously in
Fig. 23, and these take place near mid-neutron-closed shell
numbers N = 100, 150. Most R20(BB ′)’s take on values
away from unity. Those with R20(BB ′) > 1 are suggestive
of stronger collectivity present in excited K = 0 band than in
ground-state band and the other way around for R20(BB ′) < 1
values.

It is for N < 60 nuclei that the symbols in Fig. 26 show
disparate features as, within a narrow range of N values,
R20(BB ′) rapidly flips from R20(BB ′) > 1 to R20(BB ′) < 1.
These features have not been analyzed in detail but suggest
strong shell effects driving nuclei from near spherical to
deformed or from prolate to oblate or vice versa. A typical
example is that offered by the neutron-deficient Kr isotopes
that display shape coexistence features and also undergo a
shape transition from prolate to oblate [23]. Nuclides with N >

60 display less scattered features in their ratios R20(BB ′) that
now form a seemingly regular oscillatory trajectory versus N .
Extrema are not well localized but undoubtedly they are
reasonably close to N = 66, 78, 90, 100, 116, 136, 146, 170,
and 196 for nuclei with R42 � 2.3. Detailed information on the
location of nuclei with such properties over the (N,Z) plane is
not yet available. At this moment we have checked that the ratio
R20(BB ′) can serve as good indicator for the identification of
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FIG. 26. (Color online) The ratio R20(BB ′), Eq. (31), as a
function of neutron number. Color code is for proton number. Data
marked with open and solid symbols are for R42 � 2.3 and R42 < 2.3,
respectively.
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nuclei known to display shape coexistence (i.e., isotopes of
the Se, Kr, Sr, Zr, Sm, Hg, Pb, and Po elements) associated
with the presence of two (or three) minima in potential energy
surfaces. Coexistence between collective bands are calculated
for Pd, Cd, and Te isotopes that are known experimentally to
display such features, see, e.g., Ref. [82]. For these nuclides,
coexistence is related to well localized maxima in collective
masses present at different loci over the (β, γ ) plane and
not to prominent minima in potential energy surfaces. Other
theoretical treatments of this kind of coexistence have mostly
been based on the interacting boson model, invoking particle-
hole excitations between shells to explain the intruder states
[83–85].

VII. SUMMARY AND OUTLOOK

In this work we have evaluated the performance of the
CHFB+5DCH theory based on the Gogny D1S interaction
as a global theory of nuclear structure. Highlights of the
successes of the theory are its accurate predictions with respect
to charge radii, the classification of nuclei as deformed rotors
or not, and the ground-state band properties of the axial
rotors.

The calculated two-nucleon separation energies are in-
teresting in that they show shell effects and how they are
modified for nuclei far from stability. An example is the nuclei
near N,Z = 40. These are often predicted to be spherical
in HFB. This is also the case for the Gogny interaction,
but we find that there is a change in structure going to the
CHFB+5DCH extension, and the nuclei become deformed
rotors, in agreement with experiment. The CHFB+5DCH
theory is a suitable framework where the issues of shell erosion
and shell collapse can be addressed.

As a spectroscopic theory, the CHFB+5DCH has con-
siderable predictive power for the lowest yrast and yrare
states, even for nonrotational spectra. This is illustrated by
predicted energies of the 2+

1 , 4+
1 , and 2+

2 excitations, which we
compared with compiled empirical data. The performance with
respect to the 0+

2 levels also showed predictive power, but here
systematic deficiencies of the theory become apparent. All in
all, it is quite remarkable that a theory based on a many-body
Hamiltonian with only 14 interaction parameters has such
predictive power over the broad range of the nuclei that can
be treated in the methodology. An important finding is that
deformation alone is not a good predictor of rotational spectra.
We defined a quantity, β-softness, that correlates much better.
For convenience, we summarize in Table IV the figures of
merit for the performance of the theory for excitation energies
and transition properties. We also provide in a retrievable form
the specific predictions for spectral properties of about 1700
even-even nuclei and analyzed some of the systematics of the
predicted quantities.

There are a number of avenues that could be pursued to
improve the theory, some of which are quite straightforward,
at least in principle. The treatment of the inertial masses could
be improved by using the Thouless-Valatin prescription that is
better justified than the cranking approximation we have used
up to now. This would surely improve the energies of the 0+

2

excitations, which is one of the problems of the current theory.
This would require calculating the QRPA response function at
every grid point. This would of course add to the computational
burden, but the ingredients to perform the calculation are
available for the most part in the intermediate calculations
already performed. The rotational inertias could also be
improved by using a finite amplitude rotational field ωĴk

adjusted to self-consistency for the angular-momentum value
being calculated [86]. The ingredients of this self-consistent
treatment are already available and have been implemented in
some calculations [17]. This also would considerably add to
the computational burden.

We have taken the correlation energy as an indicator
of the validity of the Gaussian overlap approximation and
excluded nuclei whose calculated correlation energies are
unphysical. A better treatment of the correlation energy would
include the ZPE term coming from the curvature of the
potential energy surface. This term is small in nuclei with
broader collective potential energy surfaces, but in noncol-
lective nuclei the minima can be narrow, and this potential
term in the Hamiltonian mapping might have a significant
effect.

Another deficiency of the CHFB+5DCH that became
evident in the discussion of the 0+

2 level properties is the need
for two-quasiparticle components in the wave functions. This
can be carried out in the GCM if the Hamiltonian operator
in the collective space is calculated with full treatment of the
nonlocality [87]. However, there is no clear road to us for how
to include these components and keep the Gaussian overlap
approximation as yet.

While it is remarkable that the Hamiltonian based on
the Gogny D1S interaction has so much predictive power
after 30 years, one can still ask how the calculated observ-
ables depend on the intrinsic properties of the Hamiltonian
and whether an improvement can be made at that level.
We note that there has already been some work to im-
prove the Gogny interaction for calculating nuclear masses,
while keeping unaltered the performance of the CHFB+
5DCH and RPA theories achieved previously with D1S
[5].

Finally, as a separate publication, we will present in
more detail the spectroscopic properties to higher angular
momenta for the deformed rare-earth nuclei. This will also
include discussion on the systematics of interband transi-
tions and odd-even angular momentum staggering of the
γ bands [88].

ACKNOWLEDGMENTS

G.F.B. thanks A. Bulgac, R. F. Casten, C. Johnson,
L. Dieperink, and L. Prochniak for discussions and A.
Sonzogni for help with the BNL database. We thank Daniel
Gogny at Bruyères-le-Châtel for initiating these kinds of
nuclear structure studies. This work was supported in part by
the UNEDF SciDAC Collaboration under DOE Grants DE-
FC02-07ER41457 and DE-FG02-00ER41132. The authors
are thankful to CEA-DAM Ile-de-France for access to CCRT
supercomputers.

014303-21



J.-P. DELAROCHE et al. PHYSICAL REVIEW C 81, 014303 (2010)

[1] CEA database, http://www-phynu.cea.fr/HFB-5DCH-table.
htm, and supplementary material at http://link.aps.org/
supplemental/10.1103/PhysRevC.81.014303 for tables of
predicted properties of even-even nuclei and for color and
black and white charts.
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