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Ejectile polarization for 2H(e,e′ �p)n at GeV energies
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We perform a fully relativistic calculation of the 2H(e,e′ �p)n reaction in the impulse approximation employing
the Gross equation to describe the deuteron ground state, and we use the SAID parametrization of the full
NN scattering amplitude to describe the final state interactions (FSIs). The formalism for treating the ejectile
polarization with a spin projection on an arbitrary axes is discussed. We show results for the six relevant
asymmetries and discuss the role of spin-dependent FSI contributions.
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I. INTRODUCTION

Exclusive electron scattering from the deuteron target is
very interesting by itself, and it also is a very relevant stepping
stone toward understanding exclusive electron scattering from
heavier nuclei. The 2H(e,e′p)n reaction at GeV energies
allows us—and requires us—to carefully study the reaction
mechanism. It is necessary to consider final state interactions
(FSIs) between the two nucleons in the final state, two-body
currents, and isobar contributions. Of these, the FSIs can
be expected to be the most relevant part of the reaction
mechanisms at the GeV energy and momentum transfers
relevant to the study of the transition from hadronic to
quark-gluon degrees of freedom. For some recent reviews on
this exciting topic, see, e.g., [1–3].

The fact that the deuteron is the simplest nucleus enables
us to study all facets of the reaction mechanism in great detail.
Anything that can be gleaned from the deuteron will be highly
useful for heavier nuclei. Exclusive electron scattering from
nuclei is one type of reaction where one may observe color
transparency [4], and the deuteron itself provides a laboratory
for the study of neutrons, e.g., the neutron magnetic form factor
[5]. The short range structures studied in exclusive electron
scattering might even reveal information about the properties
of neutron stars [6].

It is important to use all available tools to further our
understanding of exclusive scattering from the deuteron. While
unpolarized scattering is interesting, polarization observables
hold the promise of revealing more detailed information
about the reaction mechanism. It is therefore important and
interesting to test one’s model for polarized observables, too.

In [7], we performed a fully relativistic calculation of the
2H(e,e′p)n reaction, using a relativistic wave function [8]
and very recent NN scattering data [9] for our calculation
of the full, spin-dependent final state interactions (FSIs). No
eikonal approximation was made. The full range of scattering
angles was considered, without restrictions to small angles.
The main difference to many other high quality calculations
using the generalized eikonal approximation [10–13] or a
diagrammatic approach [14] is the inclusion of all the spin-
dependent pieces in the nucleon-nucleon amplitude. Full FSIs
have recently been included in [15]. An interesting formalism

for various polarization observables has been discussed in the
framework of the relativistic impulse approximation in [16],
with an emphasis on extracting information on form factors.
There, FSIs were incorporated through unitarization. Several
experiments with unpolarized deuterons are currently under
analysis or have been published recently, [5,17–20]. There
are also new proposals for 2H(e,e′p) experiments at Jefferson
Lab [21].

In [7], we focused on observables that are accessible for an
unpolarized target and an unpolarized nucleon detected in the
final state. The spin-dependent pieces in our FSI calculation
were particularly relevant for the fifth response function, an
observable that can be measured only with polarized electron
beams. The spin-dependent contributions also contributed
significantly to the strength in the FSI-dominated regions
of the unpolarized cross section. Naturally, experiments with
polarization of the target or ejectile are harder to perform than
their unpolarized counterparts. However, the extra effort allows
one to study otherwise inaccessible observables that are rather
sensitive to certain properties of the nuclear ground state and
the reaction mechanism. Recently, we investigated the target
polarization in �D(e,e′p)n and �D(�e,e′p)n [22]. In this paper,
we study the asymmetries accessible with a polarized ejectile
proton, and a polarized or unpolarized electron beam. As
before, the focus of our numerical calculations is the kinematic
region accessible at GeV energies, i.e., the kinematic range of
Jefferson Lab.

Recoil polarization measurement have often been per-
formed for (e,e′ �n) reactions, to measure the neutron electric
form factor via polarization transfer. These measurements
typically take place at rather low missing momentum. We
can perform 2H(e,e′ �n) calculations just as easily as 2H(e,e′ �p)
calculations. For simplicity, we focus on ejectile proton
polarization in our numerical results.

A measurement of two recoil proton polarizations for low
missing momentum and various Q2, up to 1.6 GeV2, was
performed at Jefferson Lab [23]. This was an interesting
experiment that used the deuteron as a proton target, and
checked if the deuteron is a good proton target—this is relevant
for using the deuteron as a neutron target. At much lower Q2,
there are data from Mainz [24] and Bates [25] for hydrogen and
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deuteron targets. Recoil polarimetry has been used more often
for hydrogen targets than deuteron targets, also at Jefferson
Lab [26,27]. Recoil polarimetry continues to be an interesting
experimental technique [28], and it has been used also for
heavier nuclei [29], for photodisintegration [30] and in pion
production [31].

This paper is organized as follows. In the next section,
we introduce the necessary formalism to define the relevant
observables. In particular, we discuss how to define reduced
responses with explicit dependence on the azimuthal angle of
the proton, and we discuss the projection of the proton spin
on the most suitable coordinate system. We define six relevant
asymmetries. Then, we present our numerical results, in a
kinematic region relevant to experiments at Jefferson Lab. We
show momentum distributions of all six asymmetries, and we
discuss the contributions of the various spin-dependent parts of
the final state interactions. We conclude with a brief summary.

II. FORMALISM

A. Differential cross section

The standard coordinate systems used to describe the
2H(e,e′p) reaction are shown in Fig. 1. The initial and final
electron momenta k and k′ define the electron scattering plane
and the xyz-coordinate system is defined such that the z axis,
the quantization axis, lies along the momentum of the virtual
photon q with the x axis in the electron scattering plane and
the y axis perpendicular to the plane. The momentum p of
the outgoing proton is in general not in this plane and is
located relative to the xyz system by the polar angle θp and
the azimuthal angle φp. A second coordinate system x ′y ′z′, is
chosen such that the z′ axis is parallel to the z axis and the x ′
axis lies in the hadron plane formed by p and q and the y ′ axis
is normal to this plane. The unit vectors in the primed system
are defined in terms of the unprimed system as

x̂ ′ = cos φp x̂ + sin φp ŷ,

ŷ ′ = − sin φp x̂ + cos φp ŷ, (1)

ẑ′ = ẑ.

FIG. 1. (Color online) Coordinate systems for the 2H(e,e′p)
reaction. k and k′ are the initial and final electron four-momenta,
q is the four-momentum of the virtual photon, and p is the four-
momentum of the final-state proton.

The general form of the 2H(e,e′p) cross section can be
written in the laboratory frame as [32,33](

dσ 5

dε′d�ed�p

)
h

= mp mn pp

16π3 Md

σMott f
−1
rec [vLRL + vT RT

+ vT T RT T + vLT RLT + h vLT ′RLT ′

+h vT ′RT ′], (2)

where Md , mp, and mn are the masses of the deuteron, proton,
and neutron, pp = p1 and �p are the momentum and solid
angle of the ejected proton, ε′ is the energy of the detected
electron, and �e is its solid angle, with h = ±1 for positive
and negative electron helicity. The Mott cross section is

σMott =
(

α cos(θe/2)

2ε sin2(θe/2)

)2

(3)

and the recoil factor is given by

frec =
∣∣∣∣1 + ωpp − Epq cos θp

Md pp

∣∣∣∣ . (4)

The leptonic coefficients vK are

vL = Q4

q4
, (5)

vT = Q2

2q2
+ tan2 θe

2
, (6)

vT T = − Q2

2q2
, (7)

vLT = − Q2

√
2q2

√
Q2

q2
+ tan2 θe

2
, (8)

vLT ′ = − Q2

√
2q2

tan
θe

2
, (9)

vT ′ = tan
θe

2

√
Q2

q2
+ tan2 θe

2
. (10)

Within this general framework, we have two options for eval-
uating the response functions: First, we will give expressions
for the response functions in terms of matrix elements that are
defined with respect to the electron plane, i.e., the xyz plane.
These matrix elements are implicitly dependent on φp, the
angle between hadron plane and electron plane, and these are
the responses used, e.g., in [32]. Second, we give expressions
for the responses in the x ′y ′z′ plane. All quantities given
relative to the x ′y ′z′ coordinate system are denoted by a line
over the quantity. The current matrix elements, and therefore
the response functions, in the x ′y ′z′ coordinate system do not
have any φp dependence. It is much more practical to evaluate
the responses in the x ′y ′z′ coordinate system. The commonly
used responses in the xyz system can then easily be obtained
by accounting for the φp dependence explicitly, see Eq. (18)
below, instead of newly evaluating matrix elements for each
value of φp. Note that both coordinate systems use the same
quantization axis: the z axis and the z′ axis are parallel.
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The hadronic tensor for production of polarized protons is
defined as

wλ′
γ ,λγ

(Ŝ) = 2

3

∑
s1,s

′
1,s2,λd

〈 p1s
′
1; p2s2; (−)|Jλ′

γ
|Pλd〉∗

× 〈 p1s1; p2s2; (−)|Jλγ
|Pλd〉Ps ′

1s1 (Ŝ), (11)

where

J±1 = ∓ 1√
2

(J 1 ± J 2) (12)

and

J0 = J 0 (13)

is the charge operator. The notation (−) in the final state
indicates that the state satisfies the boundary conditions
appropriate for an “out” state. The operator

P(Ŝ) = 1
2 (1 + σ · Ŝ) (14)

is a spin projection operator that projects the proton spin onto
unit vector Ŝ which corresponds to the direction of the proton
spin in its rest frame relative to the xyz system. Although
this appears to be a nonrelativistic form of the spin projection
operator, it should be noted that

u( p, s)
1

2
(1 + γ5γ · sp) =

∑
s ′

χ †
s

1

2
(1 + σ · Ŝ)χs ′u( p, s ′),

(15)

where sp is the spin four-vector for a proton with momentum
p and rest-frame orientation given by Ŝ . This is therefore

equivalent to using the relativistic spin projection operator
within the definition of the matrix elements.

The response functions in the xyz frame are given by

RL(Ŝ) = w00(Ŝ),

RT (Ŝ) = w11(Ŝ) + w−1−1(Ŝ),

RT T (Ŝ) = 2Re[w1−1(Ŝ)],
(16)

RLT (Ŝ) = −2Re[w01(Ŝ) − w0−1(Ŝ)],

RLT ′(Ŝ) = −2Re[w01(Ŝ) + w0−1(Ŝ)],

RT ′(Ŝ) = w11(Ŝ) − w−1−1(Ŝ).

Now we proceed to write down expressions for the
responses in the x ′y ′z′ coordinate system. Calculating the
responses in this system offers a faster alternative to the above
calculation, which requires a new evaluation of the current
matrix elements for each φp value. Theresponse functions
defined above are implicitly dependent upon the angle φp

between the electron plane and the hadron plane containing
the proton and neutron in the final state. This dependence can
be made explicit by noting that

〈 p1s1; p2s2; (−)|Jλγ
|Pλd〉

= ei(λd+λγ −s1−s2)φp 〈 p1s1; p2s2; (−)|Jλγ
|Pλd〉, (17)

where the line over the matrix elements is used to indicate that
they are quantized relative to the x ′y ′z′ coordinate system.
The hadronic tensor can then be written as

wλ′
γ ,λγ

(Ŝ) = e−i(λ′
γ −λγ )φpwλ′

γ ,λγ
(Ŝ), (18)

where

wλ′
γ ,λγ

(Ŝ) = 2

3

∑
s1,s

′
1s2,λd

〈 p1s
′
1; p2s2; (−)|Jλ′

γ
|Pλ′

d〉
∗〈 p1s1; p2s2; (−)|Jλγ

|Pλd〉Ps ′
1s1 (Ŝ) (19)

and

Ps ′
1s1 (Ŝ) = ei(s ′

1−s1)φpPs ′
1s1 (Ŝ) = 1

2 (1 + σ · Ŝ)s ′
1s1 (20)

is the spin projection operator defined relative to the x ′y ′z′
coordinate system. Note that this can be obtained by simply
decomposing the unit vector Ŝ in terms of the x ′y ′z′ basis.

Using Eq. (18) and the definition of the responses in the xyz

system, Eq. (16), the response functions in the x ′y ′z′ system
then become

RL(Ŝ) = R
(I )
L (Ŝ),

RT (Ŝ) = R
(I )
T (Ŝ),

RT T (Ŝ) = R
(I )
T T (Ŝ) cos 2φp + R

(II )
T T (Ŝ) sin 2φp,

(21)
RLT (Ŝ) = R

(I )
LT (Ŝ) cos φp + R

(II )
LT (Ŝ) sin φp,

RLT ′(Ŝ) = R
(I )
LT ′ (Ŝ) sin φp + R

(II )
LT ′ (Ŝ) cos φp,

RT ′(Ŝ) = R
(II )
T ′ (Ŝ),

where the reduced response functions for the two classes I and
II are defined in terms of the hadronic tensors as

R
(I )
L (Ŝ) = w00(Ŝ),

R
(I )
T (Ŝ) = w1,1(Ŝ) + w−1,−1(Ŝ),

R
(I )
T T (Ŝ) = 2Re[w1,−1(Ŝ)],

R
(II )
T T (Ŝ) = 2Im[w1,−1(Ŝ)],

R
(I )
LT (Ŝ) = −2Re[w01(Ŝ) − w0−1(Ŝ)], (22)

R
(II )
LT (Ŝ) = 2Im[w01(Ŝ) + w0−1(Ŝ)],

R
(I )
LT ′(Ŝ) = 2Im[w01(Ŝ) − w0−1(Ŝ)],

R
(II )
LT ′ (Ŝ) = −2Re[w01(Ŝ) + w0−1(Ŝ)],

R
(II )
T ′ (Ŝ) = w1,1(Ŝ) − w−1,−1(Ŝ).

The reduced response functions still retain some implicit
φ dependence associated with the choice of the arbitrary
direction of Ŝ which is fixed relative to the xyz system. This
can be made explicit by defining a new set of unit vectors,
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usually referred to as normal, longitudinal, and sideways,

n̂ = ŷ ′, (23)

l̂ = sin θp x̂ ′ + cos θp ẑ′, (24)

ŝ = cos θp x̂ ′ − sin θp ẑ′ (25)

fixed relative to the x ′y ′z′ system such that l̂ lies along the
proton direction with ŝ is in the hadron plane and n̂ is normal
to it. We decompose the spin-dependent part of the projection
operator as

σ · Ŝ = σ · n̂ n̂ · Ŝ + σ · l̂ l̂ · Ŝ + σ · ŝ ŝ · Ŝ. (26)

The response functions can be further expanded as

R
(I )
K (Ŝ) = RK (1) + RK (σ · n̂)n̂ · Ŝ (27)

and

R
(II )
K (Ŝ) = RK (σ · l̂)l̂ · Ŝ + RK (σ · ŝ)ŝ · Ŝ, (28)

where the response functions RK (O), O ∈ {1, σ · n̂, σ ·
l̂, σ · ŝ}, can be obtained from Eq. (22) using the
response tensors

wλ′
γ ,λγ

(O) = 1

3

∑
s1,s

′
1,s2,λd

〈 p1s
′
1; p2s2; (−)|Jλ′

γ
|Pλ′

d〉
∗ 〈 p1s1; p2s2; (−)|Jλγ

|Pλd〉Os ′
1s1 . (29)

The new response functions are now independent of φp with
any residual dependence on φp now contained in the inner

products n̂ · Ŝ , l̂ · Ŝ, and ŝ · Ŝ.
It is often convenient to use a simplified notation for these

new response functions where

RK = RK (1),

R
n

K = RK (σ · n̂),
(30)

R
l

K = RK (σ · l̂),

R
s

K = RK (σ · ŝ),

and RK corresponds to the unpolarized response.
Note that when θp is either 0 or π , the hadron plane, and

therefore the angle φp, is no longer defined. As a result the cross
section at these angles must be independent of the azimuthal
angle φp. This imposes constraints on the reduced response
functions. The constraints can be obtained by writing the

response functions RK (Ŝ) of Eq. (21) for arbitrary Ŝ in terms of

the R
I

K with the inner products given explicitly as functions of

θp and φp. Each of the RK (Ŝ) can be expanded to lowest order
about θp = 0(π ). The result can then be written as a Fourier
series in φp. In order for the cross section to be independent
of φp at forward and backward angles all of the coefficients
of nonconstant terms in the Fourier series must vanish in the
limit θp → 0(π ). The resulting equations result in constraints

on the R
I

K . From this analysis, the response functions RL,

RT , R
n

LT , R
n

LT ′ , and R
l

T ′ are unconstrained at these angles
while R

s

LT = ±R
n

LT and R
s

LT ′ = ∓R
n

LT ′ for θp = 0, π . All
other response functions must vanish at forward and backward
angles.

These constraints are the result of the general form
of the cross section resulting from requirements of parity
conservation, Lorentz invariance, and one-photon exchange
plus the simple geometrical requirement that the cross section
be independent of φp in the limits of forward or backward
proton momenta where the azimuthal angle is not well defined.

Therefore, any calculation of this process must satisfy these
constraints. This provides a check that can be applied to
any such calculation to verify that these often complicated
calculations are correct. In addition, by noting that the limiting
process for forward and backward angles must be handled
carefully, it suggests that care must be taken in defining
observables, such as asymmetries, so that they are also well
behaved under this limiting process. This will be discussed in
more detail in the next section.

B. Asymmetries

The definition of asymmetries for polarized protons must
be done carefully. Experiments to date have been done for the
case where φp = 0. In this case the asymmetries have been
determined relative to the unit vectors n̂, l̂, and ŝ. However,
the use of this approach for out-of-plane measurements results
in asymmetries that depend on φp when θp = 0, π . Therefore,
our goal is to define a coordinate system that will be defined
unambiguously even if θp = 0, π . It turns out that a refer-
ence frame suggested by the experimental setup fulfills this
requirement.

Another approach can be defined by noting that if a
magnetic spectrometer is used to detect the proton, out-
of-plane angles are most conveniently reached by tilting
the spectrometer relative to the laboratory floor with the
horizontal direction in the spectrometer remaining fixed. As
a result, a new set of coordinates can be chosen such that
the longitudinal axis lies along the direction of the proton
and the sideways direction remains parallel to the electron
scattering plane. The unit vectors defining this system are then
given by

l̂′ = l̂, (31)

ŝ ′ = ŷ × l̂

|ŷ × l̂| , (32)

n̂′ = l̂′ × ŝ ′. (33)
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Choosing Ŝ = n̂′, the unpolarized part of the cross section,
which is independent of n̂′ can be written as

σ (0) + hσh(0) (34)

and the part of the cross section proportional to n̂′ can be
written as

σ (n′) + hσh(n′) (35)

and choosing Ŝ = l̂′ or Ŝ = ŝ ′ can be used to obtain the
contributions

σ (l′) + hσh(l′) (36)

and

σ (s ′) + hσh(s ′). (37)

The single and double asymmetries are now defined as

Aξ
p = σ (ξ )

σ (0)
(38)

and

Aξ
ep = σh(ξ )

σ (0)
, (39)

where ξ = n′, l′, s ′. These asymmetries can be shown to be
independent of φp for θp = 0, π .

C. Current matrix elements

A detailed description of the impulse approximation current
matrix elements used here is presented in [7]. These matrix
elements are constructed based on the covariant spectator
approximation [34]. A relativistic wave function [8] and NN

scattering data [9] are used for our calculation of the full,
spin-dependent final state interactions. The main difference
to many other high quality calculations using the generalized
eikonal approximation [10–13] or a diagrammatic approach
[14] is the inclusion of all the spin-dependent pieces in the
nucleon-nucleon amplitude. Full FSIs have recently been
included in [15].

To construct the scattering amplitudes needed for the
calculation of the FSIs we start with np helicity matrices
extracted from SAID [9]. The on-shell scattering amplitudes
can be given in terms of five Fermi invariants as

Mab;cd = FS(s, t)δacδbd + FV (s, t)γac · γbd + FT (s, t)σµν
ac

× (σµν)bd + FP (s, t)γ 5
acγ

5
bd

+FA(s, t)(γ 5γ )ac · (γ 5γ )bd , (40)

where s and t are the usual Mandelstam variables. The Fermi
invariants are then determined using the helicity amplitudes. A
table of the invariant functions is constructed in terms of s and
the center of momentum angle θ . The table is then interpolated
to obtain the invariant functions at the values required by the
integration.

In order to estimate the possible effects of this contribution
to the current matrix elements, we use a simple prescription for
the off-shell behavior of the amplitude. Although additional
invariants are possible when the nucleon is allowed to go

off shell, we keep only the forms in Eq. (40). The center-
of-momentum angle is calculated using

cos θ = t − u
√

s − 4m2
√

(4m2−t−u)2

s
− 4m2

. (41)

The invariants are then replaced by

Fi(s, t) → Fi(s, t, u)FN (s + t + u − 3m2), (42)

where

FN (p2) =
(
�2

N − m2
)2

(p2 − m2)2 + (
�2

N − m2
)2 (43)

and the Fi(s, t, u) are obtained from interpolation of the on-
shell invariant functions with the center-of-momentum angle
obtained from Eq. (41). The form factor (43) is used as a cutoff
to limit contributions where the nucleon is highly off shell. We
use a value of �N = 1 GeV in this paper. The numerical effects
of variations in the cut-off parameter have been studied in
[7].

III. RESULTS

A. Momentum distributions

In order to give a general overview of the properties
of all six asymmetries, we show them in Fig. 2 as three-
dimensional plots versus the missing momentum and the
azimuthal angle of the proton, φp. From these plots, it
becomes obvious that any statements about the relative size
of the asymmetries are highly dependent on the independent
variables, and none of the asymmetries can be singled out
as “the largest” or “the smallest” in general. If one restricts
one’s interest to in-plane measurements, i.e., to φp ≈ 0◦, one
will observe that Al′

ep is larger than the other observables, and
An′

p and Al′
p are medium sized, but this is a φp dependent

statement.
Two of the asymmetries, As ′

p and An′
ep, appear to be antisym-

metric around φp = 180◦, while the other four asymmetries are
symmetric around φp = 180◦.

One of the most interesting questions is how large the
influence of final state interactions is, both of the on-shell
and off-shell contributions. Three of the asymmetries are zero
in PWIA, and so the FSI influence in these cases—for An′

p ,
Al′

p, and As ′
p—is obviously large. All three asymmetries take

medium-size or large values somewhere in the kinematics
plane shown in Fig. 2.

In Fig. 3, we show three-dimensional plots of the three
asymmetries that are nonzero in PWIA, i.e., the asymmetries
that need a polarized electron beam. The left column shows
the PWIA results, the right column shows the corresponding
results obtained with on-shell FSIs included. Again, it is
obvious that the influence of the FSIs is large. FSIs change
the shape and the magnitude of the asymmetries. While any
asymmetry can be either drastically increased or decreased
at any point of the covered kinematics, one can see that
the overall effect of FSIs is to reduce the asymmetries
somewhat.
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′ ′

′

′′

′

FIG. 2. (Color online) The six panels show the six asymmetries plotted versus the missing momentum pm and versus the azimuthal angle
of the proton, φp , for a beam energy of 5.5 GeV, a transferred four-momentum of Q2 = 2 GeV2, and x = 1. We show An′

p (a), Al′
p (b), As′

p (c),

An′
ep (d), Al′

ep (e), and As′
ep (f). The curves shown have been calculated including on-shell FSIs.

We will now turn to the discussion of the off-shell contri-
bution to the FSIs. For x = 1, the quasi-elastic region, they
turn out to be fairly small. This is what we expect, and what
we have observed earlier, for the unpolarized case [7] and for
a polarized deuteron target [22]. Therefore, we do not display
results for x = 1, but we move away from the quasi-elastic
region, to x = 1.3, where the off-shell contributions to the
FSIs should be a bit larger. In Fig. 4, we show two-dimensional
plots of the six asymmetries at Q2 = 2 GeV2, x = 1, and
φp = 35◦. If the azimuthal angle is chosen to be an integer
multiple of 45◦, some of the response functions could not
contribute due to the manifest φp dependence of the cross

section. The angle φp = 35◦ is chosen to avoid this situation,
but is otherwise arbitrary. The PWIA contribution is shown
as the dotted line, the on-shell FSIs are shown by the solid
line, and the calculation including the off-shell FSIs is shown
by the dashed line. It is again easy to see that FSIs are
very important. It also turns out that the off-shell FSIs lead
only to modest corrections, and they never lead to qualitative
changes in the shape of an asymmetry. The largest effects
can be seen in As ′

p , where the value of the asymmetry is
reduced significantly for large missing momenta around pm =
0.7 GeV. For An′

ep, there is a noticeable increase due to the
off-shell FSIs.

014008-6



EJECTILE POLARIZATION FOR 2H( . . . PHYSICAL REVIEW C 81, 014008 (2010)

′ ′

′′

′ ′

FIG. 3. (Color online) The six panels show the three asymmetries that are nonzero in PWIA plotted versus the missing momentum pm and
versus the azimuthal angle of the proton, φp , for a beam energy of 5.5 GeV, a transferred four-momentum of Q2 = 2 GeV2, and x = 1. We
show the PWIA results in the left column [(a), (b), and (c)], and the on-shell FSI results in the right column [(d), (e), and (f)]. The top row
shows An′

ep , the middle row shows Al′
ep , and the bottom row shows As′

ep . The kinematics are the same as in the previous figure.

B. Contributions from individual parts of the pn scattering
amplitude to the FSIs

In our calculation of the final state interactions, we use
the full nucleon-nucleon scattering amplitude. There are
several ways to decompose and parametrize the NN scattering
amplitude. It can be parametrized with five terms: a central,
spin-independent term, a spin-orbit term, and three double-
spin flip contributions. It can also be given in terms of
invariants, using a scalar, vector, tensor, pseudoscalar, and
axial term. Some of these parametrizations may be more or
less useful and enlightening in trying to understand what is

happening. As we are interested in the ejectile polarization,
investigating the effects of spin-dependent terms in the FSIs is
a logical and interesting step. We separate the NN amplitudes
into a central term, a single spin-flip (i.e., spin-orbit) term,
and three double spin-flip terms, for details on these Saclay
amplitude conventions, see [7].

In Fig. 5, we show the contributions of the central, central
and single spin-flip, and full FSIs to the six asymmetries
at Q2 = 2 GeV2, x = 1, and φp = 35◦. The clear message
from this figure is that a calculation including only central
FSIs will fail completely for missing momenta beyond
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FIG. 4. (Color online) The six panels show the six asymmetries plotted versus the missing momentum pm for a beam energy of 5.5 GeV,
a transferred four-momentum of Q2 = 2 GeV2, φp = 35◦, and x = 1.3. We show An′

p (a), Al′
p (b), As′

p (c), An′
ep (d), Al′

ep (e), and As′
ep (f). The

curves shown have been calculated in PWIA (dotted), with on-shell FSIs (solid), and including off-shell and on-shell FSIs (dashed).

pm = 0.2 GeV. For the three asymmetries accessible with
an unpolarized beam, the central FSI on its own leads to a
mostly zero asymmetry, whereas spin dependent FSIs lead
to large structures in these observables. For the asymmetries
accessible with a polarized electron beam only, the purely
central FSI leads to nonzero results for the asymmetries, but
the inclusion of spin-dependent FSIs leads to huge changes,
both of the shape and size. The differences between the full
FSIs and the FSIs without the three double spin-flip terms is
largest for An′

p , where the double spin-flip contribution leads
to a broad bump for missing momenta from pm ≈ 0.3 GeV to

pm ≈ 0.8 GeV. The double spin-flip contributions to Al′
p are

significant as well, leading to an increase in the magnitude of
the asymmetry for medium missing momenta. The double
spin effects for As ′

p , are smaller, leading to a reduction in
magnitude of a small peak at pm ≈ 0.2 GeV and for large
missing momenta, pm > 0.8 GeV. For the asymmetries that
require a polarized beam, the influence of the double spin-flip
terms is smaller. There are no huge modifications, and the
largest corrections appear for the peak structures around
pm ≈ 0.2 GeV, and for very large missing momenta. This
figure gives the impression that an additional polarization,
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FIG. 5. (Color online) The six panels show the six asymmetries plotted versus the missing momentum pm for a beam energy of 5.5 GeV,
a transferred four-momentum of Q2 = 2 GeV2, φp = 35◦, and x = 1. We show An′

p (a), Al′
p (b), As′

p (c), An′
ep (d), Al′

ep (e), and As′
ep (f). The

curves shown have been calculated with the full on-shell FSIs (solid), with central and single spin-flip FSIs (dashed), and with central FSI only
(dash-dotted).

i.e., the beam polarization, may play a similar role as an
additional spin-dependence in the FSI, and that at least one
of them—either a spin-dependent FSI or a polarized beam—
needs to be present to generate an approximately correct
ejectile polarization asymmetry. Once the beam is polarized,
it seems that introducing the additional double spin-flip terms
does not really change the results too much. A very similar
picture emerges for x = 1.3, away from the quasi-elastic peak.
The only difference is that the role of the double spin-flip terms
becomes even more important for the asymmetries with an
unpolarized beam.

IV. SUMMARY AND OUTLOOK

In this paper, we have introduced a formalism for the
calculation of asymmetries relevant to a polarized ejectile
proton in various frames. In particular, we have presented
calculations in a frame relevant to the actual experimental
setup, and avoided any issues with the definition of projection
directions in the case that θp = 0, π . We have employed a fully
relativistic 2H(e,e′p) calculation in impulse approximation.
We have used a parametrization of experimental NN data from
SAID to describe the full pn scattering amplitude for the final
state interaction. This leads to certain limits in the kinematics
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we can access, as these parametrizations are available only
for laboratory kinetic energies of 1.3 GeV or less. In our
calculations, we have investigated the effects of the different
contributions to the NN scattering amplitude: the central,
spin-orbit, and double-spin-flip parts.

The asymmetries accessible with an unpolarized beam are
zero in PWIA. The influence of the FSIs is very large for all
six asymmetries. For the three asymmetries where the PWIA
results are nonzero, the FSIs seem to reduce the asymmetries
in general, although increases in asymmetries can also be
observed for specific kinematics. We have investigated the role
played by off-shell FSIs, and they turn out to be fairly small in
most situations, with the exception of As ′

p . This is interesting, as
the contributions from off-shell FSIs in unpolarized deuteron
scattering and for a polarized target were occasionally quite
significant. In practice, it is good news that the off-shell FSIs
are small, as any remaining theoretical uncertainty is connected
to these terms. So, the comparison of our theory to data will
be very clean.

We have investigated the role played by different parts of
the spin-dependent proton-neutron scattering amplitude in the
final state interactions. Using only a central FSI is completely
inadequate for all asymmetries. Spin-dependent terms need
to be included, and even the double spin-flip contributions

are large, in particular for the asymmetries accessible with an
unpolarized beam.

Currently, there are no 2H(e,e′ �p)n data at high Q2 available,
but an experiment could easily be performed at Jefferson Lab.
In view of the high sensitivity to double spin-flip terms, we
feel that one of the most interesting measurements would be to
take data for An′

p for x = 1.3, or even for x = 1. Besides this,
measuring ejectile polarization asymmetries for kinematics
where unpolarized data or target polarization data are available
would allow one to perform a systematic investigation of the
reaction mechanism.

Our description of FSIs is complete, but we are still missing
the contributions from � isobars and other meson exchange
currents. Work on these is in progress.
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