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We construct a density-dependent, Class III, charge-symmetry-violating (CSV) potential due to mixing of the
ρ-ω meson with off-shell corrections. Here, in addition to the usual vacuum contribution, the matter-induced
mixing of ρ-ω is also included. It is observed that the contribution of the density-dependent CSV potential is
comparable to that of the vacuum contribution.
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I. INTRODUCTION

The exploration of symmetries and their breaking have
always been an active and interesting area of research in
nuclear physics. One of the well-known examples, which can
be cited here, is the nuclear β decay which violates parity
that led to the discovery of the weak interaction. Our present
concern, however, is the strong interaction where, in particular,
we focus attention on the charge-symmetry violation (CSV) in
the nucleon-nucleon (NN ) interaction.

Charge symmetry implies the invariance of the
NN interaction under rotation in isospin space, which in
nature is violated. The CSV, at the fundamental level, is caused
by the finite mass difference between up (u) and down (d)
quarks [1–6]. As a consequence, at the hadronic level, charge
symmetry (CS) is violated due to the nondegenerate mass
of hadrons of the same isospin multiplet. The general goal
of the research in this area is to find small but observable
effects of CSV which might provide significant insight into
the strong-interaction dynamics.

There are several experimental data which indicate CSV
in the NN interaction. For instance, the difference between
pp and nn scattering lengths at the 1S0 state is nonzero
[4,7,8]. Other convincing evidence of CSV comes from the
binding-energy difference of mirror nuclei, which is known
as the Okamoto-Nolen-Schifer (ONS) anomaly [9–11]. The
modern manifestation of CSV includes the difference of
neutron-proton form factors, the hadronic correction to g − 2
[12], the observation of the decay of � ′(3686) → (J/�)π0,

etc. [12].
In nuclear physics, one constructs the CSV potential to

see its consequences on various observables. The construction
of the CSV potential involves evaluating the NN scattering
diagrams with intermediate states that include mixing of
various isospin states such as ρ-ω or π -η mesons. The former
is found to be most dominant [3,13–17], which we consider
here.

Most of the calculations performed initially to construct
the CSV potential considered the on-shell [16] or constant
ρ-ω mixing amplitude [17], which is claimed to be successful
in explaining various CSV observables [17,18]. This success
has been called into question [19,20] because of the use of
the on-shell mixing amplitude for the construction of the CSV
potential. First in Ref. [20] and then in Refs. [21–25], it is
shown that the ρ-ω mixing has strong momentum dependence,

which even changes its sign as one moves away from the
ρ (or ω) pole to the space-like region which is relevant for
the construction of the CSV potential. Therefore, inclusion
of off-shell corrections are necessary for the calculation of
CSV potential. We here deal with such a mixing amplitude
induced by the N -N loop incorporating off-shell corrections.

In vacuum, the charge symmetry is broken explicitly due
to the nondegenerate nucleon masses. In matter, there can
be another source of symmetry breaking if the ground state
contains unequal numbers of neutrons (n) and protons (p),
giving rise to ground-state-induced mixing of various charged
states such as the ρ-ω meson, even in the limit Mn = Mp. To
the best of our knowledge, this additional source of symmetry
breaking for the construction of the CSV potential has not been
considered before.

The possibility of such matter-induced mixing was first
studied in Ref. [26] and was subsequently studied in
Refs. [27–30]. For the case of the π -η meson also such
asymmetry-driven mixing is studied in Ref. [31]. But none
of these studies deal with the construction of a two-body
potential, and the calculations are mostly confined to the
time-like region where the main motivation is to investigate the
role of such matter-induced mixing on the dilepton spectrum
observed in heavy-ion collisions, pion form factor, meson
dispersion relations, etc. [27,30]. In Ref. [32], an attempt was
made to calculate the density-dependent CSV potential by
considering only the effect of the scalar mean field on the
nucleon mass and excluding the possibility of matter-driven
mixing. All existing matter-induced mixing calculations,
however, suggest that, at least in the ρ-ω sector, the inclusion
of such a matter-induced mixing amplitude into the two-body
NN interaction potential can significantly change the results
both qualitatively and quantitatively. It is also to be noted
that such mixing amplitudes, in asymmetric nuclear matter
(ANM), have a nonzero contribution even if the quark or
nucleon masses are taken to be equal [26–30]. We consider
both of these mechanisms to construct the CSV potential.

Physically, in a dense system, intermediate mesons might
be absorbed and re-emitted from the Fermi spheres. In
symmetric nuclear matter (SNM), the emission and absorption
involving different isospin states like ρ and ω cancel when the
contributions of both the proton and neutron Fermi spheres are
added, provided the nucleon masses are taken to be equal. In
ANM, on the other hand, the unbalanced contributions coming
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FIG. 1. Feynman diagrams that contribute to the construction of
the CSV NN potential in matter. Solid lines represent nucleons, and
wavy lines stand for vector mesons.

from the scattering of neutron and proton Fermi spheres, lead
to the mixing which depends on both the density ρB and
the asymmetry parameter α = (ρn − ρp)/ρB . Inclusion of this
process is depicted by the second diagram in Fig. 1 represented
by V NN

med , which is nonzero even in symmetric nuclear matter
if explicit mass differences of nucleons are retained. In the
first diagram, V NN

vac involves a NN loop denoted by the circle.
The other important element which we include here is the
contribution coming from the external legs. This is another
source of explicit symmetry violation which significantly
modifies the CSV potential in vacuum, as has been shown
only recently by the present authors [33].

This paper is organized as follows. In Sec. II we present
the formalism where the three-momentum-dependent ρ0-ω
mixing amplitude is calculated to construct the CSV potential
in matter. The numerical results are discussed in Sec. III.
Finally, we summarize in Sec. IV.

II. FORMALISM

We start with the following effective Lagrangians to
describe the ωNN and ρNN interactions:

LωNN = gω�̄γµ	µ
ω�, (1a)

LρNN = gρ�̄

[
γµ + Cρ

2M
σµν∂

µ

]
�τ · 	ν

ρ�, (1b)

where Cρ = fρ/gρ is the ratio of vector to tensor coupling,
M is the average nucleon mass, and �τ is the isospin operator.
� and 	 represent the nucleon and meson fields, respectively,
and g stands for the meson-nucleon coupling constants. The
tensor coupling of ω is not included in the present calculation,
as it is negligible compared to the vector coupling.

The matrix element, which is required for the construction
of the CSV NN potential, is obtained from the relevant
Feynman diagram [33]:

MNN
ρω (q) = [

ūN (p3)�µ
ρ (q)uN (p1)

]
�ρ

µα(q)�αβ
ρω(q2)

×�ω
βν(q)

[
ūN (p4)�ν

ω(−q)uN (p2)
]
. (2)

In the limit q0 → 0, Eq. (2) gives the momentum space
CSV NN potential, V NN

CSV(q). Here, �µ
ω (q) = gωγ µ and

�ν
ρ(q) = gρ[γ ν − Cρ

2M
iσ νλqλ] denote the vertex factors, uN

is the Dirac spinor, and �i
µν(q) (i = ρ, ω) is the meson

propagator. pj and q are the four-momenta of the nucleon
and meson, respectively.

In the present calculation, the ρ-ω mixing amplitude
(i.e., polarization tensor) �µν

ρω(q2) is generated by the

difference between the proton and neutron loop contributions:

�µν
ρω(q2) = �µν(p)

ρω (q2) − �µν(n)
ρω (q2). (3)

Explicitly, the polarization tensor is given by

i�µν(N)
ρω (q2) =

∫
d4k

(2π )4
Tr

[
�µ

ω (q)GN (k)�ν
ρ(−q)GN (k + q)

]
,

(4)

where k = (k0, k) denotes the four-momentum of the nucleon
in the loops (see Fig. 1), and GN is the in-medium nucleon
propagator consisting of free (GF

N ) and density-dependent
(GD

N ) parts [34], that is,

GF
N (k) = k/ + MN

k2 − M2
N + iζ

, (5a)

GD
N (k) = iπ

EN

(k/ + MN )δ(k0 − EN ) θ (kN − |k|). (5b)

The subscript N stands for the nucleon index (i.e., N = p

or n), kN denotes the Fermi momentum of the nucleon, the
nucleon energy EN =

√
M2

N + k2
N , and the nucleon mass is

denoted by MN . θ (kN − |k|) is the Fermi distribution function
at zero temperature.

The origin of GD
N (k), in addition to the free propagator,

stems from the fact that here we are dealing with a vacuum
containing real particles for which, when acted upon, the
annihilation operator does not vanish (see the Appendix for
details). The appearance of the δ function in Eq. (5b) indicates
the nucleons are on-shell, while θ (kN − |k|) ensures that
propagating nucleons have a momentum less than kN .

Likewise, the polarization tensor of Eq. (4) also contains
a vacuum [�µν(N)

vac (q2)] and a density-dependent [�µν(N)
med (q2)]

part, as shown in Fig. 1. Note that the density-dependent part
given by the combination of GF

NGD
N + GD

NGF
N corresponds to

the scattering that we have discussed already, whereas the term
proportional to GD

NGD
N vanishes for low energy excitation [35].

The vacuum part [�µν(N)
vac (q2)], on the other hand, involves

GF
NGF

N , which gives rise to the usual CSV part of the potential
due to the splitting of the neutron and proton mass.

It might be worthwhile to mention here that Eq. (5b)
can induce charge-symmetry breaking in asymmetric nuclear
matter as the result of the appearance of the Fermi distribution
function in the propagator itself, which can distinguish
between neutron and proton, even if their masses are taken to
be degenerate. Evidently, this is an exclusive medium-driven
effect where, as mentioned already in the Introduction, the
charge symmetry is broken by the ground state. The total
charge-symmetry breaking would involve both contributions,
where it is clear that even for α = 0, the medium-dependent
term can contribute if the nondegenerate nucleon masses are
considered.

Note that the polarization tensor �µν
ρω(q2) can be expressed

as the sum of the longitudinal component �L
ρω(q2) and the

transverse component �T
ρω(q2), which is useful for simplify-

ing the matrix element given in Eq. (2), i.e.,

�µν
ρω(q2) = �L

ρω(q2)Aµν + �T
ρω(q2)Bµν, (6)
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where Aµν and Bµν are the longitudinal and transverse
projection operators [36]. We define �L

ρω = −�00
ρω + �33

ρω and
�T

ρω = �11
ρω = �22

ρω.
In the present calculation, we use the average of the

longitudinal and transverse components of the polarization
tensor instead of �L

ρω and �T
ρω. The average mixing amplitude

is denoted by

�̄(q2) = 1
3

[
�L

ρω(q2) + 2�T
ρω(q2)

]
= �̄vac(q2) + �̄med(q2). (7)

In the last line of Eq. (7), �̄vac(q2) and �̄med(q2) denote
the average mixing amplitudes of the vacuum and density-
dependent parts, respectively.

To obtain �̄vac(q2) and �̄med(q2) one would calculate the
total polarization tensor given in Eq. (4). After evaluating the
trace of Eq. (4), we find the following vacuum and density-
dependent parts of the polarization tensor:

�µν(N)
vac (q2) = Qµν

[
�vv(N)

vac (q2) + �tv(N)
vac (q2)

]
, (8)

and

�
µν{vv(N)}
med (q2) = 16gρgω

∫
d3k

(2π )32EN

θ (kN − |k|)

× q2Kµν − (q · k)2Qµν

q4 − 4(q · k)2
, (9)

�
µν{tv(N)}
med (q2) = 4gρgωCρ

∫
d3k

(2π )32EN

θ (kN − |k|)

× q4Qµν

q4 − 4(q · k)2
, (10)

where Qµν = −gµν + qµqν/q2 and Kµν = (kµ − (q · k) qµ

q2 )

(kν − (q · k) qν

q2 ). Note that both �
µν
vac(q2) and �

µν

med(q2)
obey the current conservation as qµQµν = qνQ

µν = 0
and qµKµν = qνK

µν = 0. The superscripts vv and tv in
Eqs. (8)–(10) indicate the vector-vector and tensor-vector
interactions, respectively. The dimensional counting shows
that the vacuum part of the polarization tensor [both �vv(N)

vac (q2)
and �tv(N)

vac (q2)] is ultraviolet divergent, and dimensional regu-
larization [37–39] is used to isolate the divergent parts. Since
the mixing amplitude is generated by the difference between
the proton and neutron loop contributions, the divergent parts
cancel out, yielding the vacuum amplitude finite.

�µν
vac(q2) = �µν(p)

vac (q2) − �µν(n)
vac (q2)

= gρgω

2π2
q2Qµν

∫ 1

0
dx

(
(1 − x)x + Cρ

4

)

× ln

(
M2

p − x(1 − x)q2

M2
n − x(1 − x)q2

)
. (11)

Equation (11) shows the four-momentum-dependent vacuum
polarization tensor. From this equation, one can calculate the
longitudinal (�L

vac) and transverse (�T
vac) components of the

vacuum mixing amplitude, and in the limit q0 → 0, �L
vac(q2) =

�T
vac(q2). Therefore, the average vacuum mixing amplitude is

�̄vac(q2) = 1

3

[
�L

vac(q2) + 2�T
vac(q2)

]
= −gρgω

12π2
(2 + 3Cρ) ln

(
Mp

Mn

)
q2

≡ −Aq2. (12)

Equation (12) represents the three-momentum-dependent vac-
uum mixing amplitude. This mixing amplitude vanishes for
Mn = Mp, and then no CSV potential in vacuum will exist.

To calculate the density-dependent mixing amplitude from
Eqs. (9) and (10), we consider EN ≈ MN . In the limit q0 → 0,
one finds the expressions

�
00(N)
med (q2) = − gρgω

4π2MN

{[
4

3
k3
N − 1

2
kNq2 + 2kNM2

N

−
(

q3

8
− qk2

N

2
− qM2

N

2
+ 2

M2
Nk2

N

q

)

× ln

(
q − 2kN

q + 2kN

)]
+ Cρ

2

[
q2kN

+
(

q3

4
− qk2

N

)
ln

(
q − 2kN

q + 2kN

)]}
, (13)

�
11(N)
med (q2) = gρgω

4π2MN

{[
1

3
k3
N − 3

8
q2kN

−
(

3

32
q3 + k4

N

2q
+ q2kN

4

)

× ln

(
q − 2kN

q + 2kN

)]
+ Cρ

2

[
q2kN

+
(

q3

4
− qk2

N

)
ln

(
q − 2kN

q + 2kN

)]}
. (14)

Note that the terms within the first square brackets of both
Eqs. (13) and (14) arise from the vector-vector interaction,
while the terms within the second square brackets arise from
the tensor-vector interaction of the density-dependent polar-
ization tensor. The 33 component of the density-dependent
polarization tensor vanishes, i.e., �

33(N)
med (q2) = 0. Now

�̄med(q2) = 1
3

[
�L

med(q2) + 2�T
med(q2)

]
, (15)

where

�L
med(q2) = −[

�
00(p)
med (q2) − �

00(n)
med (q2)

]
, (16)

�T
med(q2) = −[

�
11(p)
med (q2) − �

11(n)
med (q2)

]
. (17)

With the suitable expansion of Eqs. (13) and (14) in terms
of |q|/kp(n) and keeping O(q2/k2

p(n)) terms, we get

�̄med(q2) � �′ − A′q2, (18)

where

�′ = gρgω

12π2

[
3

(
k3
p

MP

− k3
n

Mn

)
+ 4(kpMp − knMn)

]
, (19)

A′ = gρgω

12π2

[
3(1 − Cρ)

(
kp

Mp

− kn

Mn

)
+ 1

3

(
Mp

kp

− Mn

kn

)]
.

(20)
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Clearly, �̄med(q2) is also three-momentum dependent; and if
Mn = Mp, it vanishes in SNM but is nonvanishing in ANM.
In the present calculation, nucleon masses are considered
nondegenerate and the asymmetry parameter α �= 0.

To construct the CSV potential, we take the nonrelativistic
(NR) limit of the Dirac spinors, in which case we obtain

uN (p) �
(

1 − P2

8M2
N

− q2

32M2
N

)(
1

σ ·(P+q/2)
2MN

)
, (21)

where σ is the spin of the nucleon. P denotes the average
three-momentum of the interacting nucleon pair, and q stands
for the three-momentum of the meson.

The explicit expression of the full CSV potential in
momentum space can be obtained from Eq. (13) of Ref. [33]
by replacing the mixing amplitude �ρω(q) with �̄(q2).

V NN
CSV(q) = − gρgω�̄

(
q2)

(q2 + m2
ρ

)(
q2 + m2

ω

)
×

{
T +

3

[(
1 + 3P2

2M2
N

− q2

8M2
N

− q2

4M2
N

(σ1 · σ2)

+ 3i

2M2
N

S · (q × P) + 1

4M2
N

(σ1 · q)(σ2 · q)

+ 1

M2
N

(q̂ · P)2

)
− Cρ

2M

(
q2

2MN

+ q2

2MN

(σ1 · σ2)

− 2i

MN

S · (q × P) − 1

2MN

(σ1 ·q)(σ2 · q)

)]

− T −
3

Cρ

2M

[(
q2

2M
− q2

2M
(σ1 · σ2)

+ 1

2M
(σ1 · q)(σ2 · q)

)
�M(1, 2)

M

− i

M
(σ1 − σ2) · (q × P)

]}
. (22)

Equation (22) presents the full CSV NN potential in mo-
mentum space in matter. Here, T ±

3 = τ3(1) ± τ3(2) and S =
1
2 (σ1 + σ2) is the total spin of the interacting nucleon pair.
We define M = (Mn + Mp)/2, �M = (Mn − Mp)/2, and
�M(1, 2) = −�M(2, 1) = �M . It is be mentioned that the
spin-dependent parts of the potential appear because of the
contribution of the external nucleon legs shown in Fig. 1. On
the other hand, 3P2/2M2

N and −q2/8M2
N arise because of the

expansion of the relativistic energy EN of the spinors.
In matter, V NN

CSV(q) consists of two parts: one contains
the vacuum mixing amplitude and the other contains the
density-dependent mixing amplitude. The former is denoted by
V NN

vac (q), and latter by V NN
med (q). Thus, V NN

CSV(q) = V NN
vac (q) +

V NN
med (q).

From Eq. (22), we extract the following term, which in
coordinate space gives rise to the δ-function potential:

δV NN
CSV = gρgω(A+A′)

[(
1 + 2Cρ

8M2
N

)
+

(
1 + Cρ

4M2
N

)
(σ1 · σ2)

]
.

(23)

To avoid the appearance of the δ-function potential in
coordinate space, one should introduce form factors Fi(q2),
for which the meson-nucleon coupling constants become
momentum-dependent, i.e., gi(q2) = giFi(q2). Here we use
the following form factor:

Fi(q2) = �2
i − m2

i

�2
i + q2

, (24)

where �i is the cutoff parameter governing the range of the
suppression, and mi denotes the mass of exchanged meson.

The full CSV potential presented in Eq. (22) contains both
Class III and Class IV potentials, and both break the charge
symmetry in NN interactions. The terms within the first and
the second square brackets represent Class III and Class IV
potentials, respectively. The Class III potential differentiates
between nn and pp systems, while the Class IV NN potential
exists in the np system only. In this paper, we restrict ourselves
to the Class III potential only.

The coordinate space potential can be easily obtained by
Fourier transformation of V NN

CSV(q), i.e.,

V NN
CSV(r) =

∫
d3q

(2π )3
V NN

CSV(q)e−iq·r. (25)

We drop the term 3P2/2M2
N from Eq. (22) while taking the

Fourier transform, as it is not important in the present context.
However, this term becomes important to fitting 1S0 and 3P2

phase shifts simultaneously.
Now the CSV potential in coordinate space without δV NN

CSV
reduces to

V NN
vac (r) = −gρgω

4π
AT +

3

[(
m3

ρY0(xρ) − m3
ωY0(xω)

m2
ω − m2

ρ

)

+ 1

M2
N

(
m5

ρVvv(xρ) − m3
ωVvv(xω)

m2
ω − m2

ρ

)

+ Cρ

2M2
N

(
m5

ρVtv(xρ) − m3
ωVtv(xω)

m2
ω − m2

ρ

)]
, (26)

V NN
med (r) = −gρgω

4π
T +

3

{
�′

[(
mρY0(xρ) − mωY0(xω)

m2
ω − m2

ρ

)

+ 1

M2
N

(
m3

ρVvv(xρ) − m3
ωVvv(xω)

m2
ω − m2

ρ

)

+ Cρ

2M2
N

(
m3

ρVtv(xρ) − m3
ωVtv(xω)

m2
ω − m2

ρ

)]

+A′
[(

m3
ρY0(xρ) − m3

ωY0(xω)

m2
ω − m2

ρ

)

+ 1

M2
N

(
m5

ρVvv(xρ) − m5
ωVvv(xω)

m2
ω − m2

ρ

)

+ Cρ

2M2
N

(
m5

ρVtv(xρ) − m5
ωVtv(xω)

m2
ω − m2

ρ

)]}
, (27)
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where xi = mir . The explicit expressions of Vvv(xi) and Vtv(xi)
are given in Ref. [33]. In Eqs. (26) and (27), the M−2

N

independent terms represent central parts without contribu-
tions of external nucleon legs.

The potentials presented in Eqs. (26) and (27) do not
include the form factors, so these potentials diverge near
the core. The problem of divergence near the core can be
removed by incorporating form factors as discussed before.
With the inclusion of form factors, V NN

vac (r) and V NN
med (r) take

the form

V NN
vac (r) = −gρgω

4π
AT +

3

{(
aρm

3
ρY0(xρ) − aωm3

ωY0(xω)

m2
ω − m2

ρ

)

+ 1

M2
N

(
aρm

5
ρVvv(xρ) − aωm5

ωVvv(xω)

m2
ω − m2

ρ

)

+ Cρ

2M2
N

(
aρm

5
ρVtv(xρ) − aωm5

ωVtv(xω)

m2
ω − m2

ρ

)

− λ

[(
bρ�

3
ρY0(Xρ) − bω�3

ωY0(Xω)

m2
ω − m2

ρ

)

+ 1

M2
N

(
bρ�

5
ρVvv(Xρ) − bω�5

ωVvv(Xω)

m2
ω − m2

ρ

)

+ Cρ

2M2
N

(
bρ�

5
ρVtv(Xρ) − bω�5

ωVtv(Xω)

m2
ω − m2

ρ

)]}
,

(28)

V NN
med (r) = −gρgω

4π
T +

3

{
�′

[(
aρmρY0(xρ) − aωmωY0(xω)

m2
ω − m2

ρ

)

+ 1

M2
N

(
aρm

3
ρVvv(xρ) − aωm3

ωVvv(xω)

m2
ω − m2

ρ

)

+ Cρ

2M2
N

(
aρm

3
ρVtv(xρ) − aωm3

ωVtv(xω)

m2
ω − m2

ρ

)]

+A′
[(

aρm
3
ρY0(xρ) − a3

ωmωY0(xω)

m2
ω − m2

ρ

)

+ 1

M2
N

(
aρm

5
ρVvv(xρ) − aωm5

ωVvv(xω)

m2
ω − m2

ρ

)

+ Cρ

2M2
N

(
aρm

5
ρVtv(xρ) − aωm5

ωVtv(xω)

m2
ω − m2

ρ

)]

− λ�′
[(

bρ�ρY0(Xρ) − bω�ωY0(Xω)

m2
ω − m2

ρ

)

+ 1

M2
N

(
bρ�

3
ρVvv(Xρ) − bω�3

ωVvv(Xω)

m2
ω − m2

ρ

)

+ Cρ

2M2
N

(
bρ�

3
ρVtv(Xρ) − bω�3

ωVtv(Xω)

m2
ω − m2

ρ

)]

− λA′
[(

bρ�
3
ρY0(Xρ) − bω�3

ωY0(Xω)

m2
ω − m2

ρ

)

+ 1

M2
N

(
bρ�

5
ρVvv(Xρ) − bω�5

ωVvv(Xω)

m2
ω − m2

ρ

)

+ Cρ

2M2
N

(
bρ�

5
ρVtv(Xρ) − bω�5

ωVtv(Xω)

m2
ω − m2

ρ

)]}
.

(29)

In Eqs. (28) and (29), Xi = �ir, and

λ = m2
ω − m2

ρ

�2
ω − �2

ρ

, (30)

ai = �2
j − m2

j

�2
j − m2

i

, bi = �2
j − m2

j

m2
j − �2

i

,

(31)
where i(j ) = ρ, ω (i �= j ).

Note that Eqs. (28) and (29) contain the contribution of δV NN
CSV,

and the problem of divergence near the core is removed.

III. RESULTS

Using Eqs. (26) and (27), we show in Fig. 2 the difference
of CSV potentials between nn and pp systems, i.e., �V =
V nn

CSV − V
pp

CSV for the 1S0 state at nuclear matter density
ρB = 0.148 fm−3 with asymmetry parameter α = 1/3. The
dashed and dotted curves show �Vvac and �Vmed, respectively.
The total contribution (i.e., �Vvac + �Vmed) is shown by
the solid curve. It is observed that the density-dependent
CSV potential cannot be neglected while estimating CSV
observables such as the binding-energy difference of mirror
nuclei.

0 0.25 0.5 0.75 1 1.25 1.5
r (fm)

-50

-40

-30

-20

-10

0

10

∆V
 (

M
eV

)

∆V
vac

∆V
med

∆V
vac

+∆V
med

FIG. 2. �V for the 1S0 state without δV NN
CSV and form factors at

ρB = 0.148 fm−3 and α = 1/3.
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FIG. 3. Same as Fig. 2, but with form factors including the Fourier
transform of δV NN

CSV.

Figure 3 displays �V for the 1S0 state including the Fourier
transform of δV NN

CSV and form factors. Note that incorporating
the form factors removes the problem of divergence near the
core. Also, the CSV NN potential changes its sign due to the
inclusion of the Fourier transform of δV NN

CSV.

IV. SUMMARY AND DISCUSSION

In this work, we have constructed the CSV NN potential
in dense matter using an asymmetry-driven momentum-
dependent ρ0-ω mixing amplitude within the framework of
the one-boson exchange model. Furthermore, the correction
to the central part of the CSV potential due to external nucleon
legs is also considered. The closed-form analytic expressions
both for vacuum and density-dependent CSV NN potentials
in coordinate space are presented.

We have shown that the vacuum mixing amplitude and
the density-dependent mixing amplitude are of similar order
of magnitude and both contribute with the same sign to the
CSV potential. The contribution of the density-dependent CSV
potential is not negligible in comparison to the vacuum
CSV potential.

APPENDIX

The position space fermion propagator in vacuum is given
by the vacuum expectation value of the time-ordered product
of fermion fields:

iG̃N (x − x ′) = 〈 0|T [ψ(x)ψ̄(x ′)]|0 〉 . (A1)

In a medium, the vacuum |0 〉 is replaced by the ground state
|�0 〉 which contains positive-energy particles with the same
Fermi momentum kN and no antiparticles. Thus,

iG̃N (x − x ′) = 〈�0|ψ(x)ψ̄(x ′)|�0 〉 θ (t − t ′)
− 〈�0|ψ̄(x ′)ψ(x)|�0 〉 θ (t ′ − t). (A2)

Note that the time-ordered product in Eq. (A2) involves a
negative sign for fermions. The fermion field contains both the
positive- and negative-energy solutions. The modal expansions
for the fermion fields are

ψ(x) =
∫

d3k√
(2π )32Ek

∑
s

(aksuks e−ik·x + b
†
ksvks eik·x),

(A3)

ψ̄(x) =
∫

d3k√
(2π )32Ek

∑
s

(a†
ks ūks eik·x + bks v̄ks e−ik·x).

(A4)

Here, a
†
ks and aks are the creation and annihilation operators

for particles, and likewise b
†
ks and bks are the creation and

annihilation operators for antiparticles. The only nonvanishing
anticommutation relations are

{aks, a
†
k′s ′ } = {bks, b

†
k′s ′ } = δss ′δ3(k − k′). (A5)

Since |�0 〉 contains only positive-energy particles, we have
the following relations:

bks |�0〉 = 0 for all k,

aks |�0〉 = 0 for |k| > kN,
(A6)

a
†
ks |�0〉 = 0 for |k| < kN,

aksa
†
ks |�0〉 = n(k)|�0〉,

where n(k) is either 0 or 1, and this can be accomplished
with the step function θ (kN − |k|). Using Eqs. (A3)–(A6), one
obtains

〈�0|ψ(x)ψ̄(x ′)|�0〉

=
∫

d3k√
(2π )32Ek

∫
d3k′√

(2π )32Ek′

×
∑
ss ′

〈�0|aksa
†
k′s ′ |�0〉uksūk′s ′ e−i(k·x−k′ ·x ′)

=
∫

d3k
(2π )32Ek

(k/ + MN ) e−ik·(x−x ′)[1−θ (kN −|k|)],
(A7)

and

〈�0|ψ̄(x ′)ψ(x)|�0〉

=
∫

d3k√
(2π )32Ek

∫
d3k′√

(2π )32Ek′

×
∑
ss ′

[〈�0|a†
k′s ′aks |�0〉ūk′s ′uks e−i(k·x−k′ ·x ′)

+〈�0|bk′s ′b
†
ks |�0〉v̄k′s ′vkse

i(k·x−k′ ·x ′)]

=
∫

d3k
(2π )32Ek

[(k/ + MN ) e−ik·(x−x ′)θ (kN −|k|)

+ (k/ − MN ) eik·(x−x ′) ]. (A8)

Now,

θ (t − t ′)e−ik·(x−x ′) = i

∫
dk0

2π

e−ik·(x−x ′)

k0 − Ek + iε
, (A9)

θ (t ′−t)e−ik·(x−x ′) = −i

∫
dk0

2π

e−ik·(x−x ′)

k0−Ek−iε
, (A10)

θ (t ′−t)eik·(x−x ′) = i

∫
dk0

2π

eik·(x−x)

k0−Ek+iε
. (A11)
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From Eqs. (A8), (A10), and (A11), we have

〈�0|ψ̄(x ′)ψ(x)|�0〉θ (t − t ′)

= −i

∫
d4k

(2π )42Ek

e−ik·(x−x ′)(k/ + MN )
θ (kN − |k|)
k0 − Ek − iε

+ i

∫
d4k

(2π )42Ek

(k/ − MN )
eik·(x−x ′)

k0 − Ek + iε
. (A12)

Now changing k → −k in the last integral of Eq. (A12)
and substituting Eqs. (A7), (A9), and (A12) in Eq. (A2),
we get

iG̃N (x − x ′)

= i

∫
d4k

(2π )42EN

e−ik·(x−x ′)(k/ + MN )

×
(

1 − θ (kN − |k|)
k0 − EN + iε

+ θ (kN − |k|)
k0 − EN − iε

− 1

k0 + EN − iε

)
.

(A13)

In Eq. (A13), Ek has been replaced by EN . The first term of
Eq. (A13) represents particle propagation above the Fermi sea,
and the second term indicates the propagation of holes inside
the Fermi sea. The last term shows the propagation of holes in
the infinite Dirac sea. Now,

1

k0 − EN + iε
− 1

k0 + EN − iε
= 2EN

k2 − M2
N + iζ

, (A14)

1

k0 − EN − iε
− 1

k0 − EN + iε
= 2iπδ(k0 − EN ). (A15)

From Eqs. (A13)–(A15),

iG̃N (x − x ′) = i

∫
d4k

(2π )4
e−ik·(x−x ′)GN (k), (A16)

where GN (k) is the in-medium fermion propagator in momen-
tum space, i.e.,

GN (k) = k/+MN

k2−M2
N +iε

+ iπ

EN

(k/+MN )δ(k0−EN ) θ (kN −|k|)

= GF
N (k) + GD

N (k). (A17)
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