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Refined Glauber model versus Faddeev calculations and experimental data for pd spin observables
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Spin-dependent observables in intermediate-energy pd elastic scattering within the framework of the refined
Glauber model are considered. The improvements include an account of all ten pp and pn helicity amplitudes
at respective energies constructed on the basis of modern phase-shift analysis, accurate deuteron wave functions
taken from the modern NN force model and account of charge-exchange effects. Predictions of the refined
diffraction model for differential cross section and analyzing powers are compared with exact three-body
Faddeev calculations and the recent experimental data. An amazingly good agreement between the results
of both theoretical approaches as well as between the refined Glauber model and experiment in a wide angular
range not only for differential cross section but also for vector and tensor analyzing powers has been found for
the first time. Possible reasons for this agreement are discussed.
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I. INTRODUCTION

It is well known that the Glauber diffraction model [1,2] is a
convenient and reliable tool for the analysis of scattering of fast
nucleons (and other hadrons) by nuclei. Based on the eikonal
and fixed-scatterer approximations, it was specially developed
more than 50 years ago for the high- and intermediate-energy
regions where no exact theoretical treatments were available.
So, the validity of the Glauber model could be tested previously
only by comparing its results with the respective experimental
data. The unexpected success of such a simple model in
describing the hadron-nucleus and nucleus-nucleus scattering
at forward angles induced numerous studies of the accuracy
and the range of validity of the Glauber formulation, as well
as many attempts to extend this range. Different refinements
of the initial simple model have been introduced since then,
and they included corrections for non-eikonal and relativistic
effects, Fermi motion, etc. The last (in time) substantial steps
taken in this direction can be found in Refs. [3–6]. However, the
comprehensive analysis of various corrections to the Glauber
model has revealed [7] that many important corrections tend
to compensate strongly each other, so that an incorporation of
only one of them can even worsen the results of the original
simple model. So, it turned out to be highly nontrivial to
improve the initial Glauber approach.

Another serious problem with this model seems its rather
restricted range of applicability, i.e., it should work well,
in general, at sufficiently high energies and forward angles.
However, it would be extremely interesting (for many practical
applications) to know these limits more definitely, although
they are dependent upon the particular problem to be solved.
Fortunately, nowadays we can learn much more than before
about these limits for some important cases by comparing
the predictions of the Glauber model against the results of
precise calculations within the framework of the respective
fundamental approaches, i.e., without approximations peculiar
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to the diffraction model. Among these cases allowing the
careful comparison with a numerically accurate treatment is
the Nd intermediate-energy scattering within a realistic three-
body model. Now we have a very nice opportunity to examine
the accuracy of the Glauber model by direct comparison of its
predictions with exact three-nucleon Faddeev calculations [8]
which account for the same (nucleonic) degrees of freedom
and the same input on-shell NN amplitudes. Such a test
will show qualitatively or even quantitatively the validity of
different approximations involved in the Glauber formulation.
To obtain fully realistic conclusions, the Glauber model itself
must be as realistic as possible; i.e., it should include all
fully realistic input spin-dependent NN amplitudes and all
components of the target (e.g., deuteron) wave function. Such
generalization of the initial model enables us to analyze the
spin observables (which should be much more sensitive to fine
interference effects and different approximations) as well as
the unpolarized cross sections, so we will be able to draw more
quantitative and well-grounded conclusions about the validity
of the Glauber approach. For a meaningful comparison with
exact three-body calculations, the inputs of the model, i.e., NN
amplitudes and deuteron wave functions, must also be the most
accurate and coincide with those used in the current Faddeev
calculations. Because the diffraction model includes on-shell
NN amplitudes only, they can be taken from the experiment.
Or, more definitely, one can derive these amplitudes from
modern phase-shift analysis (PSA), so that they will be on-shell
equivalent to those found with realistic NN potentials entering
the Faddeev equations (in, of course, the energy region where
such potentials describe accurately the NN experimental data).

The fully realistic Faddeev equations for Nd scattering have
been solved up to now only for the incident energies TN �
250 MeV in the laboratory frame [9,10].1 Complications which
arise with growing energy are connected with limitations
of highly precise NN potentials involved as well as with

1There is only a single full three-body calculation [11] for pd
scattering at the proton incident energy Tp � 400 MeV, but its results
are still preliminary and have not been published yet.
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hard computational problems. Recently [12], the Faddeev
calculations at higher energies (up to 2 GeV) have been
carried out, but only in a schematic model with three identical
bosons interacting through a scalar central potential of the
Malfliet-Tjon type. In this model, a detailed comparison with
the Glauber approach for total and differential elastic cross
sections was also performed [13].

In the present paper, we tested the validity of the Glauber
model with a fully realistic two-body input. First, we general-
ized the initial model by incorporating the full spin dependence
of the NN amplitudes and deuteron wave function as well
as the charge-exchange effects. We analyzed the differential
cross sections and polarization observables for pd elastic
scattering in the energy region of a few hundred MeV, which
seems already high enough to apply the generalized Glauber
approach but still low enough to compare its predictions
with those of exact realistic Faddeev calculations. Moreover,
it was demonstrated [9] that at such moderate energies,
relativistic effects do not play a significant role at small and
medium scattering angles, so the nonrelativistic treatment
seems to be sufficient on such conditions. To confirm our
conclusions and to obtain a more clear understanding of the
phenomena in question, the comparison of the results for
both theoretical approaches, i.e., Glauber and Faddeev, with
available experimental data is also presented. From all these
comparisons, one can draw more definite conclusions about the
true range of validity of the refined Glauber model presented
here.

The content of the paper is as follows. In Sec. II, we
generalize the initial diffraction model by incorporating all
ten NN helicity amplitudes (five are for pp and five are
for pn scattering) and develop a convenient Gaussian-like
parametrization of these amplitudes. Also we build a multi-
Gaussian expansion for realistic deuteron S- and D-wave
functions. The convenient analytical representation for main
input ingredients of the model makes it possible to derive
all 12 invariant pd amplitudes in fully analytical forms. In
Sec. III, we present the main results of the work. The detailed
and comprehensive discussion of the obtained results and
some physical arguments which can help to interpret our
findings more clearly are presented in Sec. IV. Our concluding
remarks are given in Sec. V. Two appendixes include some
important details of the calculations within the framework
of the refined Glauber model. In Appendix A, we present
the explicit interrelations between all pd and NN invariant
amplitudes. In Appendix B, the details of analytical integration
in the double-scattering amplitudes are given.

II. REFINED GLAUBER MODEL

To explore high-precision spin-dependent NN interactions
for describing pd elastic scattering, the conventional Glauber
model and its basic formulas which relate pd amplitude to the
input NN amplitudes and the deuteron wave function have to be
generalized. In preceding years, some papers have been pub-
lished that considered the following contributions separately:
(i) spin dependence of NN amplitudes [14,15], (ii) D wave
of the deuteron [16,17], and (iii) isospin dependence of NN

amplitudes, i.e., double charge-exchange contribution to pd
elastic scattering [18,19]. All these items were included later
in the so-called relativistic multiple-scattering theory [5,6]
which went beyond the Glauber framework by accounting for
corrections to the eikonal and fixed-scatterer approximations
and some relativistic effects as well. It is well known, at least
qualitatively, that different corrections to the Glauber model
tend to cancel each other substantially [7], so it is hard to
improve essentially the Glauber model. Besides, the modified
versions are much more complicated than the initial model.
So, we have generalized just the initial Glauber formulation
by including the above-mentioned items without any further
corrections to the diffraction model itself, thus staying within
the original Glauber framework.

A. Definition of observables

First of all, we need to define the differential cross
section and spin-dependent observables in terms of the pd
elastic-scattering amplitude. The differential cross section is
connected to the above amplitude M by the relation2

dσ/dt = 1
6 Sp(MM+), (1)

where t = −q2 is the momentum transfer squared.3 As for
spin-dependent observables, in this work we concentrate
mainly on the vector and tensor analyzing powers. For the
proton and deuteron vector analyzing powers (Ap

α and Ad
α) and

for the deuteron tensor analyzing powers (Aαβ) we take the
standard formulas

Ap
α = Sp(MσαM+)/Sp(MM+),

Ad
α = Sp(MSαM+)/Sp(MM+), (2)

Aαβ = Sp(MSαβM+)/Sp(MM+),

where 1
2σα and Sα = 1

2 (σnα + σpα) are the spin matrices of
the proton and deuteron, Sαβ = 3

2 (SαSβ + SβSα) − 2δαβ is a
quadrupole operator, and α, β ∈ {x, y, z}.

The total amplitude M can be expanded on the amplitudes
invariant under space rotations and space-time reflections. For
the pd case, there are 12 such invariant amplitudes A1–A12, and
the amplitude M (in nonrelativistic formulation) is expressed

2Our normalization is different from the standard
one by the Lorentz-invariant factor 8

√
πI (s,mp,md )≡

4
√

π [s−(mp + md )2][s−(mp − md )2], where s is the pd invariant
mass squared, and mp and md are the proton and deuteron masses.
Such normalization is chosen in order to simplify the final formulas.

3Although we work in the laboratory frame according to the
initial Glauber suggestion, we should throughout keep in mind
the relation t = −q2 for consistency. This relation is valid in the
center-of-mass frame and approximately valid in the laboratory frame
at small momentum transfers. Physically, the difference between the
variables t in these two frames originates from recoil effects which
are neglected in the Glauber formalism due to the fixed-scatterer
approximation. So, this difference should not be accounted for
without careful treatment of recoil effects as well as other corrections
to the Glauber model which all become significant at large momentum
transfers.
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through them as

M[p, q; σ , S] = (A1 + A2σ n̂) + (A3 + A4σ n̂)(Sq̂)2

+ (A5 + A6σ n̂)(Sn̂)2 + A7(σ k̂)(Sk̂)

+A8σ q̂((Sq̂)(Sn̂)+(Sn̂)(Sq̂))

+ (A9 + A10σ n̂)Sn̂ + A11(σ q̂)(Sq̂)

+A12σ k̂((Sk̂)(Sn̂)+(Sn̂)(Sk̂)), (3)

where the unit vectors k̂ = (p + p′)/|p + p′|, q̂ = (p − p′)/
|p − p′|, and n̂ = k̂ × q̂; and p and p′ are the momenta of the
incident and outgoing proton, respectively.

Now all the pd observables can be written in terms of
the invariant amplitudes A1–A12. Defining the directions of
coordinate axes êx = q̂, êy = n̂, and êz = k̂, and applying
the standard trace technique, one gets for the differential
cross section and nonvanishing analyzing powers the following
expressions:

dσ/dt = |A1|2 + |A2|2 + 2

3

(
12∑
i=3

|Ai |2 + Re[2A∗
1(A3 + A5)

+ 2A∗
2(A4 + A6) + A∗

3A5 + A∗
4A6]

)
,

Ap
y = 2Re[2(A∗

1 + A∗
3 + A∗

5)(A2 + A4 + A6) + A∗
1A2

−A∗
3A6 − A∗

4A5 + 2A∗
9A10]/(3dσ/dt),

Ad
y = 2Re[(2A∗

1 + A∗
3 + 2A∗

5)A9 + (2A∗
2 + A∗

4 + 2A∗
6)A10

+A∗
7A12 + A∗

8A11]/(3dσ/dt),

Ayy = (2(|A5|2 + |A6|2 + |A9|2 + |A10|2) − (|A3|2 + |A4|2
+ |A7|2 + |A8|2 + |A11|2 + |A12|2)

+ 2Re[A∗
1(2A5 − A3) + A∗

2(2A6 − A4)

+A∗
3A5 + A∗

4A6])/(3dσ/dt),

Axx = (2(|A3|2 + |A4|2 + |A11|2 + |A12|2)

− (|A5|2 + |A6|2 + |A7|2 + |A8|2 + |A9|2 + |A10|2)

+ 2Re[A∗
1(2A3 − A5) + A∗

2(2A4 − A6)

+A∗
3A5 + A∗

4A6])/(3dσ/dt),

Azz = −Ayy − Axx,

Axz = Im[A∗
3A9 + A∗

4A10 − A∗
7A12 − A∗

8A11]/(dσ/dt).

(4)

B. Generalization of initial Glauber formalism

In the initial Glauber model, the pd scattering amplitude as
the function of transferred momentum q is represented as a sum
of two terms corresponding to single and double scatterings of
the incident proton by the target nucleons:

M(q) = M (s)(q) + M (d)(q). (5)

With the use of eikonal and fixed-scatterer approximations,
the single- and double-scattering amplitudes are expressed
in terms of the on-shell NN amplitudes (pp amplitude Mp

and pn amplitude Mn) and the deuteron wave function

�d as

M (s)(q) =
∫

d3reiqr/2�d (r)[Mn(q) + Mp(q)]�d (r),

M (d)(q) = − i

4π3/2

∫
d2q ′

∫
d3reiq′r�d (r)[Mn(q2)Mp(q1)

+Mp(q1)Mn(q2)]�d (r), (6)

where the vectors q1 = q/2 − q′ and q2 = q/2 + q′ have
been introduced for momenta transferred in collisions with
individual target nucleons.4

The double-charge-exchange process contributes to elastic
scattering as well. This contribution is significant at incident
energies Tp � 1 GeV, so we should include it in the model.
It was already done in Ref. [19] by incorporating the isospin
structure of the general NN amplitude and averaging over the
isoscalar deuteron ground state. This operation leads to an
additional term in the double-scattering amplitude

M (c)(q) = i

4π3/2

∫
d2q ′

∫
d3reiq′r�d (r)[Mn(q2)

−Mp(q2)][Mn(q1) − Mp(q1)]�d (r). (7)

The neglect of spin dependence in NN amplitudes and deuteron
wave function reduces Eqs. (5) and (6) to the conventional
Glauber formulas. Furthermore, the double-charge-exchange
amplitude M (c) vanishes in a widely used approximation Mn =
Mp (it corresponds to the neglect of isospin dependence in the
general NN amplitude). In the realistic case, with which we
are here concerned, the accurate incorporation of both spin
and isospin degrees of freedom is required. While the latter is
done simply by adding the term M (c) to the double-scattering
amplitude M (d), the account for the full spin structure of NN
amplitudes and deuteron wave function in the Glauber model
is much more involved. We take the NN amplitudes in the form

Mi[p, q; σ , σ i] = Ai + Ciσ n̂ + C ′
iσ i n̂ + Bi(σ k̂)(σ i k̂)

+ (Gi + Hi)(σ q̂)(σ i q̂)

+ (Gi − Hi)(σ n̂)(σ i n̂), (8)

where i = n, p. In the laboratory frame, one should distinguish
the amplitudes C and C ′.

For the deuteron wave function, we use the standard
expression

�d [r; σ n, σ p] = 1√
4πr

(
u(r)+ 1

2
√

2
w(r)S12[r̂; σ n, σ p]

)
,

(9)

where u and w are the radial wave functions for S and D

waves, and S12[n̂; v1, v2] = 3(v1n̂)(v2n̂) − (v1v2).
After substituting expressions (8) and (9) into Eqs. (6)

and (7) and making some spin algebra with noncommuting
operators Mn, Mp, and �d , one gets rather complicated general

4In the expression (6) for the amplitude M (d)(q), we have omitted
the term arising from the commutator of the amplitudes Mn(q2)
and Mp(q1) [19]. This term gives only a small contribution to the
intermediate-energy pd elastic scattering due to the relative smallness
of the spin-dependent NN amplitudes and the deuteron D wave.
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formulas for the pd amplitudes M (s), M (d), and M (c) expressed
through the input NN amplitudes Ai, Bi, Ci, C

′
i , Gi,Hi

(i = n, p) and deuteron wave functions u,w. To simplify
further derivation, one can employ the smallness of the
spin-dependent NN amplitudes (say, Bi) compared to spin-
independent ones (Ai) at high energies as well as the smallness
of the deuteron D wave w compared to S wave u [20].
So, the terms containing products Bk

i w
l with k + l � 3 can

be dropped out of the expressions for the amplitudes M (s),
M (d), and M (c) on definite conditions. In fact, the ratio
of spin-dependent Bi to spin-independent amplitudes Ai is
strongly decreasing when the energy rises, so that such an
approximation in the pd amplitudes, being quite accurate at
intermediate energies Tp ∼ 1 GeV, can be unsatisfied at lower
energies Tp ∼ 100 MeV. This observation has nothing to do
with the validity of the Glauber model itself at such lower
energies, and it should be kept in mind when doing the careful
comparison between the present version of the Glauber model
and experimental data for spin analyzing powers (especially for
tensor ones, which are more sensitive to fine spin-dependent
effects) in Sec. III.

After the above simplification, Eqs. (6) and (7) can be easily
integrated over d3r . In doing this, we make use of the deuteron
form factor, which is defined as

S[q; σ n, σ p] =
∫

d3reiqr|�d [r; σ n, σ p]|2

= S0(q) − 1

2
√

2
S2(q)S12[q̂; σ n, σ p]. (10)

It is convenient to divide the monopole and quadrupole form
factors, S0 and S2, into two parts which correspond to different
multiplicities of the D-wave function w, i.e.,

S0(q) = S
(0)
0 (q) + S

(2)
0 (q), S2(q) = S

(1)
2 (q) + S

(2)
2 (q), (11)

where

S
(0)
0 (q) =

∫ ∞

0
dru2(r)j0(qr),

S
(2)
0 (q) =

∫ ∞

0
drw2(r)j0(qr),

(12)

S
(1)
2 (q) = 2

∫ ∞

0
dru(r)w(r)j2(qr),

S
(2)
2 (q) = −2−1/2

∫ ∞

0
drw2(r)j2(qr).

Eventually, using the expansion (3) for the total pd ampli-
tude M, one obtains the explicit interrelations between all 12
invariant pd amplitudes and 12 invariant input NN amplitudes
and also different components of the deuteron form factor
(for the final formulas and details of analytic q′ integration
in the double-scattering amplitudes, see Appendixes A and B,
respectively). Having these interrelations and proper two-body
input in hand, one can calculate straightforwardly the pd
differential cross section and all polarization observables on
the basis of the refined Glauber model.

C. Parametrization of the N N amplitudes and deuteron
wave function

The Glauber model deals with pd and NN amplitudes
defined in the laboratory frame. However, it is more convenient
to treat the NN helicity amplitudes in the two-nucleon
center-of-mass frame. It is easy to show that the laboratory
amplitudes A,B,C,G,H at small values of q can be
straightforwardly expressed through the conventional helicity
amplitudes N0, N1, N2, U0, U2 (or φ1–φ5) as

A ≈ N0 = (φ3 + φ1)/2,

B ≈ −U0 = (φ3 − φ1)/2,

C ≈ iN1 = iφ5, (13)

G ≈ (U2 − N2)/2 = φ2/2,

H ≈ (U2 + N2)/2 = φ4/2.

Here, in making appropriate approximations, we do not go
beyond the diffraction model. It was also demonstrated [21]
that the amplitude C ′ [see Eq. (8)] in the high-energy small-
angle limit is distinguished only by a relativistic correction
from the amplitude C, i.e.,

C ′ ≈ C + (q/2m)N0. (14)

Moreover, both the amplitudes C and C ′ are small at high
energies compared to the other amplitudes, so the above
correction hardly plays a significant role, but it still should
be included for consistency.

All the helicity pp and pn amplitudes at the energy Tp =
1 GeV are displayed in Fig. 1. These amplitudes are built in
the present work on the basis of recent PSA [22], and we
used a special code [23] to reconstruct the pp and pn helicity
amplitudes from the PSA data. As clearly seen from Fig. 1, the
amplitude N0 is significantly superior to all the other helicity
amplitudes. It is also clearly seen that the corresponding pp and
pn amplitudes are distinguished from each other significantly,
whereas in early studies of the diffraction model, they were
often chosen to be the same for the sake of simplicity.

To parametrize the NN helicity amplitudes, it is very
convenient to employ a Gaussian series representation with
an explicit separation of the behavior near q = 0:

N0(q) =
n∑

j=1

Ca,j exp(−Aa,j q
2),

U0(q) =
n∑

j=1

Cb,j exp(−Ab,j q
2),

N1(q) = q

n∑
j=1

Cc,j exp(−Ac,j q
2), (15)

[U2(q) − N2(q)]/2 =
n∑

j=1

Cg,j exp(−Ag,j q
2),

[U2(q) + N2(q)]/2 = q2
n∑

j=1

Ch,j exp(−Ah,jq
2).
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FIG. 1. (Color online) Combinations of the NN helicity ampli-
tudes (in units

√
mb/GeV), which correspond to the laboratory NN

amplitudes used in our calculations [see Eq. (13)]. The pp amplitudes
are shown in column (a), the pn amplitudes are given in column
(b). The dashed lines correspond to the real parts of the amplitudes,
while the solid lines represent their imaginary parts.

Here the subscripts a, b, c, g, h in the parameters C,A denote
the respective laboratory NN amplitudes [see Eq. (13)].5 In
our calculations, we took n = 5, i.e., five Gaussian terms in all
the above sums. With this choice, we found that the Gaussian
approximated NN amplitudes are very near to the exact ones
in the forward hemisphere [20]. The visible deviations begin
only at large angles, where the Glauber model demands a
fast vanishing of all the underlying amplitudes. The rise in
magnitude of the true pp helicity amplitudes is due to the
Pauli principle, according to which the whole pp amplitude
must be antisymmetrized. This antisymmetrization is essential
in large-angle pd scattering only through a one-nucleon
exchange mechanism, so the diffraction model being derived
for forward-angle scattering does not account for this exchange
mechanism. On the other hand, the charge-exchange process
which is responsible for the rising of np helicity amplitudes

5In explicit calculations, we explored two different relations (and
two sets of parameters C, A) for each helicity amplitude, i.e., one for
its real part and one for the imaginary part. So all parameters really
need two additional indices, say, i = n, p (to distinguish pp and np

amplitudes) and k = r, i (to distinguish real and imaginary parts).
Here, just the general forms that fit both real and imaginary parts of
pp as well as pn amplitudes are given for transparency.

at large angles can contribute to pd elastic scattering already
at rather forward angles through the double charge exchange,
and thus, the latter mechanism is included in our formalism
explicitly.

For the deuteron wave function, we explored the high-
precision NN potential model CD-Bonn [24]. To parametrize
S- and D-wave components of the function, we also employed
the Gaussian representation (with an additional factor rn to
reproduce the behavior near the origin):

u(r) = r

m∑
j=1

C0j exp(−A0j r
2),

(16)

w(r) = r3
m∑

j=1

C2j exp(−A2j r
2).

In our calculations, we have chosen m = 5. With this number
of terms, the approximated deuteron wave functions coincide
with high accuracy with the exact ones from the origin up to
large distances (rNN � 20 fm). With the above parametrization
of the deuteron radial wave functions, the form factors defined
in Eq. (12) take the forms

S
(0)
0 (q) =

m∑
i,j=1

C0iC0j

√
π

4λ
3/2
00,ij

exp(−x00,ij ),

S
(2)
0 (q) =

m∑
i,j=1

C2iC2j

√
π

16λ
7/2
22,ij

(
4x2

22,ij − 20x22,ij + 15
)

× exp(−x22,ij ),

S
(1)
2 (q) =

m∑
i,j=1

C0iC2j

√
π

2λ
5/2
02,ij

x02,ij exp(−x02,ij ),

S
(2)
2 (q) =

m∑
i,j=1

C2iC2j

√
2π

16λ
7/2
22,ij

(
2x2

22,ij − 7x22,ij

)
exp(−x22,ij),

(17)

where λkl,ij = Aki + Alj , xkl,ij = q2/(4λkl,ij ), and k, l =
0, 2.

III. RESULTS

Using the above refined Glauber model, we analyzed the
pd differential cross sections as well as proton and deuteron
analyzing powers at three intermediate energies: Tp = 250 and
440 MeV and 1 GeV.6 These energies were chosen because
there is a considerable amount of experimental data on pd
elastic observables in these energy regions [11,25–30]. Besides
that, the two lower energies are appropriate for comparing in
detail the predictions of our model with exact Faddeev results.

We start with the energy Tp = 250 MeV because the
realistic Faddeev calculations are well grounded for this
energy. Results for pd differential cross section and proton

6For the deuteron analyzing powers which are measured in dp

scattering, these are the equivalent proton incident energies in the
inverse kinematics, i.e., Tp = Td/2.

014004-5



M. N. PLATONOVA AND V. I. KUKULIN PHYSICAL REVIEW C 81, 014004 (2010)

FIG. 2. (Color online) Differential cross section (a) and proton
analyzing power (b) in pd elastic scattering at the incident energy
Tp = 250 MeV. The solid lines represent the results obtained within
the refined Glauber model, the dotted lines show the single-scattering
contribution only, while the dashed lines correspond to predictions
of the exact Faddeev calculations [25] with NN potential CD-Bonn.
Experimental data (squares) are taken from Ref. [25].

analyzing power at Tp = 250 MeV are represented in Fig. 2.
We also calculated the deuteron vector and tensor analyzing
powers at the equivalent proton energy Tp = 250 MeV.
However, the exact Faddeev results and experimental data
for these observables are available in the literature just for
a bit lower energy, Tp = 200 MeV. Our separate comparison
between some experimental data at Tp = 200 and 250 MeV has
shown that they are very close to each other. So, our predictions
for the deuteron vector and tensor analyzing powers at Tp =
250 MeV in comparison with exact three-body results and
experimental data at Tp = 200 MeV are displayed in Fig. 3. In
addition, we show the results of the refined Glauber model at
Tp = 440 MeV (see Fig. 4). The Faddeev calculations with the
fully realistic NN interaction are not so reliable for this energy;
thus, we restrict ourselves with the differential cross section
and the proton analyzing power. We compared our result for
differential cross section at the energy Tp = 440 MeV with the
Faddeev calculation at the same energy and with experimental
data at Tp = 425 MeV. For the comparison with our result
for proton analyzing power at Tp = 440 MeV, we employed
existing (to date) Faddeev calculation and experimental data
at a bit lower energy, Tp = 392 MeV.

Besides the comparison between the refined Glauber model
predictions and exact three-body Faddeev results, it would

be highly interesting to compare our results with existing
experimental data at the higher energy of Tp = 1 GeV, which
is more traditional for the diffraction model. This comparison
has been made for the differential cross section as well as
for deuteron vector and tensor analyzing powers. In Fig. 5, the
predictions of our model together with respective experimental
data are displayed.

It is clearly seen from Figs. 2–5 that our results found
within the refined Glauber model are, in general, in very
reasonable agreement with both exact three-body calculations
and experimental data at transferred momenta squared |t | �
0.3–0.4 (GeV/c)2 for differential cross sections and vector and
tensor analyzing powers as well.7 This gives, at first glance,
some interesting deep puzzle because the good agreement with
the exact Faddeev calculations is seen in the region where the
double scattering (in the Glauber model) dominates. However,
instead of two purely on-shell and no-recoil scatterings of
the incident proton by two nucleons in deuteron within
the Glauber model framework, the Faddeev calculations
include many fully off-shell rescatterings with full account
of recoil effects. We will discuss in detail some possible
physical reasons for such an amazing agreement in the next
section.

Moreover, on Figs. 2–4, one can see a general new trend:
in those kinematical regions (at larger |t |) where the refined
diffraction model deviates essentially from the exact Faddeev
theory, the exact 3N results begin also to deviate from the
experimental data. This gives another interesting question to
answer.

IV. DISCUSSION

It would be useful to arrange the general discussion of the
results obtained in this paper in a few separate points.

(i) Fully analytical formulas which relate all 12 invariant
pd amplitudes to the accurate input pp and pn
helicity amplitudes (see Appendixes A and B) allow
us to not only greatly simplify all the numerical
calculations for pd spin observables but also to develop
an efficient and convenient algorithm for solving
an important inverse scattering problem (at fixed
energy). This inverse problem can be formulated as
follows:
(a) Having the precise intermediate-energy nd spin

observables and differential cross section and by
taking the respective np helicity amplitudes at the
same energy as a well-established input, one can
extract poorly known neutron-neutron scattering
amplitudes at the same energy.

7The agreement for tensor analyzing powers at rather low energies
(Tp � 250 MeV) is not as good as that for differential cross sections
and vector analyzing powers (see Figs. 2 and 3). This fact is very likely
related to our simplifying assumption about the relative smallness
of the spin-dependent NN amplitudes in comparison to the large
spin-independent ones (see the end of Sec. II B) and not to the validity
of the Glauber approximation itself.
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FIG. 3. (Color online) Deuteron vector (a) and tensor (b),(c) analyzing powers in dp elastic scattering at the equivalent proton energy
Tp = 250 MeV. For the notations, see Fig. 2. Results of the Faddeev calculations and experimental data are taken from Ref. [26] (for the energy
Tp = 200 MeV).

(b) Or, alternatively, having in our possession the
accurate pd experimental data in the energy region
Tp > 1.1 GeV, we can find by inversion the
proton-neutron scattering amplitudes which are
still poorly known at these energies.

Surely, a separate study should be done before making
this inversion to establish here a real sensitivity of
the input pn amplitudes to the pd cross sections and
analyzing powers while taking into consideration the
experimental error corridor. So, such an inversion
opens a way to finding in principle the accurate nn
(or pn) scattering amplitudes from the precise nd or
pd experimental data.

(ii) Our numerous calculations performed in this work
on the basis of the refined Glauber model have
been compared with the respective exact Faddeev 3N

calculations with mostly the same input on-shell NN
amplitudes for differential cross section and vector
and tensor analyzing powers. For the numerous spin-
dependent observables, it was done for the first time.
This direct comparison has demonstrated clearly an
amazingly good agreement between the results of
the refined diffraction model and exact 3N calcula-
tions, even at rather low energies, Tp � 250 MeV.
The agreement gets even more impressive when the
collision energy is rising. It should be stressed here
that we are observing this nice agreement in the area
where the double scattering in the Glauber model
approach becomes prevailing. This implies, among

other things, that the severe approximations made
in the Glauber approach just in the treatment of
double scattering [2] really work even at rather low
energies.

Our conclusion should be confronted with the results
of the previous work [13] where a similar comparison
was made between the exact 3N Faddeev calculations
and the conventional Glauber model predictions for
intermediate-energy Nd scattering. In that work, both
theoretical approaches were based on the simple
central NN potential MT-III (employed to calculate
the input NN amplitude for the Glauber model), so
the comparison between the predictions was made for
differential and total cross sections only. The authors
[13] found that in the case of the model NN potential
MT-III, the Glauber model results do not reproduce
the exact 3N calculation results for the differential
cross section at TN � 200 MeV, and the predictions
of both approaches become more similar only at
higher energies TN � 1 GeV, as should be expected.
Nevertheless, a fair agreement between the two ap-
proaches was found for the single-scattering terms
only, while the Glauber on-shell double-scattering
correction was shown to be insufficient in comparison
to the Faddeev second-order rescattering correction.
Thus, the general conclusion of Ref. [13] was that
the Glauber and fully converged Faddeev results do
not coincide beyond the very forward angles (where
the single scattering dominates) even at the highest
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FIG. 4. (Color online) Differential cross section (a) and proton
analyzing power (b) in pd elastic scattering at the incident energy
Tp = 440 MeV. For the notations—see Fig. 2. Results of Faddeev
calculations are taken from Refs. [11] (440 MeV) and [28] (392 MeV),
experimental data—from Refs. [27] (425 MeV) and [28] (392 MeV).

energy considered (TN = 2 GeV). However, when
confronting both series of results, one should keep
in mind that the model NN potential MT-III does
not reproduce the empirical NN scattering amplitudes
at higher partial waves l � 1, and thus does not
reproduce the total NN amplitudes even at TN =
250 MeV, see Fig. 6.

It should be stressed that the Glauber approach
exploits essentially the characteristic features of just
empirical NN amplitudes, and that with other types of
input NN amplitudes, the contributions of neglected
terms may become much higher. In particular, the
strong sensitivity of the Glauber model results for pd
scattering (especially in the diffraction minimum) to
the ratio of real to imaginary parts of NN amplitudes
is well known (see, for example, Ref. [31]). Due to
numerous inelastic processes at TN > 300 MeV, the
realistic NN potential has to have an imaginary part
rising with energy. This imaginary part of the NN
potential leads to an NN scattering amplitude with
enhanced imaginary part, while the amplitude for the
model MT-III potential has a very small imaginary
part strongly decreasing with the rise of energy (see
Fig. 6, upper row).

A second but even more important point is seen from
the comparison of the model NN differential cross

sections (for MT-III potential) with realistic ones (see
Fig. 6, lower row). The rates of falling for two types
of cross sections (as functions of momentum transfer
squared) are completely different, so the effective
radius of the NN interaction in the realistic case
appears to be much shorter than that for the model
MT-III interaction. Indeed, the effective radius for
MT-III potential rNN � 2 fm or even more,8 so that
when analyzing the double-scattering term with such a
model input NN potential and keeping in mind that the
average distance between two nucleons in deuteron
is around 4 fm, one can conclude that in this NN
model the incident nucleon is moving through the
target deuteron all the time within a field of strong
nuclear force. That is, we cannot consider the incident
nucleon in this schematic model as moving freely in
between two successive collisions with the nucleons
in deuteron. In case of the realistic NN interaction, the
effective range of the NN force gets much shorter as
compared to the size of the deuteron (this is clearly
seen from Fig. 6), and thus the above assumption of the
Glauber model for estimation of the double-scattering
term becomes quite valid.

An additional argument in favor of validity of the
above Glauber model assumption for the double-
scattering term just with the realistic NN amplitudes
is the good agreement between the diffraction model
results and the exact 3N calculations found in the
present work for many observables, i.e., vector and
tensor analyzing powers as well as differential cross
sections. In fact, as is seen from Figs. 2–4, the
agreement for spin observables is quite evident in
the area where the double-scattering term dominates.
But this term includes a strong interference between
non-spin-flip, single-spin-flip, and double-spin-flip
NN helicity amplitudes, so that the behavior of the
intermediate propagator of the projectile (moving
between two successive collisions) should be of high
importance in reproducing all the considered spin
observables.

(iii) Comparing further the refined Glauber model results
with the experimental data and with exact Faddeev
results (see Figs. 2–5), one can observe that the
area where the diffraction model predictions begin to
deviate essentially from the exact 3N results almost
coincides with that where the latter begin to deviate
from experimental data. In other words, the refined
Glauber model reproduces quite properly the results
of exact 3N calculations just in the region where
the Faddeev 3N framework reflects properly the
underlying 3N dynamics, i.e., the dynamics which
assumes the validity of the conventional 2N and 3N

force models and implies the nucleonic and 	-isobar
degrees of freedom only.

8If we define this radius as that value of rNN where the potential can
be practically neglected.
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FIG. 5. (Color online) Differential cross section (a) and deuteron vector (b) and tensor (c),(d) analyzing powers in dp elastic scattering at
the equivalent proton energy Tp = 1 GeV calculated within the refined Glauber model. Dotted lines show the contribution of single scattering
only, solid lines represent the full calculation. Experimental data (squares) are taken from Refs. [29,30].

From this point of view, the deviation of the exact
Faddeev results from the accurate experimental data
on pd scattering [32,33] can imply that some hidden
degrees of freedom (e.g., quark-meson) manifest
themselves in large-angle pd scattering. A strong
additional argument in favor of just this hypothesis
follows from the fact that the above deviation gets
larger when the collision energy is rising. According
to some previous theoretical and experimental works
(see, e.g., Refs. [3,34]), the disagreements at 500–
1000 MeV may reach an order of magnitude at large
scattering angles.

(iv) The last, but not least, problem which can be posed
by our Glauber model calculations is related to the
amazingly good accuracy of the diffraction model
at relatively low energies Tp � 200 MeV and at
rather large scattering angles. To solve this puzzle,
one should recall that when considering scattering of
antiprotons by deuteron and other light nuclei, the
validity of the Glauber model was found to begin
at as low as 50 MeV [35]. The validity of the
diffraction model assumptions at such a low energy
is undoubtedly related to the strong absorption of
antiprotons by the nuclear core, so that the central
nuclear area (where the nuclear density is still no-
ticeable) is seen by the incident antiproton as a large
black disk, on which the diffraction is observed in such
experiments.

Rather similar physics is seen behind the
intermediate- and high-energy pd scattering. Because
the elastic pd cross section at these energies is a
rather small fraction of the total cross section, the
dominating processes are just inelastic ones (at least at
small and middle impact parameter values), so the fast
incident nucleon goes away from the elastic channel
with high probability when it is not very far from
the loosely bound target nucleus. Thus, the pd elastic
scattering at such high energies can be viewed as a
diffraction of the fast incident particle on the edge
of the large black disk, so the diffraction process can
be described as a peripheral collision. This physical
picture is schematically represented by Fig. 7. Here
the central area (the hatched disk) with the radius
rt = Dt/2, with Dt being the size of the deuteron
(Dt � 4 fm), shows the almost-black disk where the
incident nucleons leave the elastic scattering channel
and undergo mainly inelastic scattering (an “absorp-
tion” from the entrance channel). So, the truly elastic
scattering happens mainly at the edge of the hatched
disk inside a ring (shown by the dashed line in Fig. 7)
with the width λi (it corresponds to the wave zone
in optical diffraction). Thus, the ratio ησ = σel/σtot of
the elastic scattering cross section to the total one can
be roughly estimated as the ratio of areas inside the
ring and hatched inner disk, i.e., ηr = 2πrt λi

πrt
2 = 2λi/rt .

For the incident energies TN � 100–200 MeV, the
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FIG. 6. (Color online) Ratio of the real to imaginary parts of NN spin-independent helicity amplitude (a) and NN differential cross sections
(b) at different energies of the incident nucleon derived from MT-III potential model (dashed lines) and taken from PSA [22] for np scattering
(solid lines).

nucleon wavelength λi � 0.2–0.3 fm, so the ratio
of the areas ηr = 2λi/rt � 0.20–0.25, which is in
good qualitative agreement with the measured ratio
ησ = σel/σtot � 0.15–0.20. From this simple picture,
one can understand clearly the reasons for a good
applicability of the Glauber diffraction model for the
pd elastic scattering even at energy Tp � 200 MeV.

Dt

λi

FIG. 7. Illustration of optical diffraction in high-energy pd elastic
scattering. The almost-black disk with radius Dt/2 (hatched disk)
surrounded by the wave zone of width λi (dashed line) represents
the area inside the loosely bound target where inelastic processes
dominate. The elastic scattering proceeds mainly in the ring of width
λi , so that λi/Dt 
 1.

As for the observed validity of the Glauber model
at rather large values of |t | = q2, it is related basically
to a double-scattering term which dominates in the
region beyond the forward diffraction peak. So, the
momentum q transferred within the double scattering
corresponds to ca. q/2 for each of single scatterings
entering the double-scattering term. Thus, it is very
likely that although the validity of eikonal approxima-
tion at q/2 can be broken in a strict sense, the degree
of this breaking should increase rather slowly with the
rise of q2.

(v) Finally, it would be very appropriate to discuss here
some possible reasons for the observed disagreement
between the results of exact 3N calculations and
experimental data for pd cross sections and especially
for spin observables at large and backward scattering
angles. This topic can be important also in improving
the diffraction model description of the experimental
data at larger |t | values.

The observation of pd differential cross section and
spin analyzing powers at large scattering angles shows
that starting with incident energy Tp � 200 MeV, the
disagreements between exact Faddeev calculations
and respective experimental data increase when the
collision energy rises, and the contribution of con-
ventional 3N forces (induced by the intermediate
	-isobar generation) does not help in reaching the
agreement (see the discussion in Ref. [33]). So, it
seems that this observation makes it meaningless to
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improve the formal aspects of Glauber model by
taking into account many other effects ignored in
the present formulation, e.g., off-shell corrections and
relativistic effects such as boosts, etc., because the
majority of these effects have been already included in
the exact 3N calculations [9] and likely do not help to
achieve a good agreement with the data at large angles.
It is important to stress also that the experimental
differential cross sections at large angles are typically
underestimated by the present-day theory. This fact
and the rise of all disagreements with energy very
likely imply that the theoretical model does not
include some essential degrees of freedom which
manifest themselves at rising energy stronger and
stronger. One can suppose [36] that the most plausible
candidature for these d.o.f. ignored in all previous
3N calculations are quark-meson (or dressed dibaryon
[37,38]) d.o.f. Indeed, the dressed dibaryon describes
the situation when two nucleons overlap strongly their
quark cores (at rNN � 1 fm). So, according to the
modern dibaryon concept [38], this area corresponds
to a strong attraction between two quark cores due
to an appearance of a strong scalar field surrounding
the unified six-quark system. In such a picture, the
incident fast nucleon scattered into large angles is
feeling not two well-separated nucleons in deuteron
but one compact quark bag which can survive, in
sharp contrast to loosely bound deuteron, even at very
large transferred momenta. Thus, if we assume for a
moment the existence of such a quark bag (dressed
dibaryon) in deuteron with a weight of about 2–3%
[38], it should be sufficient to enhance strongly the
backward scattering of intermediate- and high-energy
hadrons by deuteron. So, the straightforward general-
ization of the Glauber model can be done also in this
direction.9

V. SUMMARY

In this work, we presented the comparison between the
predictions for the observables in intermediate-energy pd
elastic scattering given by the refined Glauber model (with
full account of the spin and isospin degrees of freedom), exact
Faddeev calculations, and experiments. As input for the refined
Glauber model, we used fully realistic NN helicity amplitudes
which describe the NN observables at the intermediate energies
(at the level of accuracy of modern PSA) and high-precision
model of the deuteron wave function. For the convenient
representation of the deuteron radial wave functions and NN
helicity amplitudes, we employed the special multi-Gaussian
expansions which allow us to perform all the calculations
fully analytically. So, we calculated within the framework
of the refined diffraction model, the pd differential cross
sections and spin-dependent observables, i.e., the analyzing

9In doing this, one should consider a direct hadron-dibaryon
interaction without basic approximations of the diffraction model
such as eikonal, etc.

powers of proton and deuteron, at different energies. We
found an amazingly good agreement between the results of
our refined Glauber model and exact Faddeev calculations up
to transferred momentum values where the exact 3N results
begin to deviate essentially from the experimental data. We
discussed the possible reasons for such surprising agreement,
which extends to rather low energy (Tp � 200 MeV) and rather
large scattering angles.

Our general conclusion derived from the detailed compar-
isons with exact 3N calculations and numerous experimental
data for pd elastic analyzing powers and cross sections can be
formulated as follows: the Glauber model (in its refined form
developed in the present work) turns out to be quite accurate
in a wide angular range starting with relatively low energies
for loosely bound target nuclei such as deuteron. The refined
diffraction model leads to predictions which are, in general,
in a similar agreement with experimental data as the exact
Faddeev calculations.

This conclusion should be valid not only for hadron
scattering on loosely bound nuclei such as d, 6Li, etc., but also
for scattering of such hadrons as η and K and other mesons
on arbitrary nuclei, i.e., in the case of strong absorption of an
incident wave by the nuclear core.
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APPENDIX A: INTERRELATIONS BETWEEN pd AND N N
AMPLITUDES IN THE REFINED GLAUBER MODEL

In this Appendix, we present the final formulas of the
refined Glauber model. These formulas relate the pd invariant
amplitudes A1–A12 to the NN invariant amplitudes Ai, Bi, Ci,

C ′
i , Gi,Hi (i = n, p) and different components S

(0)
0 , S

(2)
0 , S

(1)
2 ,

S
(2)
2 of the deuteron form factor [for the definitions, see

Eqs. (3), (8), and (12)]. The general expression for each pd
invariant amplitude eventually takes the form

Aj (q) = [
A

(s)
j (q) + A

(d)
j (q) + A

(c)
j (q)

] + [n ↔ p],

A
(d)
j (q) = − i

2π3/2

∫
d2q ′A(d)

j (q, q′), (A1)

A
(c)
j (q) = − i

2π3/2

∫
d2q ′(A(d)

j (q, q′) − A(c)
j (q, q′)

)
,

where j = 1, 12, and “+[n ↔ p]” denotes an addition of the
preceding expression (in square brackets) with the neutron
and proton indices interchanged throughout. The formulas
for the quantities A

(s)
j ,A(d)

j , and A(c)
j can be found in

Tables I, II, and III, respectively. It is implied there that in
single-scattering amplitudes A

(s)
j , the deuteron form factors are

functions of q/2 and invariant NN amplitudes are functions of
q. In the quantitiesA(d)

j andA(c)
j entering the double-scattering
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TABLE I. Formulas for the single-
scattering amplitudes A

(s)
j , j = 1, 12 [see

Eq. (A1)].

A
(s)
1 = (S0 + √

2S2)An

A
(s)
2 = (S(0)

0 + √
2S

(1)
2 )Cn

A
(s)
3 = − 3√

2
S2An

A
(s)
4 = − 3√

2
S

(1)
2 Cn

A
(s)
5 = 0

A
(s)
6 = 0

A
(s)
7 = (S(0)

0 + 1
2
√

2
S

(1)
2 )Bn

A
(s)
8 = 0

A
(s)
9 = (S(0)

0 + 1
2
√

2
S

(1)
2 )C ′

n

A
(s)
10 = (S(0)

0 + 1
2
√

2
S

(1)
2 )(Gn − Hn)

A
(s)
11 = (S(0)

0 − 1√
2
S

(1)
2 )(Gn + Hn)

A
(s)
12 = 0

and double-charge-exchange amplitudes (A(d)
j and A

(c)
j ), the

deuteron form factors are functions of q′, while in the products
of two NN amplitudes the first one depends on q2 and the
second one depends on q1, e.g., AnAp ≡ An(q2)Ap(q1).

In the derivation of A(d)
j and A(c)

j , we used the following
approximate interrelations between the unit vectors:

k̂ ≈ k̂1 ≈ k̂2, (A2)

n̂i q̂l ≈ q̂i ×q̂l , n̂i n̂l ≈ q̂i q̂l . (A3)

Here i, l = 0, 1, 2, and we define k̂0 ≡ k̂, q̂0 ≡ q̂, and n̂0 ≡ n̂

and introduce the unit vectors k̂i , q̂i , n̂i (i = 1, 2) for two
individual collisions in the double scattering. The above
interrelations are valid within the eikonal approximation.

APPENDIX B: ANALYTICAL CALCULATION OF THE
INTEGRALS IN DOUBLE-SCATTERING AMPLITUDES

With the special parametrization of the input NN helicity
amplitudes and deuteron wave functions presented in Sec. II C,

the q′ integration in the double-scattering and double-charge-
exchange amplitudes A

(d)
j and A

(c)
j , j = 1, 12 [see Eq. (A1)]

can be performed fully analytically. In particular, the scalar
and vector products of the unit vectors q̂, q̂ ′, q̂1, q̂2 (appearing
in Tables II and III) are expressed through their magnitudes
q, q ′, q1, q2 and the angle ϕ between q̂ and q̂ ′ as

q̂q̂ ′ = cos ϕ, q̂×q̂ ′ = sin ϕ,

q̂q̂1 = (q/2 − q ′ cos ϕ)/q1, q̂×q̂1 = −q ′ sin ϕ/q1,

q̂q̂2 = (q/2 + q ′ cos ϕ)/q2, q̂×q̂2 = q ′ sin ϕ/q2,

q̂1q̂
′ = [−q ′+(q/2) cos ϕ]/q1, q̂1×q̂ ′ = (q/2) sin ϕ/q1,

q̂2q̂
′ = [q ′ + (q/2) cos ϕ]/q2, q̂2×q̂ ′ = (q/2) sin ϕ/q2,

q̂2q̂1 = (
q2/4 − q ′2) /(q2q1), q̂2×q̂1 = −qq ′sin ϕ/(q2q1),

q2
1 = q2/4+q ′2−qq ′ cos ϕ, q2

2 = q2/4+q ′2+qq ′ cos ϕ.

(B1)

When multiplying these products by the NN amplitudes, the
magnitudes q1 and q2 in the denominators are exactly canceled
with the factors which represent the behavior of the NN
amplitudes near the origin [see Eq. (15)]. Thus, making use
of the expansions for NN amplitudes [Eq. (15)] and deuteron
form factors [Eq. (17)] and the Eq. (B1), all integrals can be
reduced to the standard form

Jnm(α, β; q) ≡
∫ ∞

0
dq ′

∫ 2π

0
dϕq ′ne−αq ′2+βqq ′ cos ϕ cos(mϕ)

= π�[(n + m + 1)/2]βmqm

2m�(m + 1)α(n+m+1)/2

× 1F1((n + m + 1)/2,m + 1, β2q2/(4α)),

(B2)

throughout, where n � 1, m � 0 are integer numbers, and
α = A1 + A2 + 1/(4λ), β = A1 − A2 are the combinations
of nonlinear Gaussian parameters (λ comes from the deuteron
form factors, while A1 and A2 are related to the NN ampli-
tudes depending on q1 and q2, respectively). The confluent

TABLE II. Formulas for the quantities A(d)
j entering the expressions for double-scattering amplitudes A

(d)
j , j = 1, 12 [see Eq. (A1)].

A(d)
1 = 1

2 S
(0)
0 (AnAp + 3BnBp + (CnCp − C ′

nC
′
p)q̂2q̂1 − 2GnGp − 2HnHp((q̂2q̂1)2 − (q̂2×q̂1)2)) + 1

2 (S(2)
0 + √

2S2)AnAp

A(d)
2 = S

(0)
0 (AnCpq̂q̂1 − C ′

nGpq̂q̂2 + C ′
nHp((q̂2q̂1)(q̂q̂1) − (q̂2×q̂1)(q̂×q̂1))) + √

2S
(1)
2 AnCpq̂q̂1

A(d)
3 = S

(0)
0 (C ′

nC
′
p(q̂×q̂2)(q̂×q̂1) − BnBp + GnGp + HnHp((q̂2q̂1)2 − (q̂2×q̂1)2) + 2GnHp((q̂q̂1)2 − (q̂×q̂1)2)) − 3

2
√

2
S2AnAp(q̂q̂ ′)2

A(d)
4 = −4S

(0)
0 C ′

nHp(q̂×q̂2)(q̂×q̂1)(q̂q̂1) − 3√
2
S

(1)
2 AnCpq̂q̂1(q̂q̂ ′)2

A(d)
5 = S

(0)
0 (C ′

nC
′
p(q̂q̂2)(q̂q̂1) − BnBp + GnGp + HnHp((q̂2q̂1)2 − (q̂2×q̂1)2) − 2GnHp((q̂q̂1)2 − (q̂×q̂1)2)) − 3

2
√

2
S2AnAp(q̂×q̂ ′)2

A(d)
6 = 2S

(0)
0 (C ′

nGp − C ′
nHp((q̂q̂1)2 − (q̂×q̂1)2))q̂q̂2 − 3√

2
S

(1)
2 AnCpq̂q̂1(q̂×q̂ ′)2

A(d)
7 = (S(0)

0 + 1
2
√

2
S

(1)
2 )AnBp

A(d)
8 = S

(0)
0 (C ′

nGpq̂q̂2 + C ′
nHp[q̂q̂2((q̂q̂1)2 − (q̂×q̂1)2) − 2(q̂×q̂2)(q̂×q̂1)(q̂q̂1)]) + 3√

2
S

(1)
2 AnCp(q̂×q̂1)(q̂×q̂ ′)(q̂q̂ ′)

A(d)
9 = S

(0)
0 (AnC

′
pq̂q̂1 + CnGpq̂q̂2 − CnHp((q̂2q̂1)(q̂q̂1) − (q̂2×q̂1)(q̂×q̂1))) + 1

2
√

2
S

(1)
2 AnC

′
p(q̂q̂1 − 3(q̂1×q̂ ′)(q̂×q̂ ′))

A(d)
10 = S

(0)
0 (CnC

′
p(q̂q̂2)(q̂q̂1) + AnGp − AnHp((q̂q̂1)2 − (q̂×q̂1)2)) + 1

2
√

2
(AnGp

× (1 − 3(q̂×q̂ ′)2) − AnHp[(q̂q̂1)2 − (q̂×q̂1)2 − 3(q̂×q̂ ′)((q̂q̂1)(q̂1×q̂ ′) − (q̂×q̂1)(q̂1q̂
′))])

A(d)
11 = S

(0)
0 (CnC

′
p(q̂×q̂2)(q̂×q̂1) + AnGp + AnHp((q̂q̂1)2 − (q̂×q̂1)2)) + 1

2
√

2
S

(1)
2 (AnGp(1 − 3(q̂q̂ ′)2)

+ AnHp[(q̂q̂1)2 − (q̂×q̂1)2 − 3q̂q̂ ′((q̂q̂1)(q̂1q̂
′) − (q̂×q̂1)(q̂1×q̂ ′))])

A(d)
12 = S

(0)
0 C ′

nBpq̂q̂2
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TABLE III. Formulas for the quantities A(c)
j entering the expressions for double-charge-exchange amplitudes A

(c)
j , j = 1, 12 [see Eq. (A1)].

A(c)
1 = 1

2 S
(0)
0 (AnAn + BnBn + (CnCn + C ′

nC
′
n)q̂2q̂1 + 2GnGn + 2HnHn((q̂2q̂1)2 − (q̂2×q̂1)2)) + 1

2 (S(2)
0 + √

2S2)AnAn

A(c)
2 = S

(0)
0 (AnCnq̂q̂1 + C ′

nGnq̂q̂2 − C ′
nHn((q̂2q̂1)(q̂q̂1) − (q̂2×q̂1)(q̂×q̂1))) + √

2S
(1)
2 AnCnq̂q̂1

A(c)
3 = − 3

2
√

2
S2AnAn(q̂q̂ ′)2

A(c)
4 = − 3√

2
S

(1)
2 AnCnq̂q̂1(q̂q̂ ′)2

A(c)
5 = − 3

2
√

2
S2AnAn(q̂×q̂ ′)2

A(c)
6 = − 3√

2
S

(1)
2 AnCnq̂q̂1(q̂×q̂ ′)2

A(c)
7 = S

(0)
0 (AnBn − GnGn + HnHn((q̂2q̂1)2 − (q̂2×q̂1)2)) + 1

2
√

2
S

(1)
2 AnBn

A(c)
8 = 3√

2
S

(1)
2 AnCn(q̂×q̂1)(q̂×q̂ ′)(q̂q̂ ′)

A(c)
9 = S

(0)
0 (AnC

′
nq̂q̂1 + CnGnq̂q̂2 − CnHn((q̂2q̂1)(q̂q̂1) − (q̂2×q̂1)(q̂×q̂1))) + 1

2
√

2
S

(1)
2 AnC

′
n(q̂q̂1 − 3(q̂1×q̂ ′)(q̂×q̂ ′))

A(c)
10 = S

(0)
0 (CnC

′
n(q̂q̂2)(q̂q̂1) + (An − Bn)Gn − (An + Bn)Hn((q̂q̂1)2 − (q̂×q̂1)2))

+ 1
2
√

2
S

(1)
2 (AnGn(1 − 3(q̂×q̂ ′)2) − AnHn[(q̂q̂1)2 − (q̂×q̂1)2 − 3(q̂×q̂ ′)((q̂q̂1)(q̂1×q̂ ′) − (q̂×q̂1)(q̂1q̂

′))])

A(c)
11 = S

(0)
0 (CnC

′
n(q̂×q̂2)(q̂×q̂1) + (An − Bn)Gn + (An + Bn)Hn((q̂q̂1)2 − (q̂×q̂1)2))

+ 1
2
√

2
S

(1)
2 (AnGn(1 − 3(q̂q̂ ′)2) + AnHn[(q̂q̂1)2 − (q̂×q̂1)2 − 3q̂q̂ ′((q̂q̂1)(q̂1q̂

′) − (q̂×q̂1)(q̂1×q̂ ′))])

A(c)
12 = 0

hypergeometric function 1F1 in our case has positive integer
numbers in its first two arguments, so it can be expressed
through simple Gaussians and polynomials in q. As a result,

one obtains the fully analytical expressions for all pd invariant
amplitudes A1–A12 in terms of input Gaussian parameters of
NN helicity amplitudes and deuteron wave functions.
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