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Comparative study of hyperon-nucleon interactions in a quark model and in chiral effective field
theory by low-momentum equivalent interactions and G matrices

M. Kohno
Physics Division, Kyushu Dental College, Kitakyushu 803-8580, Japan

(Received 9 November 2009; published 14 January 2010)

Hyperon-nucleons interactions constructed by two frameworks, the Kyoto-Niigata SU6 quark model and the
chiral effective field theory, are compared by investigating equivalent interactions in a low-momentum space and,
in addition, by calculating hyperon single-particle potentials in the lowest-order Brueckner theory in symmetric
nuclear matter. Two descriptions are shown to give similar matrix elements in most channels after renormalizing
high momentum components. Although the range of the �N interaction is different in two potentials, the �

single-particle potential in nuclear matter is very similar. The �-nucleus and �-nucleus potentials are also found
to be similar. These predictions are to be confronted with forthcoming experimental data.
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I. INTRODUCTION

It is basically important to obtain a realistic potential
description of baryon-baryon interactions for understanding
the properties of baryons and baryonic systems. Baryon-
baryon interactions in the strangeness S = −1 and S = −2
sectors were not well regulated by experiments, except for
a fair amount of data for � hypernuclei. The construction
of these potentials has to rely on an underlying theoretical
framework, such as a one boson-exchange potential (OBEP)
picture, a constituent quark model, and a chiral effective
field theory (EFT). Predictions of these different potential
descriptions for hypernuclear phenomenon, for example, �

and � hypernuclear bound states, multihyperon systems,
and properties of neutron star matter, naturally vary. Future
experimental data will constrain the parameters to allow
more solid predictions. Before the experiment, however, it
is interesting and important to make a comparison between
presently available potential parametrizations to elucidate the
character of the underlying theoretical frameworks.

As is known in the nucleon-nucleon (NN ) interaction, the
direct comparison of the bare potential is not meaningful. We
have to consider some effective interactions and quantities
closely connected to experimental observables, such as single
particle (s.p.) potentials in the nuclear medium. In this context,
equivalent interactions in a low-momentum space [1] have
become a useful tool to figure out the properties of baryon-
baryon interactions without being obscured by uncertainties
in the description of the short-range part. We call an effective
interaction in a restricted space, which reproduces the same
eigenvalues or T matrices in the same space as those of
the original full-space interaction an equivalent interaction.

In Ref. [2], we reported the comparison of low-momentum
space equivalent interactions of the Nijmegen OBEP NSC97F
[3] and the Kyoto-Niigata SU6 quark-model potential fss2 [4]
for �N and �N interactions and showed the property of
the �N interaction of fss2. For the �N case, two models
provide very similar matrix elements in a low-momentum
space, although the short-range part is considerably different.
On the contrary, there is a difference in the �N interaction.

In this article we extend the study to consider the
potential by the chiral EFT [5,6] and make a comparison
with the quark-model potential fss2 in two ways; Namely
by investigating equivalent interactions in a low-momentum
space and hyperon s.p. potentials in nuclear matter in the
framework of the lowest-order Brueckner theory. The elim-
ination of the high-momentum components by considering
low-momentum space-equivalent interaction enables us to
concentrate on features of the YN interaction relevant to
the low-energy experimental hypernuclear observables.
To consider the implication of baryon-baryon interactions
to experimental quantities, it is not sufficient to study the
low-momentum interaction. Important correlations inside a
low-momentum space and many-body correlations in a high
momentum, including the components in a high-momentum
space, have to be incorporated to obtain physically meaningful
quantities. The standard way to achieve this in nuclear physics
is the Brueckner theory. It deals with singular short-range
parts of the baryon-baryon interaction and at the same time
incorporates important many-body effects through the Pauli
principle and the dispersion effects. Thus we calculate hyperon
s.p. potentials in symmetric nuclear matter in the Brueckner
theory. The feasible lowest-order calculation accounts for
semiquantitatively the structure dependence of the hyperon-
nucleon interactions in the nuclear medium. The s.p. potential
is one of most important quantities connected with baryon
properties in the nuclear medium, although they are not direct
observables. Therefore, the hyperon s.p. potentials in the
lowest order Brueckner theory (LOBT) in symmetric nuclear
matter provide a further insight into the properties of the bare
hyperon-nucleon interactions.

The fss2 potential is the most recent model by the Kyoto-
Niigata group [4,7], in which an effective gluonic interaction
and long-ranged one-boson exchanges between quarks are
considered in the resonating group method (RGM) for two
constituent-quark clusters. This fss2 [4] achieves comparable
accuracy in the NN sector to modern realistic NN potentials.
The extension of the potential to the strangeness S = −1 and
S = −2 sectors on the basis of the parameters fixed in the
NN sector was shown [4] to be less ambiguous than the
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OBEP parametrization. In fact, the prediction of the overall
repulsive nature of the �-nucleus potential before experiments
is supported by analyses [8–10] of the (π−,K+) � production
inclusive spectra [8,11]. The microscopic calculation of the
�-nucleus s.p. potential in finite nuclei [12] further demon-
strated that the fss2 potential actually reproduces the subtle
structure of the weak surface attraction and the repulsion inside
a nucleus, which is indicated by the analyses [13] of the shift
and width of �− atomic levels.

The chiral EFT potentials in the strangeness S = −1 and
S = −2 sector were recently developed by the Jülich group
[5,6], as the extension of the nucleon-nucleon case [14]. This
description uses pseudoscalar-meson exchanges and flavor
SU3 invariant contact terms, regularized by a cutoff mass of
around 600 MeV. At present the interaction is derived in the
leading order. Parameters of the contact terms, five in the
S = −1 sector and an additional one parameter in the S = −2
sector, are determined by fitting to available experimental data.
Because the description for the short-range part is considerably
different from that of fss2, it is worthwhile to compare the two
potentials.

In Sec. II, we briefly describe the basics of the equivalent
interaction theory in a model space. Results of numeri-
cal calculations in 1S0 and 3S1 channels are presented in
Sec. III for �N , �N , and �N interactions. We also present
the �, �, and � s.p. potentials in symmetric nuclear matter
at various Fermi momenta between kF = 0.75 and 1.45 fm−1.
Section IV summarizes the results of the present article.

II. EQUIVALENT INTERACTION

Suzuki and Lee [15,16] proposed the basic idea to construct
the energy-independent hermitian equivalent Hamiltonian in
a model space P . Their consideration is closely related to
the recent development of low-momentum interactions [1]. It
is elementary to observe that the eigenvalues of the original
Hamiltonian H do not change when H is transformed by
a similarity transformation, namely by a regular matrix X

and its inverse X−1 as H ⇒ H ′ ≡ X−1HX. It is easy to see
that if a decoupling condition QX−1HXP = 0 holds with
Q = 1 − P , PX−1HXP becomes the equivalent Hamiltonian
Heff in the model space P . Thus the task to find Heff is reduced
to determine X which satisfies QX−1HXP = 0. It is sufficient
first to consider a regular matrix X in the following form

X =
(

1, 0
ω, 1

)
, then X−1 =

(
1, 0

−ω,1

)
. (1)

The mapping matrix ω = QωP , which connects the P and Q

spaces, plays a central role in the construction of Heff . The
decoupling condition QX−1HXP = 0 now reads

QHP + QHQω − ωPHP − ωPHQω = 0. (2)

Because this is a nonlinear equation for ω, we have to use some
iteration method to solve it. Determining the mapping operator
ω, we obtain an energy-independent equivalent Hamiltonian in
the model space P as Heff = PHP + PHQωP . This equivalent
Hamiltonian is not Hermitian at this stage. If we utilize a
unitary matrix X̃ in the following Okubo form [17] constructed

from ω of Eq. (1) to transform the original H , we obtain the
Hermitian Hamiltonian.

X̃ =
(

1, −ω†

ω, 1

) (
1 + ω†ω, 0

0, 1 + ωω†

)−1/2

, (3)

Subtracting the kinetic part, we can define an equivalent
interaction in the model space. In the case of the equivalent in-
teraction in a two-body problem, for example, the elimination
of high-momentum components, the procedure is transparent
because many-body correlations do not appear.

The actual calculation of the mapping operator ω is carried
out by method 2 in Ref. [18]. The extension to the hyperon-
nucleon case, in which several baryon-channels couple each
other and there appears an antisymmetric spin-orbit coupling
absent in the NN interaction, is straightforward. However,
we encounter numerical troubles in some cases (i.e., in the
T = 1

2 �N 1S0 and 3S1 channels and the T = 0 �N 1S0

channel) when the threshold of another baryon channel is
located in the low-momentum space. The extended method
2 yields oscillatory behavior of the matrix elements of the
equivalent interaction as a function of the momentum that
varies as mesh points are altered. One tentative remedy is to
use rather coarse mesh points to obtain smooth k dependence.
However, this does not always work. It requires, in the future,
a new numerical method or a more radical reformulation such
as introducing a channel-dependent cutoff [19] to resolve
the problem. Because the aim of the present evaluation is
to compare characters of different baryon-baryon interactions
and not to do exact structure calculations on the basis of the
low-momentum equivalent interaction, we present the results
with the oscillatory behavior in case it appears.

G-matrix calculations for hyperons in symmetric nuclear
matter are carried out using the continuous prescription for
intermediate spectra. Hyperon s.p. potentials are determined
self-consistently. Details are reported in Ref. [20]. In calcu-
lating the hyperon-nucleon G matrices for chiral EFT, we use
the nucleon s.p. potential obtained by fss2 to focus on the
properties of the hyperon-nucleon interactions.

III. CALCULATED RESULTS

We calculate equivalent �N , �N , and �N matrix ele-
ments in the low-momentum space with the cutoff value of
� = 2.0 fm−1 for the 1S0 and 3S1 partial waves, starting
from the Kyoto-Niigata SU6 quark-model potential fss2 [4]
and the chiral EFT potential [5,6]. This momentum scale
should be regarded as a representative one for which the
potential dependence of the description of high-momentum
components has been shown [1] to disappear in the case of
the NN interaction. As explained in Ref. [2], we use the
energy-independent version of the quark-model potential [21]
that eliminates the energy dependence originating the RGM
treatment of the quark clusters. Note that the short-range
part of the baryon-baryon interaction in the quark model is
constructed by an RGM framework for nonrelativistic quark-
clusters, while that of the chiral EFT potential is influenced by
the contact terms determined by phenomenological fitting.
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FIG. 1. Diagonal matrix elements of the equivalent interaction in
the low-momentum space with � = 2 fm−1 for the �N 1S0 channel,
using the quark-model potential fss2 [4], the Nijmegen potential
NSC97 [3], and the chiral EFT potential (χEFT) [5] with a cutoff
mass of 600 MeV. Bare matrix elements are shown by thin curves.

A. �N interaction

Figures 1 and 2 show the low-momentum space diagonal
matrix elements of the equivalent �N interaction in the 1S0

and 3S1 channels, respectively, together with bare matrix
elements. In this case we include the equivalent interaction
of the Nijmegen potential NSC97f [3], in addition to the quark
model potential fss2 [4], and the chiral EFT potential [5] with
a cutoff mass of 600 MeV.

As reported already in Ref. [2], the NSC97f and the fss2
provide very similar matrix elements in the low-momentum
space, in spite of the large difference in the short-range part as
the bare matrix elements indicate. However, the k dependence
of the chiral EFT potential differs from the other two potentials,
though the overall attractive strength is of the same order. As
a result of the regularization with the cutoff mass of 600 MeV,
the high-momentum component of the chiral EFT potential is
small and the equivalent interaction is not so much different
from the bare interaction in the low-momentum space. The
weak k dependence suggests that the chiral EFT interaction
is more short-ranged than other two potentials in both the
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FIG. 2. Same as Fig. 1, but for the �N 3S1 channel.

1S0 and 3S1 channels. Note that in the �N case, a direct
isovector π exchange process is absent. In the 3S1 channel, a
considerable amount of the attractive contribution is expected
from the �N–�N coupling through the π exchange. In the
cases of fss2 and NSC97f, the attraction in a low-momentum
space comes from this coupling in a high-momentum space
with the tensor component of the π exchange. In contrast,
the small difference between bare and low-momentum space
matrix elements in the case of chiral EFT implies that the
coupling effect in a high-momentum space is incorporated in
the parameter of the contact terms.

Diagonal matrix elements of the effective interaction in
momentum space determine baryon s.p. potentials in nuclear
matter. Because properties of the s.p. potential can be more
directly inferred from experimental data, it is useful to present
the calculated � s.p. potential from the �N interaction. We
can consider the Hartree potential obtained by the equivalent
interaction in the low-momentum space. However, we prefer to
use the standard LOBT in which some important many-body
effects are incorporated. The calculated � s.p. potential from
the two bare potentials, fss2 and chiral EFT, are shown in
Fig. 3. The real part is very similar in its magnitude and
kF dependence. It is not easy to detect the difference of
the k dependence observed in the equivalent interactions in
the 1S0 and 3S1 channels. The imaginary part of the s.p.
potential indicates the strength of the �N–�N coupling.
At low momentum, the chiral EFT potential gives slightly
larger imaginary strength. The weaker imaginary potential
from the chiral EFT than that from fss2 at a large k region
is due to the weak �N–�N coupling inherent in the cutoff
mass of 600 MeV. As noted earlier, the coupling effect
at a high-momentum region may be renormalized into the
parameter of the contact terms in the chiral EFT potential and
thus the explicit �N–�N coupling at the large momentum
region is weak in this parametrization.

As a whole, three bare potentials, fss2, NSC97f, and chiral
EFT, for the �N interaction provide similar descriptions of
the � s.p. potential. In the literature [22–24] we find that
the energy of the hypertriton is well reproduced by three
potentials: namely E3

�H = −2.30, −2.487, and −2.34 MeV
for NSC97f, fss2, and chiral EFT, respectively, compared with
the empirical value of −2.354 ± 0.050 MeV. However, the
difference observed in Figs. 1 and 2 for the k dependence
of the equivalent interaction is probably detectable in some
experimental observables.

Finally, it is worth commenting on an unresolved problem
of the microscopic understanding of the small � s.p. spin-orbit
potential. Experimentally, it was established [25] that the spin-
orbit splitting of the � s.p. levels in nuclei is very small. It is
helpful to consider the Scheerbaum factor S� [26] calculated in
nuclear matter to relate the strength of the �-nucleus spin-orbit
potential to the two-body �N interaction. The �-nucleus s.p.
potential is well simulated by

U�s
� (r) = −π

2
S�

1

r

dρ(r)

dr
�σ , (4)

where ρ(r) is a nucleon density distribution. The necessary
value of S� to explain the experimental data is about
−3.2 MeV fm5. In contrast, three potentials considered here
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FIG. 3. Momentum dependence of � s.p. potential in symmetric nuclear matter at various Fermi momenta kF : (a) real part and (b) imaginary
part. The calculations are in the LOBT with the continuous prescription for the intermediate spectra. The left panel shows the result of the
quark-model potential fss2 [4] and the right panel those of the potential of the chiral EFT (χEFT) [5] with a cutoff mass of 600 MeV.

give S� = −15.4, −12.2, and + 4.8 MeV fm5 for NSC97f,
fss2, and chiral EFT, respectively, in normal symmetric nuclear
matter, namely kF = 1.35 fm−1. The quark model suggests
that an antisymmetric spin-orbit component of the two-body
spin-orbit interaction may be important to cancel the ordinary
spin-orbit interaction. However, this mechanism does not work
quantitatively in fss2. The other two potentials do not contain
the antisymmetric spin-orbit component. It is significant that
the chiral EFT potential predicts an opposite sign for the � s.p.
spin-orbit potential in the present leading order construction.

B. �N interaction

Figure 4 shows the low-momentum space diagonal matrix
elements of the equivalent �N interaction in the 1S0 and
3S1 channels for the isospin T = 1/2 and 3/2, respectively,
together with bare matrix elements for the quark-model
potential fss2 [4] and the chiral EFT potential with the cutoff
mass of 600 MeV.

It is notable that the equivalent interactions of the quark
model fss2 and the chiral EFT potential are very similar
except for the 3S1 T = 1/2 channel. It is known that the
�N 1S0 T = 3/2 state consists of the same (2, 2) flavor
SU3 symmetric component of the Elliott notation (λ,µ) as
the NN 1S0 state. Thus, this channel is expected to hold a
rather strong attraction. This character is manifested in the
Jπ = 0+ 4

�He bound state seen in the 4He(K−, π−) reactions
[27,28]. The chiral EFT potential also has this attraction,
although the k dependence is gentle as in the �N -equivalent
interactions.

The quark model picture is known from earlier
studies [7,29] to give a definite prediction that the �N
3S1 T = 3/2 state should be strongly repulsive due to the
quark Pauli effect, which has no explicit counterpart in
the OBEP parametrization. The repulsive character persists
in the low-momentum space. Owing to the spin and isospin
weight factors, this 3S1 T = 3/2 state dominantly contributes
to the � s.p. potential in the nuclear medium, as will be explic-
itly shown in the calculated � s.p. potential. Analyses [8–10]
of the (π−,K+) � formation inclusive spectra [8] supported
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FIG. 4. Diagonal matrix elements of the equivalent interaction in the low-momentum space with � = 2 fm−1 for the �N 1S0 and �N 3S1

channels, using fss2 [4] and chiral EFT (χEFT) [5]: (a) isospin T = 1/2 and (b) T = 3/2.
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FIG. 5. Same as Fig. 3, but for the � s.p. potential.

the overall repulsive nature of the �-nucleus potential. Note
that the actual calculation [12] in finite nuclei shows that we
obtain weak attractive potential at the surface region of nuclei
that is necessary to account for the energy shift of �− atomic
levels.

It is interesting to see that the matrix elements in the 3S1

T = 3/2 channel are similar for the fss2 and the chiral EFT.
While the repulsive character is dictated by the quark Pauli
effect in the fss2, the parameter of the contact term determined
phenomenologically is responsible for this repulsion in chiral
EFT.

Calculated � s.p. potentials in symmetric nuclear matter are
shown in Fig. 5. Two potentials predict very similar patterns
for the real part both in the k dependence and in the kF

dependence. The size of the imaginary strength is also seen to
be in resemblance except for the region beyond k ∼ 4 fm−1.

C. �N interaction

Figure 4 shows the low-momentum space equivalent �N

interaction in the 1S0 and 3S1 channels for the isospin T = 1/2
and 3/2, respectively, together with the bare matrix elements
up to k = 4 fm−1. In the T = 1 channel, two potentials have

similar repulsive characters both in the bare and equivalent
interactions.

The quark-model potential provides fair attraction in the
T = 0 1S0 channel. The largest part of this attraction comes
from the �N–��–�� coupling. This can be checked by
observing that, if we switch off the baryon-channel coupling,
the matrix elements are close to those of the bare interaction.
In such a situation, it is important to consider the effect of
the baryon-channel coupling in the P space to obtain more
physically meaningful information. The situation is the same
in chiral EFT, though the resulting attraction is very small in
magnitude. Note that in the chiral EFT theory an additional
parameter has to be introduced in the 1S0 channel when
extending to the S = −2 sector from the S = −1 sector.

The 3S1 T = 0 state is classified to the pure (11)a state
in the flavor SU3 symmetry and no baryon-channel coupling
appears in this state. The quark model [4] predicts that the
bare �N interaction is already weak. Figure 6(a) shows that
the low-momentum equivalent �N interaction in this partial
wave becomes slightly attractive.

The quark-model potential fss2 [4] predicts that the �N

interactions in 3S1 channels are weak. For the estimation of the
�-nucleus s.p. potential in the nuclear medium, we expect an
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FIG. 6. Same as Fig. 4, but for the �N 1S0 and �N 3S1 channels: (a) isospin T = 0 and (b) isospin T = 1. The chiral EFT (χEFT) potential
is from Ref. [6].
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FIG. 7. Same as Fig. 3, but for the � s.p. potential. The chiral EFT (χEFT) potential is from Ref. [6].

attractive contribution from the 1S0 T = 0 state, but a repulsive
contribution from the 1S0 T = 1 state. Higher partial waves
can influence the sign of the �-nucleus s.p. potential, although
it is unlikely that they bring about sizable net attractive or
repulsive contributions. The calculated � s.p. potentials in
symmetric nuclear matter in the LOBT are shown in Fig. 7.
The potential from the fss2 is seen to be weak. The tendency
that the attractive strength is largest at k = 3 ∼ 4 is owing to
the net contribution of �N p waves.

Although the potential is attractive in infinite matter, the
calculation in finite nuclei [12] shows that the � s.p. potential
is weakly attractive at the nuclear surface and oscillates
around zero inside the nucleus. Judging from Fig. 7, a more
repulsive � s.p. potential in finite nuclei is expected from
chiral EFT. The presently available (K−,K+) spectrum [30]
at the �− production threshold region is shown in Ref. [31]
to be consistent with the weakly repulsive � potential. The
prediction is soon to be confronted with experimental data
with better accuracy obtained from Japan Proton Accelerator
Research Complex (J-PARC) [32].

IV. SUMMARY

We compare two descriptions of the hyperon-nucleon inter-
actions, the Kyoto-Niigata quark-model potential fss2 [4] and
the chiral EFT potential [5,6], by calculating low-momentum
space equivalent interactions and hyperon s.p. potentials in
the LOBT in symmetric nuclear matter obtained from these
bare potentials. The purpose is to elucidate the similarity and
the difference in the �N , �N , and �N interactions between
the quark model and the chiral EFT theory. The former model is
based on a resonating group method for two constituent-quark
clusters with an effective gluonic interaction and long-ranged
one-boson exchanges between quarks. The energy dependence
inherent in the RGM treatment is eliminated by the method in
Ref. [21]. The latter parametrization uses pseudoscalar-meson
exchanges and flavor SU3 invariant contact terms, regularized
by a cutoff mass of around 600 MeV. Parameters of the
contact terms, five in the S = −1 sector and an additional
one parameter in the S = −2 sector, are determined by fitting
to available experimental data. Because of the difference in

the description for the short-range part, it is worthwhile to
compare the two potentials.

In the previous article [2], we showed that the �N -
equivalent interaction in the low-momentum space is almost
identical for the quark model fss2 and the Nijmegen OBEP
model NSC97f [3]. In this article, we find that the leading
order chiral EFT interaction gives matrix elements of the
equivalent interaction, which have different k dependence from
fss2. This difference is not visible in the � s.p. potential in
the nuclear medium, although it will probably be detectable
in some observables in future experiments. Note that there
is an unresolved problem of describing very small spin-orbit
splitting of the � hyperon in nuclei. G-matrix calculations,
in which the effects of the �N–�N coupling in the nuclear
medium are taken care of, show that fss2 does not provide a
small �-nucleus spin-orbit potential necessary to account for
the empirical data, in spite of the tendency of the cancelation
of the ordinary and antisymmetric spin-orbit components.
However, the chiral EFT potential, having no antisymmetric
spin-orbit component, predicts a small but opposite sign for
the spin-orbit potential. It will be interesting if the effects
of the next leading order corrections are revealed in future
analysis.

As for the �N interactions, the quark model fss2 and the
chiral EFT potential mostly give similar matrix elements of the
equivalent interactions in a low-momentum space, except for
the 3S1 T = 1/2 state. It is interesting to see that the repulsion
in the 3S1 T = 3/2 state predicted by the quark model as
a result of the quark Pauli effect is reproduced as well in
the chiral EFT parametrization. This similarity reflects in that
calculated � s.p. potentials in symmetric nuclear matter also
resemble in their magnitude, momentum dependence, and kF

dependence. The prediction of the repulsive potential for the
� hyperon embedded in the nuclear medium is not common
among several baryon-baryon interaction parametrizations.
Therefore, checks by forthcoming experiments, for example,
in the J-PARC project [32], will be very important for
understanding the �N interaction.

The resemblance of the two interactions also holds in
the �N interaction. The fss2 interaction provides weakly
attractive s.p. potentials in symmetric nuclear matter. The
chiral EFT interaction tends to give slightly more repulsive s.p.
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potentials as a result of the lack of attraction in the 1S0 T = 0
channel. The microscopic calculation [12] of the �-nucleus
potential in finite nuclei shows that the fss2 predicts an almost
zero potential. At the surface region, the potential is weakly
attractive and inside the nucleus the potential fluctuate around
zero. Such a weak �-nucleus potential is shown in Ref. [31] to
be able to account for the existing (K−,K+) spectrum at the
threshold region [30]. These experimental data are based on the
small number of counts and thus may not be accurate enough
to conclude the strength of the �-nucleus potential. We expect

new �-production spectrum data with better accuracy from
the J-PARC experiments [32], which will provide important
information on the baryon-baryon interaction in the S = −2
sector.
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