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Nuclear matter and finite nuclei in an effective chiral model
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We systematically investigate the vacuum stability and nuclear properties in the effective chiral model with
higher-order terms in σ . We evaluate the model parameters by considering the saturation properties of nuclear
matter as well as the normal vacuum to be globally stable at zero and finite baryon densities. We find parameter
sets giving moderate equations of state and apply these models to finite nuclei.

DOI: 10.1103/PhysRevC.81.014002 PACS number(s): 21.65.−f, 13.75.Cs, 21.30.Fe, 24.10.Cn

I. INTRODUCTION

Relativistic mean field (RMF) theory is a powerful approach
to describing the properties of infinite nuclear matter and finite
nuclei simultaneously [1–20]. Although the RMF theory is
very successful around the saturation density and in finite
nuclei within the range of the model parameters, there are
uncertainties regarding the stiffness and the high-density
behavior of the equation of state (EOS). Stiffness of EOS
can be experimentally probed in heavy-ion collisions [21–25]
and giant monopole resonances [26,27] and is crucial in
predicting compact astrophysical phenomena. Therefore, it
is very important to develop relativistic models with con-
straints placed on this uncertainty by some symmetries and
to investigate bulk properties of nuclear systems. One of
the most important symmetries in hadron physics is chiral
symmetry. Chiral symmetry is a fundamental symmetry in
quantum chromodynamics (QCD) with massless quarks, and
its spontaneous breaking generates hadron masses through the
chiral condensate 〈qq̄〉 [28–30], which is considered to be
partially restored in dense matter. Thus, theories of quarks and
hadrons should respect this essential symmetry in examining
dense hadronic matter, and several attempts have been made by
including chiral symmetry in relativistic nuclear many-body
theories [6–20].

The first RMF model was proposed to deal with the
properties of nuclear matter and finite nuclei [1]. In this
approach, the meson fields (σ and ω) are treated as the
classical limit termed the mean field approximation. The
RMF model is extended by introducing the isovector-vector
meson ρ and the nonlinear self-coupling terms of mesons
to obtain better descriptions of nuclear matter and finite
nuclei [2–5]. The significant point of this extension is that
its nonlinear terms simulate three-body forces, which is
essential to reproduce nuclear matter saturation properties in
nonrelativistic calculations. There are several problems with
regarding these RMF models as finite-density hadronic field
theories. First, these models do not possess chiral symmetry.
Although the in-medium nucleon mass is shifted by the σ field
and the scalar σ field may be related to the chiral condensate,
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the self-energy of σ is not chirally invariant. Second, the
vacuum is not stable with respect to the variation of σ in
many RMF models. We do not have practical problems in
describing nuclear matter and finite nuclei in the mean field
treatment where the fluctuation of meson fields is omitted, but
the vacuum instability is conceptually problematic.

The effective chiral model is analogous to the RMF model.
We start from the φ4 theory, in which spontaneous symmetry
breaking is included, and vector mesons are introduced to
describe the repulsive potential at high density. When we
naı̈vely introduce the vector meson field into the φ4 theory,
however, it is known that the normal vacuum jumps to a
chiral restored abnormal vacuum (Lee-Wick vacuum) below
the saturation density [6,31]; this problem is referred to as
the chiral collapse problem [32]. One of the prescriptions for
avoiding this problem is to incorporate a logarithmic term of
σ [7–15] in the chiral potential (energy density as a function
of σ at zero baryon density). The logarithmic σ potential
is first introduced to simulate the scale anomaly in QCD,
which is represented by the glueball dilaton field (χ ), which
couples with the logarithm of σ as ∝ −χ4 log σ [7–12]. It
is also possible to derive it from the strong coupling limit
(SCL) of lattice QCD [13–15,33,34]. The logarithmic potential
term, ∝ − log σ , generally prevents the normal vacuum from
collapsing and hence it has no instabilities. Also, this model
can describe even-even finite nuclei and infinite nuclear matter
properties well with inclusion of the vector mesons, their linear
couplings to nucleons, and a self-interaction term, (ωµωµ)2

[12–15]. In Ref. [12], for example, Schramm applied a chiral
SU(3) RMF model with a logarithmic σ potential and the
glueball interaction to nuclei over the whole known range
assuming axial symmetry, and it was demonstrated that binding
energies of spherical and deformed nuclei are well explained,
with an accuracy of 0.1%–1%. Although these models have
had phenomenological successes and are somewhat based on
QCD, one may doubt the validity of the logarithmic potential,
as it is divergent when chiral symmetry is restored, σ → 0.

Another way to avoid chiral collapse is to introduce a
dynamical generation of the isoscalar-vector meson mass
through the coupling between scalar and vector mesons
[6,16]. Because the vector meson becomes light when chiral
symmetry is partially restored, repulsive effects from the vector
meson become strong and chiral collapse can be avoided.
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One of the problems with this theoretical treatment is the
unrealistically high incompressibility value, K � 700 MeV.
To obtain a moderate value of incompressibility, Sahu et al.
introduced the higher-order terms of scalar meson, σ 6, and σ 8

[17–19]. In this way, the empirical values of saturation density,
binding energy, and incompressibility in symmetric nuclear
matter can be reproduced. The advantage of higher-order
terms in the chiral potential is that there is freedom to adopt
a weaker repulsive vector force in the nuclear interaction,
and therefore, there is a choice of desirable incompressibility
values. In earlier studies [17–20], the aforementioned model
with higher-order terms in scalar-field interactions was used
extensively in dense matter as well as hot nuclear matter.
In all these works, the vacuum stability at large σ values
was not critically examined for all sets of parameters. It has
recently been pointed out [13,14] that one of the parameters
in a previous study [18] is unstable at large σ . Although
several sets of parameters of this model were tabulated, few
of them overcome the instability at large σ . Therefore, we are
motivated to revisit this model and put stringent constraints on
parameters for stability with respect to the σ field.

In this paper, we systematically investigate the vacuum
stability and nuclear properties in the effective SU(2) chiral
model having higher-order terms in the chiral potential Vσ . The
condition of vacuum stability is elucidated in the parameter
plane in the model. We calculate the EOS for symmetric
nuclear matter with a moderate choice of incompressibility,
between 300 and 400 MeV, and effective masses around
0.85 of the nucleon mass, under the constraint of vacuum
stability. Parameters are chosen accordingly by constraining
these conditions at nuclear saturation points. We also apply
our model to finite spherical nuclei and perform a naive
dimensional analysis (NDA) to examine the naturalness of
the effective Lagrangian.

Throughout the paper, we work in the chiral limit (mπ = 0)
for simplicity. As long as we do not explicitly include π -meson
effects in the mean field approximation, the results with finite
mπ in nuclear matter and finite nuclei are found to be very
similar to those in the chiral limit. We ignore these small
differences, as the main aim of this paper is to elucidate the
vacuum stability condition in effective chiral models.

The paper is organized as follows: In Sec. II, we present a
brief formalism of the effective chiral model. We investigate
the properties of nuclear matter and finite nuclei in Sec. III.
Basically, we determine the suitable model parameters to
explain the saturation properties of nuclear matter as well as
the vacuum stability. Then we determine the EOS and the
properties of finite nuclei. We also examine the naturalness of
the effective Lagrangian using naive dimensional analysis in
Sec. III. We summarize our results in Sec. IV.

II. THE FORMALISM OF THE SU(2) EFFECTIVE
CHIRAL MODEL

The effective chiral Lagrangian, which includes a dynam-
ically generated mass of the isoscalar-vector field ωµ that
couples to the conserved baryonic current jµ = ψ̄γµψ , can

be written as [17,18]

L = ψ̄[i∂/ − gσ (σ + iγ5τ · π) − gωω/ − gρρ/ · τ ]ψ

+ 1
2 (∂µπ · ∂µπ + ∂µσ∂µσ ) − Vσ (σ,π ) − 1

4FµνFµν

+ 1
2g2

σωx2ωµωµ − 1
4 Gµν · Gµν + 1

2m2
ρρµ · ρµ. (1)

We introduce a chiral-symmetric-type interaction up to eighth
order of the meson field, which reads

Vσ = C4f
4
π

4

(
x2

f 2
π

− 1

)2

+ m2
π

2
x2 − m2

πfπσ

+ C6f
4
π

6

(
x2

f 2
π

− 1

)3

+ C8f
4
π

8

(
x2

f 2
π

− 1

)4

, (2)

where x2 = σ 2 + π2; fπ is the pion decay constant; Fµν ≡
∂µων − ∂νωµ and Gµν ≡ ∂µρν − ∂νρµ + gρρρµ × ρν are the
field tensors of isoscalar- and isovector-vector mesons (ω and
ρ mesons); and ψ , π , and σ denote the nucleon isospin doublet,
isovector-pseudoscalar pion, and scalar fields, respectively.
Coupling constants of the nucleon with the scalar and vector
fields are introduced as gσ , gω, and gρ , respectively. We work
in natural units, where h̄ = c = kB = 1.

The interaction terms of the nucleon and vector meson with
the scalar and pseudoscalar mesons generate the masses of the
nucleon and vector meson through the spontaneous breaking
of chiral symmetry. The masses of the nucleon and vector
meson in vacuum are given by

MN = gσfπ , mω = gσωfπ , (3)

where the vacuum expectation value of the σ field is replaced
with fπ . The coefficient C4 is related to the vacuum mass of
σ as

C4 = m2
σ − m2

π

2f 2
π

. (4)

The constant parameters C6 and C8 are included in the
higher-order self-interaction of the scalar field to describe
the desirable values of nuclear matter properties at saturation
point. In this work, we consider the chiral limit, where the
pion mass mπ is 0. In the mean field treatment we ignore the
explicit role of π mesons.

By adopting the mean field approximation, the equations
of motion of fields are obtained from the chiral Lagrangian.
This approach has been used extensively to evaluate the EOS
[21–25] in many of the theoretical models for high-density
matter. Using the mean field ansatz in uniform matter, the
equations of motion for the vector fields (ω and ρ mesons) are
solved as

ω = g2
ωρ2

B

g2
σωx2

= g2
ωρ2

B

m2
ωY 2

, R ≡ ρ3
0 = gρ

m2
ρ

(ρp − ρn), (5)

where Y = σ/fπ is the reduction ratio of the chiral condensate
from its vacuum value. Proton and neutron densities (ρp and
ρn) are given as ρα = γ [k(α)

F ]3/6π2, where k
(α)
F is the Fermi

momentum of the proton (α = p) or the neutron (α = n), and
γ is the spin degeneracy factor, γ = 2. The baryon density is
the sum of the proton and neutron densities, ρB = ρp + ρn.

The EOS is calculated from the diagonal components of
the conserved total energy-momentum tensor corresponding
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to the Lagrangian together with the mean field equation of
motion for the fermion field and a mean field approximation
for the meson fields. The total energy density (ε) and pressure
(P ) of the uniform many-nucleon system are given by

ε = εN (M∗
N
) + Vσ + g2

ωρ2
B

2m2
ωY 2

+ 1

2
m2

ρR
2, (6)

P = PN (M∗
N
) − Vσ + g2

ωρ2
B

2m2
ωY 2

+ 1

2
m2

ρR
2, (7)

εN =
∑

α=p,n

γ

2π2

∫ k
(α)
F

0
k2dk

√
k2 + M2

N
, (8)

PN =
∑

α

γ

6π2

∫ k
(α)
F

0

k4dk√
k2 + M2

N

, (9)

where M
N

≡ YMN = gσσ is the effective mass of the nucleon.
The free (kinetic) nucleon energy density and pressure, εN and
PN , depend on the effective mass M∗

N
, as well as on the nuclear

density ρB .
The equilibrium value of the scalar field (σ ) is obtained

from the equation of motion, and it is equivalent to the
minimum-energy-density condition, ∂ε/∂σ = 0. The equation
of motion in terms of Y is given as

C4(1 − Y 2) − C6(1 − Y 2)2 + C8(1 − Y 2)3

+ g2
ωρ2

B

m2
ωf 4

π Y 4
− gσρS

f 3
π Y

= 0, (10)

where ρS denotes the scalar density, defined as

ρS =
∑

α=p,n

γ

(2π )3

∫ k
(α)
F

0

M∗
Nd3k√

k2 + M∗
N

2
. (11)

In previous studies [17–20], the ωN coupling and σω

coupling were assumed to be the same, gω = gσω, and the
pion decay constant fπ was not introduced explicitly. The
energy density is represented by cσ (=g2

σ /m2
σ ), cω = g2

ω/m2
ω,

and B and C, which are related to the σ 6 and σ 8 coefficients,
respectively. In these studies, the implicitly given fπ value is
not necessarily the same as the observed one, fπ � 93 MeV.
However, it is possible to map those parameters into the
coefficients in the present work by comparing, for example, the
energy density, if we do not require the condition gω = gσω.
The relationships of their parameters to the present parameters
are given by

C4 = M2
N

2cσf 4
π

, C6 = B

2f 4
π cσ cω

, C8 = C

2f 4
π cσ c2

ωM2
N

,

(12)

and gω = √
cωmω. In the discussion section, we also examine

the stability of their Lagrangians.

III. RESULTS AND DISCUSSION

In this section we determine the parameter sets at nuclear
matter saturation density. We select the parameters by exam-
ining the stability with respect to the σ field. We then use

stable parameter sets to find the properties of finite spherical
nuclei and examine the naturalness of the effective Lagrangian
by performing a naive dimensional analysis. Here we use
constants MN = 938 MeV, fπ = 93 MeV, mω = 783 MeV,
mρ = 770 MeV, and gσ = MN/fπ .

A. Fixing parameters in symmetric nuclear matter

In the effective chiral model, the chiral symmetry relates
the interaction parameters and hadron masses, and reduces
the number of parameters, as shown in Eq. (3). In the
present treatment, we have five parameters, gω, gρ , C4, C6,
and C8. Here we determine three parameters: the nucleon
coupling to the vector field, gω, and the coefficients in the
scalar potential terms, C4 and C6, in symmetric nuclear
matter. These parameters are obtained as functions of C8 and
the nucleon effective (Landau) mass M∗

N (ρ0) by fitting the
empirical saturation point (ρ0, E0/A), where E0/A is the
binding energy per nucleon at saturation density, ρB = ρ0.
The saturation point plays a decisive role in finite nuclear
binding energies and radii, thus we adjust them to reproduce
the finite nuclear property. Moreover, the incompressibility K

and the nucleon effective mass M∗
N (ρ0) are the keys in the

EOS around the saturation point, as well as at high densities.
The nuclear incompressibility is somewhat uncertain at the
saturation point. The desirable values of effective mass and
nuclear matter incompressibility are chosen in accordance with
recent heavy-ion collision data [21–25]. In our calculation,
we have examined several parameter sets corresponding
to each incompressibility and effective mass in the ranges
200–400 MeV and (0.8–0.9)MN [35], respectively, to observe
the sensitivity of EOS in the high-density region.

First, we introduce and examine the vacuum stability of
the chiral potential as the constraint on the parameters. The
vacuum stability condition of the present effective chiral
models can be examined as follows. The vacuum energy
density is given as Vσ in Eq. (2), which is rewritten as

Vσ

f 4
π

= X2

2
f (X), f (X) = C8

4
X2 + C6

3
X + C4

2
, (13)

where X = (Y 2 − 1). In stable cases, Vσ must always be
positive in the range X > −1 except for the vacuum X = 0
(i.e., σ = fπ ), at which Vσ = 0. Provided that C8 � 0, the
stability is ensured when one of the following conditions
is satisfied: (1) the discriminant of f (X), D = (C6/3)2 −
4(C8/4)(C4/2), is negative; (2) the discriminant of f (X)
is positive, but the solutions of f (X) = 0 are in the range
X � −1; or (3) in the case of C8 = 0, C6 � 0 and f (−1) > 0.

By fitting the saturation point, we can fix C4, C6, and gω as
functions of C8 � 0 and the effective mass at normal density,
Y (ρ0) = M∗

N/MN � 0.8–0.9. First, we give Y (ρ0), then gω is
uniquely determined. From Eqs. (6) and (7), we find that the
enthalpy density is free from Vσ ,

ε + P = g2
ωρ2

B

m2
ωY 2

+ m2
ρR

2 + εN (M∗
N ) + PN (M∗

N ) (14)

= ρB[MN − (B/A)] (ρB = ρ0, ρp = ρn). (15)
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FIG. 1. (Color online) gω as a function of Y (ρ0) ≡ M∗
N (ρ0)/MN

(solid line), and C6 (dashed line) and C8 (dotted line) values on the
vacuum stability boundary.

In Eq. (15), we have used the fact that P = 0 at the saturation
density. These equations depend on only one parameter, gω,
and we can fix it from the saturation property. In Fig. 1, we
show the gω value as a function of Y (ρ0) = M∗

N (ρ0)/MN .
The energy gain from the σ meson is small for larger values
of Y (ρ0), so the repulsive potential is also chosen to be
small to reproduce the binding energy B/A at ρ0. Thus gω

is a decreasing function of Y (ρ0). Next, we give the value
of C8 � 0. For a given set of [Y (ρ0), C8], we can solve
the condition, ε(ρ0) = ρ0[MN − (B/A)] and ∂ε/∂σ = 0 at
ρB = ρ0 [Eq. (10)], with respect to C4 and C6.

From these coefficients, we examine the vacuum stability
condition. In Fig. 1, we show C6 and C8 values on the vacuum
stability boundary as a function of Y (ρ0). These values are
equivalent to the minimum C6 and C8 values for each Y (ρ0).
At Y (ρ0) = 0.781 = Yφ4 , φ4 theory is realized, that is, C8 =
C6 = 0. For a larger value of Y at ρB = ρ0, repulsion from ω

is chosen to be smaller as shown in Fig. 1, and larger repulsion
in Vσ is required. This repulsion can be generated by negative
C6 or positive C8, as (Y 2 − 1)3 and (Y 2 − 1)4 are negative
and positive for Y < 1, respectively. Thus for small values of
C8, negative C6 values are required at Y (ρ0) > Yφ4 , and to
maintain the vacuum stability, there exists the minimum value
of C8.

In Fig. 2, we show the vacuum stability region (shaded area)
in the [Y (ρ0), C8] plane. We have examined the stability of the
parameter sets proposed in previous studies [18–20]. We show
these parameter sets as open symbols in Fig. 2 and in Table I.
Unfortunately, most of the parameter sets that give medium
incompressibility (200 MeV < K < 400 MeV) are unstable
in vacuum against the variation of σ , denoted “U” in the last
column in Table I. Only one parameter set (SJPP-V) fulfills
the vacuum stability condition and gives a medium K value.

Parameter sets that we propose and examine in this paper,
STO-i (i = 1, 2, . . . , 5), are tabulated in Table I and shown
by filled circles in Fig. 2. We have chosen two values
of M∗

N/MN (0.835 and 0.85) and three values of C8 (20,
40, and 60). The combination (M∗

N/MN,C8) = (0.85, 20)
is close to the stability boundary, and we do not adopt it.
All of these parameters give stable chiral potentials, and
the incompressibility values are in the range 200 MeV <

K � 400 MeV. We adopt the saturation point (ρ0, E0/A) =
[0.14 fm−3, −(14.5–14.6) MeV], which is found to explain the
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FIG. 2. (Color online) Vacuum stability region (shaded area) and
the incompressibility K in the [Y (ρ0) = M∗

N (ρ0)/MN, C8] plane.
Results of several other models [18–20] (open symbols), with φ4

theory (filled square), and with the present model (filled circles).

binding energies of heavy nuclei reasonably well, as discussed
in the next subsection.

In Fig. 3, we show the chiral potential Vσ , in STO-5 as an
example. We also show the chiral potential in the φ4 theory,
TM1 [5], SCL [13,14], and SO [18], for comparison. The chiral
potential in STO-5 behaves similarly to that in SO in the region
σ < fπ . At larger σ values, unstable parameters give negative
chiral potentials in the region σ > fπ , as shown in the SO case.
In Fig. 4, we show the EOS in STO-5 in comparison with other
EOS. We find that the EOS in STO-5 is reasonably soft, and
comparable to those in TM1 and SCL, which explains the bulk
properties of finite nuclei.

B. Finite nuclei

In describing finite nuclei, it is numerically preferable to
represent the Lagrangian in the shifted field ϕ ≡ fπ − σ and
to separate the σ mass term from the chiral potential Vσ , as the

 0
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m
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FIG. 3. (Color online) The chiral potential as a function of σ in the
φ4 theory (dotted line) and the SCL (dashed line) [13,14], SO (open
square) [18], and STO-5 (solid line) models. Results of a nonchiral
model, TM1 (filled circles) [5], are also shown for comparison.
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TABLE I. Effective chiral model parameter sets. The stability of the model is also reported: S, the vacuum is stable against the variation of
σ ; U, the vacuum is unstable at large σ .

M∗
N/MN gω C4 C6 C8 K (MeV) mσ (MeV) gρ Stability

φ4 0.781 6.781 37.16 0 0 695.4 801.7 – S
STO-1 0.850 6.001 35.32 −39.24 40.00 318.5 781.7 3.597 S
STO-2 0.835 6.331 35.37 −25.47 20.00 376.0 782.2 3.467 S
STO-3 0.835 6.328 36.18 −16.77 40.00 389.5 791.1 3.467 S
STO-4 0.835 6.328 37.10 −7.682 60.00 402.3 801.1 3.467 S
STO-5 0.850 6.001 36.09 −30.91 60.00 327.2 790.1 3.467 S
SO 0.85 5.610 33.60 −74.380 −2.200 335.300 762.3 U
SJPP2003-I 0.85 5.598 25.84 −159.000 −206.200 210.000 668.6 U
SJPP2003-II 0.85 5.598 33.73 −73.210 1.405 300.000 763.8 U
SJPP2003-III 0.85 5.598 42.72 24.260 237.400 380.000 859.7 S
SJPP2003-IV 0.80 6.532 26.94 −92.050 −149.400 300.000 682.6 U
SJPP2003-V 0.90 4.047 98.28 906.200 4270.000 300.000 1304.0 S
JM2009-1 0.75 7.106 38.71 17.030 4.998 1142.000 818.3 4.39 S
JM2009-2 0.76 7.016 37.87 9.958 0.085 1010.000 809.3 4.40 S
JM2009-3 0.77 6.908 37.63 6.021 0.713 897.200 806.8 4.41 S
JM2009-4 0.78 6.796 38.13 7.567 11.750 815.000 812.2 4.42 S
JM2009-5 0.79 6.669 37.10 −3.428 2.817 710.400 801.1 4.43 S
JM2009-6 0.80 6.531 36.80 −9.658 3.751 630.700 797.8 4.44 S
JM2009-7 0.81 6.380 36.20 −19.340 0.482 555.500 791.4 4.45 U
JM2009-8 0.82 6.212 35.75 −29.030 0.179 490.800 786.4 4.46 U
JM2009-9 0.83 6.048 35.37 −38.570 1.966 439.300 782.2 4.47 U
JM2009-10 0.84 5.830 34.71 −53.690 3.313 383.800 774.8 4.48 U
JM2009-11 0.85 5.605 33.81 −72.440 2.481 335.800 764.8 4.49 U
JM2009-12 0.86 5.358 32.61 −96.850 0.383 292.200 751.1 4.49 U
JM2009-13 0.87 5.09 31.26 −125.400 6.621 254.400 735.4 4.50 U
JM2009-14 0.88 4.780 29.11 −166.800 6.942 217.900 709.7 4.51 U
JM2009-15 0.89 4.435 26.05 −224.50 5.910 183.500 671.2 4.52 U
JM2009-16 0.90 4.049 28.83 −191.300 404.300 173.400 706.2 4.53 S

boundary condition is given as ϕ → 0 at r → ∞. In addition,
it is necessary to include the photon field, which represents
the Coulomb potential. Here we take the static and mean field
approximation for boson fields, then the RMF Lagrangian can
be written as follows:

LRMF
χ = ψ[i
 ∂ − M∗

N (ϕ) − γ 0Uv(ω,R,A)]ψ − 1
2 (�ϕ)2

− 1
2m2

σ ϕ2 − Vϕ(ϕ) + 1
2 (�ω)2 + 1

2M2
ω(ϕ)ω2

+ 1
2 (�R)2 + 1

2m2
ρR

2 + 1
2 (�A)2 , (16)
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FIG. 4. (Color online) Energy per nucleon as a function of baryon
density. For definition of lines and symbols, see the caption to Fig. 3.

where

M∗
N (ϕ) = MN − gσϕ, M2

ω(ϕ) = g2
σω (fπ − ϕ) 2, (17)

Uv(ω,R,A) = gωω + gρτ3R + e
1 + τ3

2
A, (18)

Vϕ ≡ Vσ − 1

2
m2

σ ϕ2. (19)

The field equations of motion derived from this Lagrangian
read

[−iα · � + βM∗ + Uv]ψ = εiψ, (20)(−� + m2
σ

)
ϕ = gσρS − dVϕ

dϕ
− g2

σω (fπ−ϕ) ω2,

(21)(−� + m2
ω

)
ω = gωρB+g2

σωϕ (2fπ − ϕ) ω, (22)(−� + m2
ρ

)
R = gρρτ , (23)

−�A = eρp
B
, (24)

where ρS = ρ
p
S + ρn

S
, ρB = ρ

p
B + ρn

B
, and ρτ = ρ

p
B − ρn

B
de-

note the scalar, baryon, and isospin densities of nucleons,
respectively. The total energy is given by the integral of the
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energy density, given as

E =
∑
iκα

nocc
iκαεiκα

− 1

2

∫ {−gσϕρS + gωωρB + gρRρτ + e2Aρp
B

}
dr

+
∫ {

Vϕ − 1

2
ϕ

dVϕ

dϕ
− g2

σω

2
ϕ (fπ − ϕ) ω2

}
dr, (25)

where we use Eqs. (20)–(24) to calculate second-order deriva-
tives of meson fields. Nucleon single-particle states are spec-
ified by the radial quantum number i, isospin α(=p, n), and
angular momentum quantum number, κ = l [κ = −(l + 1)],
for j = l − 1

2 (j = l + 1
2 ). The number of occupied nucleons is

represented by nocc
iκα , which is equal to 2|κ| = 2j + 1 for filled

single-particle states. We solve the self-consistent coupled
equations (20)–(24) by iteration until the convergence of total
energy is achieved. In this work, we assume that the nuclei
under consideration are spherical, then the nucleon wave
functions are expanded in spherical harmonic basis as follows:

ψαiκm =
(

i
[
Gα

iκ

/
r
]
�κm

− [
Fα

iκ

/
r
]
�−κm

)
ζα, (26)

ρα
B

=
∑
iκ

(
nocc

iκα

4πr2

) [∣∣Gα
iκ (r)

∣∣2 + ∣∣Fα
iκ (r)

∣∣2]
, (27)

ρα
S

=
∑
iκ

(
nocc

iκα

4πr2

) [∣∣Gα
iκ (r)

∣∣2 − ∣∣Fα
iκ (r)

∣∣2]
, (28)

where ζα represents the isospin wave function, α = p, n.
In comparing the calculated results in mean field models

with the experimental binding energies and charge radii, we
have to take account of several corrections. In this work, we
consider the center-of-mass (CM) kinetic energy correction on
the total energy, and the CM and nucleon size correction on
the nuclear charge root-mean-square (rms) radius, in the same
way as adopted in Ref. [5]. The CM kinetic energy is assumed
to be

EZPE =
〈
P2

CM

〉
2AMN

� 3

4
h̄ω = 3

4
41A−1/3, (29)

where PCM = ∑
i pi is the CM momentum. This correction

gives an exact result when the state is represented by a
harmonic-oscillator wave function, and we assume that it also
applies to RMF wave functions. The CM correction on the
proton rms radius is written as

δ
〈
r2

p

〉 = −2〈RCM · Rp〉 + 〈
R2

CM

〉

�

⎧⎪⎪⎨
⎪⎪⎩

− 3h̄

2AMNω
(for heavy nuclei),

−2
〈
r2

p

〉
A

+
〈
r2

m

〉
A

(for light nuclei),
(30)

where Rp = ∑
i∈p ri/Z is the proton CM position, and 〈r2

p 〉
and 〈r2

m〉 represent the proton and matter mean square radii,
respectively. We assume again that harmonic-oscillator results
apply to heavy nuclei. For light nuclei, we evaluate the
correction in RMF wave functions, and we consider only the

direct-term contributions. The charge rms radius is obtained
by including the finite-size effects of protons and neutrons,〈

r2
ch

〉 = 〈
r2
p

〉 + 〈
r2

size

〉
p

− N

Z

〈
r2

size

〉
n
, (31)

where 〈r2
size〉α denotes the size of the proton or neutron and

is equal to (0.862 fm)2 or (0.336 fm)2, respectively. We
evaluate the binding energies and charge rms radii with these
corrections, and the pairing energies for open-shell nuclei are
neglected.

In describing finite nuclei, the isospin-dependent interac-
tion is an important ingredient. In uniform nuclear matter, we
can obtain the symmetric energy coefficient asym by expanding
the energy density around the symmetric nuclear matter,

asym = g2
ρk

3
F

3π2m2
ρ

+ k2
F

6
√

k2
F + M2

N

, (32)

where kF = (6π2ρB/γ )1/3(ρB = ρp + ρn, γ = 4) is the
Fermi momentum in symmetric nuclear matter. To reproduce
the empirical value of the symmetry energy coefficient,
asym = 32 ± 6 MeV [35], Eq. (32) gives gρ = 4.625 and
M∗ = 0.85M . In the present work, we have fixed gρ by fitting
the binding energies of heavy nuclei. We find that gρ � 3.5 is
appropriate.

We have tuned the model parameters so as to explain the
binding energies of heavy nuclei. In Table II, we tabulate finite
nuclei results. We also summarize the STO parameter sets
and the resulting incompressibility in Table I. The binding

TABLE II. Calculated results for the saturation property of
symmetric nuclear matter, B/A, and charge rms radii of stable nuclei.

STO-1 STO-2 STO-3 STO-4 STO-5 Exp.

Saturation property
ρ0 0.14 0.14 0.14 0.14 0.14
E0 −14.6 −14.5 −14.6 −14.6 −14.5
K 318.5 376.0 389.5 402.3 327.2

B/A
12C 9.38 9.40 9.37 9.26 9.30 7.68
16O 10.9 10.9 10.9 10.7 10.8 7.98
28Si 9.53 9.57 9.87 9.47 9.47 8.45
40Ca 9.91 9.85 9.56 9.80 9.86 8.55
48Ca 9.73 9.74 9.74 9.68 9.70 8.67
90Zr 9.13 9.11 9.15 9.09 9.11 8.71
116Sn 8.83 8.81 8.85 8.80 8.81 8.52
196Pb 7.87 7.85 7.91 7.86 7.86 7.87
208Pb 7.87 7.85 7.91 7.86 7.87 7.87

Charge rms radii
12C 2.27 2.27 2.27 2.27 2.28 2.46
16O 2.44 2.44 2.44 2.44 2.44 2.74
28Si 2.95 2.94 2.95 2.95 2.95 3.09
40Ca 3.30 3.30 3.30 3.30 3.30 3.45
48Ca 3.39 3.39 3.39 3.39 3.39 3.45
90Zr 4.21 4.20 4.20 4.20 4.21 4.26
116Sn 4.59 4.59 4.59 4.59 4.60 4.63
196Pb 5.48 5.47 5.47 5.47 5.48 –
208Pb 5.56 5.55 5.54 5.54 5.56 5.50
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FIG. 5. Neutron single-particle levels of 208Pb in the models
TM1, SCL2, SCL2 in the chiral limit, and STO.

energy per nucleon in heavy nuclei and the incompressibility
parameters are in the acceptable range. On the contrary,
we cannot reproduce the binding energies of light nuclei
simultaneously with those of heavy nuclei. Calculated values
of charge rms radii underestimate the data as long as we vary
the ρ0 value in the acceptable range, ρ0 = 0.14–0.16 fm−3.

We show the results obtained in the chiral limit (mπ = 0),
but the results are not modified much with a finite pion mass
in the mean field approximation. This is examined in an RMF
model with the chiral SU(2) logarithmic potential (SCL2) with
finite mπ [13]. In Fig. 5, we present the calculated neutron
single-particle levels of 208Pb in the chiral limit. Not only
in the level structure but also in their energies, there is little
difference between the SCL2 results with finite and those with
zero pion masses. Therefore in the mean field approximation,
we can safely discuss the properties of the RMF Lagrangian
in the chiral limit.

We also show in Fig. 5 that the present model (STO-1)
shows smaller ls splitting compared with other RMF models,
owing to the large effective nucleon masses. One of the original
motivations for using RMF models for nuclei was the large ls

splitting naturally generated from the large scalar and vector
potentials additively. In the recently developed chiral RMF
models [12,13], ls splittings are evaluated to be smaller than
the empirical values. This may suggest the need to include
explicit pion effects. There is some discussion regarding the
contribution to ls splitting [36] where one-pion-exchange
tensor force and two-pion exchange with the excitation of
virtual �(1 232) isobars are taken into account to explain
the ls splitting property of the nucleon and the hyperon
simultaneously. The ls-like roles of the tensor force or pions
in light nuclei are also discussed [37]. We have not taken
account of these pion effects in our present calculations, thus
π treatment may be required to resolve the ls splitting problem
in chiral RMF models and effective chiral models.

C. Naive dimensional analysis

The present STO model is a kind of effective field theory,
contains higher-order terms, and is nonrenormalizable. Thus
it would be valuable to examine the naturalness in a naive
dimensional analysis [38–42]. It is found that the loop

contributions with the momentum cutoff � ∼ 1 GeV generate
the following terms with dimensionless coefficients Clmnp of
order unity [38–40,42]:

Lint ∼
∑

l,m,n,p

Clmnp

m!n!p!

(
ψ̄�ψ

f 2
π �

)l

×
(

ϕ

fπ

)m (
ω

fπ

)n (
ρ

fπ

)p

(fπ�)2, (33)

where � denotes the γ and τ/2 when necessary.
An effective theory having terms in Eq. (33) is considered

to hold naturalness when all the dimensionless coefficients
Clmnp are of order unity. In the present effective Lagrangian,
we obtain the following dimensionless coefficients:

C1100 = fπgσ

�
= MN

�
∼ 0.94,

C1010 = fπgω

�
∼ 0.56,

C1001 = 2fπgρ

�
∼ 0.64,

C0120 = −2g2
σωf 2

π

�2
= −2m2

ω

�2
∼ 1.2,

C0220 = 2g2
σωf 2

π

�2
= 2m2

ω

�2
∼ 1.2,

C0300 = f 2
π

�2
3!

(
4

3
C6 − C4

)
∼ −4, (34)

C0400 = f 2
π

�2
4!

(
2C8 − 2C6 + 1

4
C4

)
∼ 40,

C0500 = f 2
π

�2
5! (−4C8 + C6) ∼ −280,

C0600 = f 2
π

�2
6!

(
3C8 − 1

6
C6

)
∼ 1200,

C0700 = − f 2
π

�2
7!C8 ∼ −2600,

C0800 = f 2
π

�2

8!

8
C8 ∼ 2600.

We show the results in STO-5 and adopt � = 1 GeV. We find
that the meson-nucleon and σω couplings are natural, but the
self-interaction coefficients in σ are not natural.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have investigated the properties of nuclear
matter and finite nuclei in the effective chiral model with σ 6

and σ 8 terms. The nucleon-vector meson coupling is found to
be uniquely determined as a function of the effective mass at
normal nuclear matter density, Y (ρ0) ≡ M∗

N (ρ0)/MN , and we
have specified the region of stability in the [Y (ρ0), C8] plane,
where C8 is the coefficient of the σ 8 term. We can find the
parameter sets that satisfy the vacuum stability condition and
result in moderate incompressibility, K = (200 − 400) MeV.
The incompressibility is found to be dominated by the nucleon
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effective mass, and M∗
N (ρ0)/MN � 0.83 is necessary to obtain

a moderate K , as far as vacuum stability is required.
The obtained effective chiral model with higher-order terms

in σ is applied to finite nuclei for the first time. It can explain the
binding energies of heavy nuclei (Sn and Pb) reasonably well,
whereas it overestimates the binding energies of light nuclei.
This may be because the nucleon-vector meson coupling is
small, gωN ∼ 6, compared with other RMF models that explain
nuclear binding energies over a wide mass range, such as
NL1 (gωN = 13.285) [2,3], NL3 (gωN = 12.868) [4], TM1
(gωN = 12.6139) [5], and SCL (gωN = 13.02) [33,34]. The
smaller gωN value is compensated at higher densities where
chiral symmetry is partially restored and the ω mass decreases,
but light nuclei are more sensitive to the EOS at lower densities.

We have also performed a naı̈ve dimensional analysis
[38–42] of the present model. A moderate K value, around
300 MeV, requires the σ 8 coefficient C8 � 20 as shown
in Fig. 2. This value corresponds to C0800 � 870, and the

model cannot hold naturalness. To construct effective chiral
models having moderate incompressibility, vacuum stability,
and naturalness simultaneously, it would be necessary to
introduce types of interaction terms other than polynomial
forms of σ . Work in this direction would be valuable for our
understanding of the chiral properties of the QCD vacuum.
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