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Charge symmetry breaking in the np → dπ 0 reaction
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The asymmetry in the angular distribution of np → dπ0 attributable to charge symmetry breaking is calculated
using heavy baryon chiral perturbation theory. Recent developments in power counting have proven successful
in describing total cross sections, and we apply them to the asymmetry calculation. Reducibility in one of the
leading-order diagrams is examined. We compare the updated theory with experimental results for a range of
physically reasonable parameters and find overprediction for the entire range.
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I. INTRODUCTION

The nuclear reaction NN → NNπ has been studied for
a long time in many ways. Theoretical understanding of
the reaction is currently pursued using heavy baryon chiral
perturbation theory (HBχPT) [1–4]. This effective theory of
the strong nuclear force treats hadrons and mesons as the
fundamental degrees of freedom. The Lagrangian contains
an infinite number of terms that decrease in importance
according to an expansion in a (somewhat) small parameter.
Such an understanding is important because it is model
independent, provided convergence is achieved. Furthermore,
once theorists arrive at an ordering scheme for the expan-
sion, error estimates will become more reliable and calcu-
lations of different and more exotic reactions will become
possible.

One particularly interesting observable that HBχPT can
help determine is the magnitude of charge symmetry breaking
(CSB) [5–7]. Charge symmetry refers to the approximate
invariance of hadronic systems under an isospin rotation
of π about the y axis. This symmetry is broken by the
mass difference between up and down quarks and by elec-
tromagnetic effects [8]. We will discuss the corresponding
symmetry breaking terms in the HBχPT Lagrangian. These
terms are especially important for the interactions of neutral
pions [9].

Relations involving the light quark masses can be obtained
from the SU(3) chiral symmetry on which HBχPT is based,
but experiments that directly measure md − mu are difficult
because of the lack of a neutral pion beam. One experiment that
overcomes this difficulty and also minimizes electromagnetic
effects is np → dπ0. The angular distribution of this reaction
is symmetric about 90◦ in the center of mass when charge
symmetry is respected. Reference [10] recently observed that
this distribution is asymmetric.

This report advances previous work in several ways. The
authors of Ref. [11] showed that a vertex that was thought
to be higher order in fact contributes at leading order.
This led to a much improved understanding of the total
cross section of pp → dπ+. We extend this calculation off
threshold for neutral pion production and make a comparison
with the corresponding data. We also investigate a subtlety
regarding reducibility in one of the leading-order diagrams and
comment on the resulting corrections. Finally, we calculate the

asymmetry of np → dπ0, bringing up to date the calculations
of Refs. [12] and [13] by including the new effects discussed
in this paragraph.

In Sec. II we discuss the kinematics and selection rules
of the np → dπ0 process. Then, in Sec. III we develop the
formalism necessary for calculation of the cross section. Here
we detail the procedure for handling strongly interacting initial
and final states. In Sec. IV we present the leading-order
diagrams with vertices from the isospin conserving part of
the Lagrangian (Appendix A). In this section we also provide
a review of the power counting developed by Ref. [11] and
discuss its impact on neutral pion production. Next, in Sec. V,
we present diagrams with vertices from the CSB part of the
Lagrangian which contribute to the reaction. Our results are
given in Sec. VI and discussed in Sec. VII. Also in Sec. VII,
we compare our work with another recent calculation of the
asymmetry in Ref. [14].

II. KINEMATICS AND SELECTION RULES

At threshold, the reaction NN → NNπ produces a pion
from the kinetic energy of the incoming NN pair. Let �p =
1
2 ( �p1 − �p2) be the relative momentum of the pair. In the center
of mass frame for this reaction, the total momentum �P = �p1 +
�p2 = 0 and thus �p1 = �p and �p2 = − �p. In the nonrelativistic
limit, the total initial energy is Ei = 2MN + p2/MN , where
MN is the nucleon mass (the average mass is used for np

reactions). The energy of the final state at threshold is Ef =
2MN − Eb + mπ , where Eb = 2.224 MeV is the deuteron
binding energy and mπ is the mass of the appropriate pion.
Neglecting the binding energy yields a simple scale for external
momenta in these reactions, p̃ ≡ √

mπMN = 356 MeV.
There are two frames to keep in mind: the center of

mass frame (C), and the laboratory frame where the proton
is at rest (E for experiment). The experiment of interest
[10] is np → dπ0 performed in the E frame. In this frame
the invariant is expressed as sE = (Mp + Mn)2 + 2MpTL,
where TL is the kinetic energy defined by En = Mn + TL.
The experiment was performed at TL = 279.5 MeV, slightly
above the threshold value of TL = 275.1 MeV. To simplify
the formalism, we use the C frame to do the calculation.
In terms of the pion momentum, �q, and the deuteron mass,
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Md , we have
√

sC =
√
M2

d + �q2+
√
m2

π + �q2. It is convenient to
define a dimensionless parameter η to describe how far off
threshold the reaction is, η = |�q|/mπ . Equating the invariants,
we find ηC = 0.169 (qC = 22.86 MeV) at the experimental
energy.

We use the hybrid approach developed by Park et al. [15] to
calculate the cross section because the initial and final states are
strongly interacting. The “operator” is calculated as the sum
of two-particle-irreducible diagrams involving four nucleon
lines (two incoming and two outgoing) and one pion line.
Then, a phenomenological potential is used to calculate the
NN scattering wave fuctions and the deuteron bound-state
wave function. Finally, the operator is convolved with the
wave functions to obtain the matrix element. This method is
described in detail in Sec. III, but first we present the selection
rules for np → dπ0.

The deuteron has the following quantum numbers: spin
S = 1, orbital angular momentum L = 0, 2 (parity even), total
angular momentum J = 1, and isospin T = 0. If the pion
(Jπ = 0−) is produced in the s wave, then conservation of
total angular momentum gives Ji = 1. Furthermore, because
the pion is parity odd, s-wave pions must be produced from
a parity odd np wavefunction, Li = 1. Likewise, if the pion
comes in the p wave, the initial parity is even and Ji = 0, 1, 2.

To completely pin down the quantum numbers of the initial
state, we turn to isospin. If isospin is conserved in the final state,
then Tf = 1 because the deuteron is an isoscalar. “Strong”
diagrams have Ti = 1 with the isospin part of the initial wave
function symmetric under exchange of nucleons. Overall wave
function antisymmetry then requires Si = 1 for lπ = 0 and
Si = 0 for lπ = 1. Thus, the initial np pair must be in the
3P1 channel for lπ = 0, and the available channels become
1S0 and 1D2 for lπ = 1. CSB operators transform as vectors
under isospin; thus, the initial neutron-proton state must have
Ti = 0. The same arguments as for the strong operators then
show that s-wave pions are produced from 1P1 np pairs and
p-wave pions are produced from the coupled channels 3S1 and
3D1 in addition to 3D2. These conclusions are summarized in
Table I.

The observable of interest in the experiment is the for-
ward/backward asymmetry in the differential cross-section
given by

Afb =
∫ π/2

0 d� [σ (θ ) − σ (π − θ )]∫ π

0 d� σ (θ )
. (1)

A nonzero asymmetry will be observed only when initial
states of opposite parity interfere. However, the interference
can occur only for states with the same spin because the
spin z components get summed over. Thus, for calculating
the asymmetry, we are concerned with two terms: (s-wave
strong)·(p-wave CSB) and (p-wave strong)·(s-wave CSB).

TABLE I. Channels for the np wave function in np → dπ0.

Strong CSB

lπ = 0 3P1
1P1

lπ = 1 1S0, 1D2
3S1, 3D1, 3D2

III. CROSS SECTION

A. Cross-section formalism

We will now derive an expression for the cross section in
the C frame where the pion momentum is �q. First we must
define expressions for the strongly interacting initial and final
states. To form an interacting NN state with total momentum
�P = �p1 + �p2, we use a superposition of free particle states,

|ψ( �P )〉 =
∫

d3p1

(2π )3

d3p2

(2π )3
ψ

( | �p1 − �p2|
2

)
× |N ( �p1), N ( �p2)〉δ( �P − �p1 − �p2)

=
∫

d3p

(2π )3
ψ(p)|N ( �p + �P/2), N (− �p + �P/2)〉, (2)

where spin and isospin have been ignored for now. The wave
function ψ(p) is obtained by solving the Schrödinger equation
with the appropriate NN potential specified later in this article.
In the C frame, �Pi = 0 and if the nucleons forming the deuteron
have momentum �k1,2, then �k1 + �k2 ≡ �K = −�q. The invariant
matrix element is then

M[N (p1), N(p2) → π (q), d(K)]

=
∫

d3k

(2π )3

d3p

(2π )3
ψ∗

d (k)

×M̂ (p, k, q) ψnp(p), (3)

where p1,2 = (E1,2,± �p), q = (ωq, �q), and K = (Ed,−�q).
Note that we are treating the initial state as two separate
particles, but the deuteron as a single particle. As mentioned in
Sec. II, the sum of the two-particle-irreducible diagrams with
external momenta �q, �p1,2, and �k1,2 (the “operator”) is denoted
M̂, and is convolved with the external wave functions. The
operator is calculated in momentum space and is a function
of the external momenta p, k, and q. Also note that the wave
functions will include spin and isospin wave function on which
the operator acts.

We perform the calculation in position space by inserting
Fourier representations of both wave functions

ψNN (�r) =
∫

d3p

(2π )3
ei �p·�rψNN ( �p). (4)

A Fourier representation of the operator with respect to �l ≡
�k − �p is also inserted

M̂(�r) =
∫

d3l

(2π )3
ei�l·�rM̂(�l, �q). (5)

As described in Appendix C, �l is the momentum that appears
in pion production reactions: M( �p, �k, �q) → M(�l, �q).

Now we can rewrite Eq. (3),

M =
∫

d3r d3r ′ d3r ′′ ψ∗
d (r ′′) M̂(�r) ψnp(r ′)

×
∫

d3k

(2π )3

d3p

(2π )3
ei�k·�r ′′

e−i(�k− �p)·�re−i �p·�r ′

=
∫

d3r ψ∗
d (r) M̂ (�r) ψnp(r). (6)
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With these choices of Fourier representations, the momentum
integrals evaluate to δ functions which allow evaluation of the
spatial integrals. The result is an integral over a single spatial
variable.

Next, we express the invariant S-matrix element in terms
of M
〈π0(q)d(K)|S|p(p1), n(p2)〉

= 1 − i(2π )4δ4(q + K − p1 − p2)M(p1, p2 → q,K).

(7)

In the center-of-mass frame, the differential cross section is

dσ = 1

4| �p|√s

1

4

∑
md,m1,m2

|M|2(2π )4δ4(q + K − p1 − p2)

× d3q

(2π )32ωq

d3K

(2π )32Ed

, (8)

where we have averaged over the four np spin states and
summed over the three spin states of the deuteron. The vector
part of the δ function tells us �q = − �K and the energy part tells
us E1 + E2 = ωq + Ed . This allows us to perform all but the
d�K integral,

dσ

d�
= |�q|

64π2s| �p|
1

4

∑
md,m1,m2

|M|2. (9)

What remains is to derive expressions for the wave functions
and the operator appearing in Eq. (6).

B. Initial and final states

In the absence of interactions, the wave function ψnp(�r)
is determined by performing a partial wave expansion on an
antisymmetrized wave function of a free proton and a free
neutron with relative momentum �p. First we consider the
strong operators where the np pair is in an isospin-1 state,

(�r|ψnp〉 = PT =1
1√
2

(ei �p·�r |m1,m2〉 ⊗ |Tz,1, Tz,2〉 − e−i �p·�r

× |m2,m1〉 ⊗ |Tz,2, Tz,1〉)
= 1√

2
(ei �p·�r |m1,m2〉 − e−i �p·�r |m2,m1〉)

⊗ 1√
2
|T = 1, Tz = 0〉, (10)

where PT =1 is the isospin projector. The bra (�r| indicates that
we are choosing a basis for space, but not for spin or isospin.
Implicit in the notation is the dependence of (�r|ψnp〉 on the
momentum �p, the spin z components of the two nucleons, mi ,
and the isospin z components of the two nucleons, Tz,i , with
the requirement that Tz,1 + Tz,2 = 0.

The exponentials are now expanded and the presence of the
strong interaction is added by changing the spherical Bessel
functions, jL(pr) → eiδLuL,J (r)/pr . The uL,J functions and
the δL phase shifts are obtained by solving the Schrödinger
equation with a phenomenological NN potential (we use
Argonne V18 [16]). Finally, the spherical harmonics are
combined with the spin kets to form states with definite

total angular momentum. The notation for these states is
|(SL)J,mJ 〉 ⊗ |T , Tz〉. For the allowed quantum numbers,
we find

(�r|ψnp(2S+1LJ , T = 1)〉
= 4π (i)LeiδL

uL,J (r)

pr
〈1/2 m1, 1/2 m2|S ms〉

×
∑
mi

〈S ms, L mi − ms |J mi〉

×YL ∗
mi−ms

(p̂)(r̂|(SL)J,mi〉 ⊗ |1, 0〉, (11)

where ms = m1 + m2 and the second Clebsch Gordan coeffi-
cient allows us to make the sum over mi = ml + ms rather than
ml . For the CSB operators, we have T = 0 np wave functions
and find

(�r|ψnp(2S+1LJ , T = 0)〉
= ±4π (i)LeiδL

uL,J (r)

pr
〈1/2 m1, 1/2 m2|S ms〉

×
∑
mi

〈J mi |S ms, L mi − ms〉

×YL ∗
mi−ms

(p̂)(r̂|(SL)J,mi〉 ⊗ |0, 0〉, (12)

where the ± refers to Tz,1 = ±1/2. Similar analysis gives the
final-state wave function of the deuteron as a function of its
polarization, mf ,

〈ψd (mf )|�r)

= 〈0, 0| ⊗
[
u(r)

r
〈(10)1,mf |r̂) + w(r)

r
〈(12)1,mf |r̂)

]
.

(13)

IV. STRONG CONTRIBUTION

A. Diagrammatic expansion

Before we calculate the effects of charge symmetry, we
need to discuss the power counting scheme which leads to
a calculation of the total cross section in agreement with
experiment. HBχPT orders contributions in powers of the
external momenta divided by the chiral symmetry breaking
scale, which is ∼MN [11]. In this inelastic reaction, both q and
p̃ appear as external momenta and we need to keep track of
both in the power counting. We define the expansion parameter
χ ≡ p̃/MN = √

mπ/MN = 0.40.
The Lagrangian is given in Appendix A. The index of a

“type i” vertex is given by

νi = di + fi

2
− 2, (14)

where di is the sum of the number of derivatives, mπ ’s, and
δ’s (the �N mass difference), and fi is the number of fermion
fields. In standard power counting at tree level, the sum of
the νi for each vertex in a diagram indicates the power of χ

at which that diagram contributes. This rule, however, will
require modification because of the relatively large value of p.

There are three two-particle-irreducible diagrams that can
be drawn using the vertices from L(0). They will be referred
to as the impulse [Fig. 1(a)], rescattering [Fig. 1(b)], and �
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(a) (b) (c)

FIG. 1. Leading-order contributions to np → dπ0. Solid lines
represent nucleons, the double solid line represents a �, and dashed
lines represent pions.

[Fig. 1(c)] diagrams. There is some ambiguity as to what is
meant by Fig. 1(a). We will discuss this in detail later in this
article. First let us make a few observations about these three
diagrams. We have stated that the initial relative momentum is
large. The final-state nucleons (the deuteron) have a compara-
bly small relative momentum. This “momentum mismatch” is
provided for in the rescattering diagram, but not in the impulse
diagram. For this reason, the rescattering diagram dominates
the total cross section. This diagram is strongest in the channel
with s-wave pions, and the ππNN vertex is typically referred
to as the Weinberg-Tomozawa (WT) vertex. Next, although
the � diagram provides the momentum transfer required, the
� resonance is at 1232 MeV and the πN energy is ≈1080 MeV,
so the � diagram is also somewhat suppressed for our situation
of interest. Finally, we note that both the impulse and the
� diagrams are strongest for the channels in which the pion is
in a p wave.

We now return to the issue of the impulse diagram. On the
one hand, we know that a single nucleon cannot emit a pion and
remain on shell. But on the other hand, the diagrams in Fig. 2,
which remedy this problem by including one pion exchange
(OPE), appear to be two-particle-reducible. To resolve this
issue, we first note that near threshold the energy of the
exchanged pion in each of these diagrams is approximately
ω ≈ mπ/2. However, the diagram of Fig. 1(a) is evaluated as
diagrams of the form of Fig. 2. This is because of hybrid
nature of the calculation; once the operator (traditionally,
the irreducible diagram) is calculated, it is convolved with
NN wave functions. One of the major terms of the strong
interaction potential at low energy arises from static OPE
(ω = 0). We ignore the effects of the rest of the wave function
for the moment. The effects of static OPE are schematically
shown in Fig. 3.

To obtain the correct impulse contribution, we add up the
contributions from Figs. 1(a) and 2 and then subtract what
is already included in the wave functions (the two rightmost

(a) (b)

FIG. 2. Kinematically correct, but reducible impulse contribu-
tions. Solid lines represent nucleons and dashed lines represent pions.

= +++ ...

FIG. 3. “Hybrid” approach. Solid lines represent nucleons,
dashed lines represent pions, dotted lines represent pions with ω = 0,
and shaded ovals represent NN strong interactions.

diagrams of Fig. 3). This calculation is schematically shown
in Fig. 4.

The OPE propagator is of Yukawa form,

Dπ (r) = −e−µ(ω)r

4πr
, (15)

where µ(ω) = √
m2

π − ω2 ≈ √
3/2mπ . Thus, subtracting off

the final two diagrams in Fig. 4 amounts to making the
replacement

e−√
3mπ r/2

r
→ e−√

3mπ r/2

r
− e−mπ r

r
(16)

in the exchanged pion propagator. The final four terms of
Fig. 4 comprise a correction to the impulse diagram, which
we will refer to as a “wave function correction.” We find that
this correction is ∼4% of the total impulse amplitude at the
experimental energy, and we include it in our calculation.

B. Power counting

Now we will look more closely at the size of these
diagrams in the “p̃ kinematics,” using the counting techniques
developed in Ref. [17]. The propagators are calculated from
the Lagrangian in Eq. (A1):

DN (p) = i

p0 + iε

D�(p) = i

p0 − δ + iε
(17)

Dπ (p) = −i

�p2 + [m2
π − (p0)2] − iε

.

Both the πNN and the πN� vertices have a momentum
dependence of |�q|, the pion momentum at that vertex. Note
that this momentum is p̃ in the OPE verticies. The WT vertex
contains a factor of ωq,in + ωq,out.

The external particles have the same momenta in each
diagram. The produced pion has q = (ωq, �q) ≈ (mπ, 0), and
the incoming nucleons have p1,2 = (E1,2,± �p) ≈ (mπ/2,±�̃p)
in the heavy baryon formalism in which the nucleon mass
is subtracted off of the energy component. Consider the
impulse diagram of Fig. 2(a). The final emission contributes
q, the nucleon propagator 1/mπ , and the OPE p̃ · 1/p̃2 · p̃, so
that the diagram is ∼q/mπ = η. The rescattering diagram is
∼ 3mπ /2

p̃
∼ χ , and the � diagram is ∼ q

mπ −δ
. Finally, note that

η ≈ χ2 and δ ≈ 2mπ so that though the rescattering diagram
is ∼ χ the impulse and � diagrams are numerically ∼χ2. This
ordering comes in agreement with the fact that the rescattering
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−−++=

FIG. 4. Complete impulse contribution. Solid lines represent nucleons, dashed lines represent pions, dotted lines represent “wave function”
pions with ω = 0, and the square represents the operator that is used for the full impulse approximation.

diagram is strongest for s-wave pions and the impulse and
� diagrams are strongest for p-wave pions.

It is well documented that these three diagrams alone do
not correctly reproduce the experimental data for the reaction;
see Ref. [17] for a review of the theory of meson production.
Near threshold (η ≈ 0.05), the most recent experiment found
αexp(np → dπ0) ≈ 90 µb [18], and for these first three
diagrams, we find α ≈ 55 µb. The solution to this problem
was discovered by the authors of Ref. [11], who noticed that
the ν = 1 “recoil” correction to the WT vertex, which is found
in Eq. (A2), goes like (�qin + �qout) · ( �pin + �pout)/(2MN ), where
�q is the pion momentum and �p is the nucleon momentum. For

Fig. 5(a), this vertex (a solid circle) ∼�̃p 2
/(2MN ) = mπ/2

and thus this diagram is of order χ , the same order as
the ν = 0 rescattering diagram. Similarly, one finds that the
s-wave portion of the recoil correction to the impulse diagram
[Fig. 5(b)] is of order χ . In this diagram, the solid square
represents the sum analogous to Fig. 4 for the recoil diagram.
We find that the wave function corrections are more important
(∼20%) in this case. Finally, the s-wave portion of the
� diagram’s recoil correction is found to be higher order and
is therefore ignored.

The recoil corrections to the propagators have also been
included in the calculation where applicable. For this reaction,
the only such diagram is Fig. 2(b), where the three-momentum
in the nucleon propagator is large (∼p̃). For that propagator,
we use the corrected version,

DN (p) = i

p0 − �p 2/2MN + iε
≈ − i

mπ

. (18)

Using this propagator rather than the ν = 0 version doubles the
size of Fig. 2(b). Nevertheless, this diagram (minus its ωπ = 0
analog) is already very small. Thus, the net effect of correcting
the propagators is small for this reaction at this order.

Including all these recoil corrections [especially Fig. 5(a)]
brings the theoretical cross section near the experimental

(a) (b)

FIG. 5. Recoil corrections. Solid lines represent nucleons, dashed
lines represent pions, and the solid circle and square represent ν = 1
vertices.

results as shown by the solid curve in Fig. 6 [18]. Because
of the relative scatter of the data shown in Fig. 6, it is difficult
to tell how well the theory is reproducing the experiment.
Regardless, it is clear that theoretical improvement has been
made.

It should also be noted that the subtlety of reducibility
and recoil corrections in this reaction resolves questions about
next-to-leading-order (NLO) loop diagrams discovered by
the authors of Ref. [19]. Namely, the sum of all the NLO
irreducible loops in Fig. 7 is found to be proportional to �p.
This is a problem because such sensitivity of the operator to
the NN wave function is not physical. Again, one considers
including OPE in the operator, this time for the rescattering
diagram. There are two resulting diagrams shown in Fig. 8. It
was shown in Ref. [11] that in these reducible loops, the recoil
corrections to the nucleon propagators need to be included
in addition to the WT’s recoil correction. Reference [11]
then showed that (part of) the energy dependence of the WT
vertex “cancels” one of the nucleon propagators, leaving a
reducible diagram similar to Fig. 7(a). This diagram is equal
in magnitude and opposite in sign to the aforementioned NLO
sum, resolving the issue. The other term that remains from the
original loop integral after this manipulation is still of reducible
form but now has an on-shell WT vertex ∼2mπ . This term
would already appear upon convolution of the rescattering
diagrams discussed earlier in this article (including recoil
corrections) with external wave functions; that is, this term

0.05 0.10 0.15 0.20
50

60

70

80

90

100

110

120

α
(µ

b)

η

FIG. 6. Cross section for np → dπ 0 in terms of α = σ/η as a
function of the pion center of mass momentum, η = q/mπ0 . Circles
with error bars display the experimental results of Ref. [18]. The
dashed line displays the results of including the diagrams in Fig. 1
and the solid line displays the results of also including the recoil terms
discussed in the text.
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(a) (b) (c) (d)

FIG. 7. Irreducible loops. Solid lines represent nucleons and
dashed lines represent pions.

is truly reducible. This result can be stated another way:
Cancellation of the irreducible loops comes from a short-range
piece of including OPE in the rescattering operator. Thus, a
complete NLO calculation must include this OPE. However,
its remaining reducible piece would only be included in the
calculation if the recoil correction to the WT vertex is included
in the rescattering operator. Therefore, it is both consistent
and necessary to include the WT recoil correction, which
was shown earlier in this article to reproduce the total cross
section.

C. p-wave observables

Another important test of the theory is how well it describes
p-wave pions [20]. This is especially important for the
asymmetry, which involves strong p waves at leading order.
The differential cross section can be expanded in Legendre
polynomials,

dσ

d�
= α0 + α1P1[cos(θ )] + α2P2[cos(θ )] + · · · , (19)

where θ is the angle between �p and �q. Note that the total
cross section plotted in Fig. 6 is α = 4πα0/η. As discussed
in Appendix D, α2 receives contributions almost exclusively
from p-wave pions. The ratio α2/α0 is therefore used as a
test for this part of the theory. We find that the diagrams of
Fig. 1 along with their recoil corrections overestimate the data
by approximately a factor of two. Upon closer inspection, we
find that the 1S0 amplitude (which is known to be small) is
relatively large. This amplitude is coming mainly from the
� diagram, as can be seen in Appendix D, where the values of
the reduced matrix elements are listed. To remedy the situation
in the simplest way possible, we implement a cutoff for the

(a) (b)

FIG. 8. Reducible loops. Solid lines represent nucleons and
dashed lines represent pions.

0.10 0.15 0.20 0.25 0.30
η

0.2

0.4
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1.0

α
2

α
0
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FIG. 9. (Color online) Legendre coefficients of the differential
cross section for different values of the cutoff. Data are from an
np → dπ 0 experiment (Ref. [18], circles) and an �pp → dπ+

experiment (Ref. [22], squares) in which the data have not been
corrected for Coulomb effects.

� diagram,

Dπ = −i

�p2 + µ2
→ Dc

π (�) ≡ −i

�p2 + µ2

(
�2

�p2 + �2

)

=
( −i

�p2 + µ2
− −i

�p2 + �2

)
�2

�2 − µ2
. (20)

One can show that doing this essentially softens the OPE
potential for r < log(�/µ)/�. Note that one consequence of
such a cutoff is that it modifies both the 1S0 and the 1D2

channels. Clearly, this cutoff is not an acceptable long-term
solution for an effective field theory, but the fact that such a
procedure is necessary is interesting given that the reaction
occurs at an energy ∼150 MeV below the � resonance. That
p-wave pion production is highly sensitive to the strength of
its contact term was discussed in Ref. [21].

Figure 9 shows the effects of this cutoff on the ratio α2/α0,
where � = 10 GeV represents the original theory (such a large
cutoff has no significant effect). Note that the amplitudes for
np → dπ0 are related to those for pp → dπ+ (which are
bigger by

√
2) when charge symmetry is respected. Thus, the

ratio plotted should have the same value for both reactions.
Also note that for simplicity we used a single cutoff and that
if we had used one at each vertex of the OPE we would have
found � → √

2�. By adjusting the cutoff to fit the data, we
find � = 310 MeV.

Another useful observable for testing p-wave pion produc-
tion is the analyzing power, Ay , which is defined

Ay(θ ) ≡ dσ↑(θ ) − dσ↓(θ )

dσ↑(θ ) + dσ↓(θ )
(21)

dσ↑,↓(θ ) ≡ |�q|
64π2s| �p|

1

4

∑
md,m2

|M(m1,y = ±1/2, θ )|2, (22)

where m1,y = ±1/2 refers to the fact that the beam is polarized
perpendicular to the scattering plane. In the z basis, these
states are

M(m1,y = ±1/2) = M(m1 = 1/2) ± iM(m1 = −1/2)√
2

.

(23)

As shown in Appendix D, Ay is proportional to the product of
s-wave and p-wave amplitudes. Figure 10 shows the effects of
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FIG. 10. (Color online) Analyzing power for different values of
the cutoff. Data are from a �pp → dπ+ experiment (Ref. [22], circles)
in which the data have not been corrected for Coulomb effects.

the cutoff on this observable. Again, charge symmetry implies
that Ay should be the same for both neutral and charged pion
production. We find the best agreement with the data for � =
560 MeV. Later in this article, we will display our results using
both the original theory and a cutoff taken to be the geometric
mean of two fits, � = 417 MeV.

V. CHARGE SYMMETRY BREAKING

The fact that the up and down quarks have different mass
is reflected in the Lagrangian by including terms that break
chiral symmetry [23]. The leading such terms are given in
Eq. (A2) and have coupling constants δmN and δmn which are
constrained by

δmN + δmN = Mn − Mp. (24)

The δmN term has its origins in the quark mass difference
and its size is ∼(md − mu) ≡ ε(md + mu), with ε ≈ 1/3.
The formalism of χPT tells us that (md + mu) ∝ m2

π , and so
dimensional analysis along with the natural QCD scale, MN ,
yields δmN ∼ εm2

π/MN . The δmN term is of electromagnetic
origins, but is of the same order as δmN . These CSB operators
appear in the rescattering diagram depicted in Fig. 11. where
the CSB vertex is denoted with a cross. The size of this diagram
is δmN/p̃ ≈ εm2

π/(MNp̃) = εχ3. Note that although the full
nucleon mass difference appears explicitly in the Lagrangian
at this order, the corresponding operator (N †τ3N ) does not
change the parity and thus does not contribute to an asymmetry.
In Sec. VII, we will discuss another source of CSB coming
from a more detailed evaluation of the diagram of Fig. 1(b)
that was made in Ref. [14].

Another CSB term given in Eq. (A3) involves one derivative
and one m2

π (β1 ∼ εm2
π/M2

N ) and is thus a ν = 2 vertex

FIG. 11. Leading CSB contribution. Solid lines represent nucle-
ons, dashed lines represent pions, and the cross represents the ν = 1
CSB vertex.

(a) (b) (c)

FIG. 12. ν = 2 CSB contributions. Solid lines represent nucleons,
double solid lines represent �’s, dashed lines represent pions, crosses
represent ν = 2 CSB vertices, and the boxed cross represents the full
impulse CSB diagram including OPE.

with momentum dependence |�q|. This vertex appears in the
diagrams of Fig. 12, whose sizes are β1q/mπ ≈ εηχ4. In
Fig. 12(a), the boxed cross represents the sum analogous to
Fig. 4 for the CSB impulse diagram. Again, the wave function
corrections are small (2%).

As mentioned in Sec. II, contributions to the asymmetry
come from interference terms between the p-wave part of the
strong amplitude and the s-wave part of the CSB amplitude,
and vice versa. The issue is somewhat complicated because,
in contrast to threshold emission, each diagram can contribute
in both the s wave and the p wave. However, contributions to
the subleading parity (s wave for the impulse and � diagrams
and p wave for the rescattering diagrams) are formally higher
order. For example, the strong rescattering diagram for p-wave
pions comes with an mπ from the WT vertex, a 1/p̃2 from the
pion propagator, and a q from the pion emission in the p

wave. Thus, the diagram counts as ∼ηχ2. The contributions to
the asymmetry are depicted in Fig. 13. Figure 13(a) includes
strong p waves and CSB s waves and has size (η) × (εχ3).
Figure 13(b) includes strong s waves and CSB p waves and has
size (χ ) × (εηχ4). Figure 13(c) includes strong p waves and
CSB s waves and has size (ηχ2) × (εχ3). Thus, we find that in
these kinematics Fig. 13(a) (∼εηχ3) is the leading-order (LO)
contribution, and Figs. 13(b) and 13(c) (∼εηχ5) both come
in at NLO. Other interference terms involving these diagrams
are higher order, ∼εη3χ5 or smaller. Finally, we note that this
work is not intended to be a complete NLO calculation as loops
and higher-order vertices may come in at NLO.

VI. CSB RESULTS

In this section we discuss the CSB results of our calculation.
The coupling of the WT vertex (and its recoil correction) is
determined by chiral symmetry and we use fπ = 91.9 MeV.
For the impulse vertices we use the values gA = 1.267 and
hA = 2.1gA. We use the following masses: MN = (Mn +
Mp)/2 = 938.919 MeV, Mn − Mp = 1.293 MeV, M� =
1232 MeV, and mπ = mπ0 = 134.977 MeV. Consider now
the CSB coupling constants. The Cottingham formula can
be used to obtain δmN = −(0.76 ± 0.30) MeV [24]. The
constraint of Eq. (24) then fixes δmN = 2.05 ± 0.30 MeV. The
combination of these parameters that appears in the asymmetry
is δmN − δmN/2 = 2.4 ± 0.3 MeV. It is also noted in Ref. [13]
that other models predict different values for δmN leading to
1.83 � δmN

MeV � 2.83.
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(b)

+ + × + + +
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(c)
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SP

FIG. 13. Interference terms for the asymmetry in np → dπ0. Solid lines represent nucleons, double solid lines represent �’s, and dashed
lines represent pions. The solid circle and square represent ν = 1 strong vertices and the crosses represent CSB vertices. The boxes represent
full impulse diagrams in the sense of Fig. 4.

Even less is known about β1, the impulse CSB coupling. As
a starting point, Ref. [25] notes that this CSB operator can be
viewed as arising from π -η mixing. The result shown is that

β1 = gηfπ

MNm2
η

〈π0|H |η〉 = cη

(
ε m2

π

M2
N

)
. (25)

As discussed in the review [7],

0.10 �
g2

η

4π
� 0.51. (26)

Also, Ref. [26] gives 〈π0|H |η〉 = −0.0039 GeV2, and we
use mη = 547.51 MeV. These values result in −0.47 � cη �
−0.21. Thus, it is at least plausible that the β1 term could
originate naturally from η-π mixing. We note that the η′ could
also give such a term, but do not consider it here. Using
Eqs. (25) and (26), we obtain −3.2 × 10−3 � β1 � −1.4 ×
10−3. Note that the value used in the original calculation of
the asymmetry in Ref. [12] was β1 = −8.7 × 10−3, which
we refer to as the “extreme value.” However, recall from the
above discussion that the natural size of the p-wave CSB is

β1 ∼ − εm2
π

M2
N

≈ −6 × 10−3. Thus, even though its origins may

not lie exclusively with the η, the aforementioned “extreme”
value for β1 is not extreme at all from the effective field theory’s
point of view.

In Table II, we display our results which are obtained by
using Eq. (24) to eliminate δmN so that the diagram of Fig. 11
is proportional to

δmN − δmN

2
= 3δmN

2
− Mn − Mp

2
. (27)

Because the asymmetry is linear in the CSB amplitudes (and
therefore the CSB parameters), we are able to present our

results as a set of coefficients, {x, y, z} defined by

Af b × 104 = x ·
(

δmN

MeV

)
+ y · (β1 × 103) + z. (28)

The primary advance made in this work over the the previous
calculation of Ref. [13] (including the rescattering and impulse
recoil corrections) is shown in moving from the top four rows
to the next four rows. At LO this simply increases α0, but at
NLO it affects both the numerator and the denominator of the
asymmetry.

The experiment of Ref. [10] found Afb = [17.2 ± 9.7] ×
10−4. The first calculation of the asymmetry used an N�

coupled-channel formalism and included the CSB impulse
vertex as well as other, smaller effects arising directly from
the neutron-proton mass difference [12]. This study reported
Afb = −28 × 10−4. The second calculation included only the
CSB rescattering vertex and found Afb = 60 × 10−4 [13]. Both
these calculations were preformed before the work of Ref. [11],
which brought the total cross section into agreement with
experiment. Our work brings the asymmetry calculation up
to date.

As shown in Table II, the value of Afb is overpredicted
for the set of physically reasonable parameters used in the last
column. Nevertheless, for the most “extreme” set of parameters
discussed above (δmN = 1.83 MeV, β1 = −8.7 × 10−3) the
cutoff NLO calculation yields Afb = 16.9 × 10−4. The effects
of using different values for the cutoff can be seen in the
last two rows of the table. Because of the large number of
theoretical issues that still need to be addressed, we refrain
from providing an uncertainty at this time.
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TABLE II. Asymmetry in np → dπ 0 as a function of CSB parameters δmN and β1. “LO” and “NLO” represent the sums discussed
in Fig. 13. The term z arises from the influence of the term proportional to Mn−Mp

2 .

Afb × 104 = x · ( δmN

Mev ) + y · (β1 × 103) + z Afb(δmN = 2.05 MeV,

β1 = −3.2 × 10−3) × 104

Order � cutoff x y z

LO (no recoil) None 33.7 0 −14.5 54.6
LO (no recoil) � = 417 MeV 27.6 0 −11.9 44.7
NLO (no recoil) None 37.6 1.4 −16.2 56.4
NLO (no recoil) � = 417 MeV 32.5 1.8 −14.0 47.0

LO None 25.0 0 −10.8 40.4
LO � = 417 MeV 18.9 0 −8.2 30.7

NLO None 28.1 1.4 −12.1 41.0
NLO � = 417 MeV 22.1 1.6 −9.5 30.7
NLO � = 310 MeV 20.1 1.7 −8.7 27.3
NLO � = 560 MeV 24.0 1.6 −10.4 33.9

VII. DISCUSSION

We have mentioned that it is difficult to tell how well
the current theory is reproducing the total cross section.
We have also seen that there is reason for concern regarding the
theoretical description of p-wave pions, which comprise the
entire strong contribution to the LO asymmetry. Because
the total cross section is dominated by the rescattering
diagram, small changes to the p-wave amplitudes are able
to significantly modify the asymmetry while only slightly
changing the total cross section. As a temporary solution, we
implemented a cutoff in the � diagram and thereby achieved
acceptable agreement with the p-wave data. Another solution
to this problem is to use a coupled-channel N� potential for
the initial state. This approach was taken by the authors of
Ref. [14], who were able to achieve good fits to these data
without a cutoff, because the OPE of the � diagram is then
part of the wave function.

There are other significant differences between Ref. [14]
and this work. First of all, the authors of that article discovered
an additional CSB contribution to the asymmetry which is
a consequence of the time derivative in the WT vertex. The
effect of this contribution is equivalent to a change in the CSB
rescattering diagram,

3δmN

2
− Mn − Mp

2
→ 3δmN

2
. (29)

Thus, to update our calculation, we drop the fifth column
of Table II (the z column). Second, to improve on the
theoretical uncertainty (∼30%) of the Legendre coefficient
α0, they used experimental data (from pionic deuterium) to
obtain α0 = 1.93 µb. This is significantly larger than the
theoretical value we use, α0 = 1.49 µb at LO (α0 = 1.28 µb
for � = 417 MeV), and leads to a smaller value for the
for the asymmetry. Note that experiments for neutral [18]
and charged [22] pion production found α0 = 1.39 µb and
α0 = 1.64 µb (Coulomb corrected), respectively. Finally, they
do not include the NLO CSB diagrams.

For the sake of comparison, we used our code to calculate
the LO asymmetry with � = 417 MeV, without the z column,

using α0 = 1.93, and using their quoted values for gA and fπ .
For these choices we obtain Afb = 14.0 δmN

MeV × 10−4, which is
to be compared with their result of Afb = 11.5 δmN

MeV × 10−4.
Using the Cottingham sum rule, along with their result, one
obtains δmN = 2.0 MeV and thus Afb = 23 × 10−4, which
only overestimates the data by 0.6σ . Finally, we display our
best result without the z column,

Afb = 22.1
δmN

MeV
+ 1.6(β1 × 103). (30)

For the set of parameters used in Table II, Afb = 40.2 × 10−4,
which is an overestimation of the data by 2.4σ .

Several issues remain to be understood theoretically. First,
it appears that a large contact term will be required to suppress
the 1S0 channel in the strong amplitude if one uses a purely NN

initial state. The interesting physics observation here is that
the � part of the NN wave function seems to be much more
active than it is NN scattering. Second, the difference between
the more recent experimental determination of α0 (from pionic
deuterium) and the older np → dπ0 data (which agrees with
NLO theory) may play a large role in the overprediction of
our calculation. This situation becomes even worse when a
cutoff is used to decrease the p-wave amplitudes. For these
reasons, we conclude that further calculations are necessary.
In particular, one should extend the calculation to next order
while examining both the power counting of recoil terms and
the reducibility of loops.

More generally, the existence of multiple mass scales
greatly complicates the power counting for this reaction, and it
is clear that a converging expansion cannot yet be definitively
claimed. Another interesting aspect of this calculation is
the use of a hybrid formalism. One can argue that using
phenomenological potentials to determine the NN wave
functions is equivalent to working to all orders in the EFT.
Thus, there is a mismatch when the calculation of the operator
is truncated at some order. One way to remedy this situation
(introduced by [27]) is to use a cutoff when calculating the
Fourier transforms of the operators. Indeed, such a study for
pion production would be interesting.
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APPENDIX A: LAGRANGE DENSITIES

The ν = 0 Lagrangian of HBχPT (with isovectors in bold
font) with the � included as an explicit degree of freedom
is [28]

L(0) = 1

2
(∂π)2 − 1

2
m2

ππ2 + N †i∂0N

− 1

4f 2
π

N † [τ · (π × π̇)] N + gA

2fπ

N †(τ · �σ · �∇π)N

+�† (i∂0 − δ) � + hA

2fπ

× [N †(T · �S · �∇π )� + H.c.] + · · · , (A1)

where T and �S are the 3/2 → 1/2 isospin and spin transition
operators, and τ and �σ are the Pauli matrices acting on the
isospin and spin of a single nucleon. The “+ · · ·” indicates
that only the terms used in this calculation are shown.

The ν = 1 Lagrangian includes propagator corrections,
recoil terms, and the leading s-wave CSB operator,

L(1) = 1

2mN

N †∇2N + 1

2mN

[
1

4f 2
π

iN †τ · (π × �∇π ) · �∇N

− gA

2fπ

iN †τ · π̇ �σ · �∇N + H.c.

]

+ 1

2mN

�†∇2� − 1

2mN

2hA

2fπ

(iN †T · π̇ �S · �∇� + H.c.)

+ δmN

2
N †

(
τ3 − 2

4f 2
π

π3τ · π

)
N + δmN

2
N †

×
[
τ3 + 2

4f 2
π

(
π3τ · π − τ3π

2
)]

N + · · · . (A2)

Although there are a host of ν = 2 terms, we list the just
the CSB term relevant for this calculation

L(2) = β1

2fπ

N † �σ · �∇π3N + · · · . (A3)

APPENDIX B: DEFINING REDUCED MATRIX ELEMENTS

One can show that for s-wave pions the production operator
is always either a scalar or a rank-two tensor and for p-wave
pions it is always a rank-one tensor. This guides the following
definition of the reduced matrix elements. Note that the
Clebsch-Gordan coefficients that will be summed over as well
as the spherical harmonics describing the angular distribution
of the differential cross section are “pulled out.” First we define
the strong reduced matrix elements,

〈f |M̂str
lπ =0|i〉 =

(
1√
3
A0 + 〈1mf , 20|1mf 〉√

3
A2

)
eiδ1 cg1

×〈1ms, 1mf − ms |1mf 〉Y 1∗
mf −ms

(p̂) (B1)

〈f |M̂str
lπ =1|i〉 = 1√

3
Beiδ0 cg0δmf ,0Y

0
0 (p̂)

+ 〈2mf , 10|1mf 〉√
3

Ceiδ2 cg0Y
2∗
mf

(p̂), (B2)

where ms = m1 + m2, cg0 = 〈1/2 m1, 1/2 m2|0 0〉, and
cg1 = 〈1/2m1, 1/2m2|1ms〉. A0 and A2 are the s-wave re-
duced matrix elements, and B and C are the p-wave reduced
matrix elements. To clarify the notation consider A2, for
example.

A2 =
∫

drr2

[
ud (r)

r
〈(10)1|| + wd (r)

r
〈(12)1||

]

×M̂str
lπ =0,J=2

[
4πi

u1,1(r)

pr
||(11)1〉

]
, (B3)

where the subscript J = 2 on theM̂ indicates that we are using
the portion of the operator that is a rank-two tensor in the space
of total angular momentum. Note also that we have used the
following general definition of a reduced matrix element,

〈(S ′L′)J ′m′
J |T k

q |(SL)JmJ 〉

≡ 〈JmJ , kq|J ′m′
J 〉√

2J ′ + 1
〈(S ′L′)J ′||T k||(SL)J 〉. (B4)

Similarly for the CSB reduced matrix elements,

〈f |M̂csb
lπ =0|i〉

=
(

1√
3
A0 + 〈1mf , 20|1mf 〉√

3
A2

)
eiδ1 cg0Y

1∗
mf

(p̂) (B5)

〈f |M̂csb
lπ =1|i〉

= 〈1mf , 10|1mf 〉√
3

(Bαeiδα + Bβeiδβ )cg1δmf ,ms
Y 0

0 (p̂)

+ 〈1mf , 10|1mf 〉√
3

(Cαeiδα + Cβeiδβ )cg1

×〈1ms, 2mf − ms |1mf 〉Y 2∗
mf −ms

(p̂)
〈2mf , 10|1mf 〉√

3

×Deiδ2 cg1〈1ms, 2mf − ms |2mf 〉Y 2∗
mf −ms

(p̂), (B6)

where A0 and A2 are the s-wave reduced matrix elements and
B, C, and D are the p-wave reduced matrix elements. Also
note that the strong phase shifts have been denoted δL for
each of the three initial channels, the CSB phase shifts are
denoted δL for the 1P1 and 3D2 channels, and the coupled
channel phase shifts are δα and δβ . Because the 3S1 and 3D1

channels are coupled, B and C are split into α and β parts

TABLE III. Strong reduced matrix elements.

Diagram A0 A2 B C

Impulse (w/wfn corr) 0 0 −6.59 32.85
Impulse recoil −5.62 −0.21 1.17 −8.56
RS (w/recoil) 81.12 0 0.54 1.66
� (no cutoff) 0 0 −33.94 37.96
� (� = 417 MeV) 0 0 −10.48 21.60
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TABLE IV. CSB reduced matrix elements.

Diagram A0 A2 Bα Bβ Cα Cβ D

Impulse (× 1
β1

) 0 0 12.23 29.72 −7.80 −15.05 −28.30
RS (× 100MeV

δmstr
N

) −28.83 0 −1.37 1.79 1.48 1.89 −4.92

� (× 1
β1

) 0 0 12.60 −7.71 −8.47 −2.86 22.37

which have different phase shifts in the presence of initial
state interactions.

Finally, for comparison purposes we include a translation
between our reduced matrix elements and those of Ref. [20],

C0 = − 1√
4π

A0e
iδ0

C1 = −i
1√
6π

Beiδ1 (B7)

C2 = i

√
3

4π
Ceiδ2 ,

where the C’s are pp → dπ+ amplitudes and isospin symme-
try has been used to determine the translations.

APPENDIX C: DIAGRAM TECHNIQUE

To establish the diagram technique, consider Fig. 14 in light
of Eq. (5). We write down the amplitude using momentum
space Feynman rules, Fourier transform, and then convolve
with the initial and final state wave functions. The left line
is taken to be “nucleon 1” and we make the approximation
that the exchanged pion carries half of the produced pion’s
energy, q ′ = (ωq/2, �q ′). Momentum conservation gives �q ′ =
�k − �p + �q/2. According to Eq. (A1) the WT vertex contributes
1/(4f 2

π )τ1,bεa3b(ωq/2 + ωq) and the πNN vertex contributes
gA/(2fπ )τ2,a �σ2 · (−�q ′). The momentum space propagator is
−i/(�q ′2 + µ2), where µ2 = m2

π − ω2
q/4 is the effective mass

of the rescattered pion. Next, as discussed in Sec. III A, we

k1 = (k0
1,
�k − �q/2) k2 = (k0

2,−�k − �q/2)

q = (ωq, �q)

q′ = (ωq/2, �q
′)

p1 = (p0, �p) p2 = (p0,−�p)

a
3

FIG. 14. Strong rescattering diagram. Solid lines represent nucle-
ons, dashed lines represent pions, and the pions’ isospin z components
are labeled 3 and a.

Fourier transform with respect to �l = �k − �p,∫
d3l

(2π )3
ei�l·�r �σ2 · �q ′

�q ′2 + µ2
= e−i �q·�r/2

∫
d3q ′

(2π )3
ei �q ′ ·�r �σ2 · �q ′

�q ′2 + µ2

= e−i �q·�r/2 �σ2 · (−i �∇)
e−µr

4πr

= iµ

4π
e−i �q·�r/2h(r)�σ2 · r̂ , (C1)

where h(r) ≡ (1 + 1/µr)e−µr/r .
The deuteron has isospin 0 and the np wave fuction includes

a T = 1, Tz = 0 isospinor |1, 0〉, and thus

〈0, 0|iεa3bτ1,bτ2,a|1, 0〉 = −2. (C2)

At this point, we have (defining M̂′ = M̂/
√

2E12E22Ed )

〈0, 0|M̂′
L|1, 0〉 = −i

gA

2fπ

3ωq/2

8πf 2
π

µh(r)e−i �q·�r/2 �σ2 · r̂ . (C3)

To calculate the diagram with the WT vertex on nucleon 2, we
consider how each part of the left side of Eq. (C3) transforms
under 1 ↔ 2. Because the strong part of the Lagrangian is
invariant under isospin, M̂ is invariant. The initial isospin ket
|1, 0〉 is invariant as well, but |0, 0〉 → −|0, 0〉. Also note that
�r → −�r . Thus,

〈0, 0|M̂′
R|1, 0〉 = −i

gA

2fπ

3ωq/2

8πf 2
π

µh(r)ei �q·�r/2 �σ1 · r̂ . (C4)

Defining �S ≡ (�σ1 + �σ2)/2, �� ≡ (�σ1 − �σ2)/2 and

E ≡ exp(i �q · �r/2) + exp(−i �q · �r/2) (C5)

O ≡ exp(i �q · �r/2) − exp(−i �q · �r/2),

we have the complete rescattering operator,

〈0, 0|M̂′
RS|1, 0〉 = −iγRSh(r)(E �S · r̂ + O �� · r̂), (C6)

where

γRS ≡ gA

2fπ

3ωq/2

8πf 2
π

µ. (C7)

To proceed, we preform a partial wave expansion on E
and O and just keep the leading term. Note that we use the
coordinate system defined by q̂ = ẑ. Then we calculate the
spin-angle matrix elements of the rank zero E �S · r̂ and
the rank one O �� · r̂ operators. The final expression for
〈f |M̂|i〉 simplifies to a radial integral which is computed
numerically. Note that the first term in Eq. (C6) corresponds to
s-wave pions because E carries L = 0 and r̂ carries L = 1, and
thus the operator will change the parity. Likewise, the second
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TABLE V. Strong phase shifts.

δ1 −0.47
δ0 −0.044
δ2 0.16

term corresponds to p-wave pions. In terms of the reduced
matrix elements of Eqs. (B1) and (B2), we have

ARS
0 =

√
2E12E22Ed8πγRS

√
2K1

ARS
2 = 0

(C8)
BRS =

√
2E12E22Ed8πγRS

√
3K0

CRS =
√

2E12E22Ed8πγRS

√
6K2,

where the integrals are defined

K1 ≡
∫

dr r2

[
ud (r)

r
+ wd (r)√

2r

]
j0

(qr

2

)
h(r)

u1,1(r)

pr

K0 ≡
∫

dr r2

[
ud (r)

r
− 2

wd (r)√
2r

]
j1

(qr

2

)
h(r)

u0,0(r)

pr

K2 ≡
∫

dr r2

[
ud (r)

r
− 2

wd (r)√
2r

]
j1

(qr

2

)
h(r)

u2,2(r)

pr
.

(C9)

APPENDIX D: OBSERVABLES

One experimental observable is the analyzing power, Ay ,
defined in Eq. (21). In the strong sector, we find (neglecting
A2, which is numerically small)

Ay=
√

3 cos(φ) sin(θ )A0[
√

2B sin(δ0−δ1)+C sin(δ2−δ1)]

3A2
0+B2+C2+[C2−2

√
2BC cos(δ2−δ0)]P2(cos θ )

,

(D1)

where the angular dependence is that of the nucleon relative
momentum, �p, with respect to the pion momentum, q̂ = ẑ.
To compare with experimental results, which use p̂ = ẑ and
φπ = 0, we need to set φN = π and θN = θπ .

To calculate the differential cross section as well as the
asymmetry, we need to square the sum of all the matrix
elements, sum over mf and average over m1 and m2. First
we define

1

4

∑
|〈f |M̂tot|i〉|2

= M0 + M1P1(cos θ ) + M2P2(cos θ ) + M3P3(cos θ ),

(D2)

TABLE VI. CSB phase shifts.

δ1 −0.44
δα 0.19
δβ −0.43
δ2 0.44

so that

σ = |�q|
64π2s| �p|4πM0 (D3)

Afb = M1 − 1
4M3

2M0
. (D4)

The results for the required quantities are

M0 = 1

48π

[
3
(
A2

0 + A
2
0

) + 3

5

(
A2

2 + A
2
2

)
+ (

B2 + B
2
α + B

2
β + C2 + C

2
α + C

2
β + D

2)
+ 2(BαBβ + CαCβ) cos(δα − δβ)

]
(D5)

M1 =
√

3

24π

{
B

(
A0 − 2

√
1

10
A2

)
cos(δ1 − δ0)

−
√

2C

(
A0 − 1

5
√

10
A2

)
cos(δ1 − δ2)

+
(

A0 + 1√
10

A2

) [(
Bα + 1√

2
Cα

)

× cos(δα − δ1) + (α → β)

]

−
√

3

2

(
A0 − 1

5
√

10
A2

)
D cos(δ2 − δ1)

}
(D6)

M2 = 1

8
√

10π

{
(A0A2 − 2A0A2) − 1

2
√

10

(
A2

2 − 2A
2
2

)

+ 5

3
√

10

[
C2 − 1

2
C

2
α − 1

2
C

2
β + 1

2
D

2

− CαCβ cos(δα − δβ)

]

−
√

5

3
[2BC cos(δ2 − δ0) − BαCα

−BβCβ − (BαCβ + BβCα) cos(δα − δβ)]

−
√

5

3

(
Bα + 1√

2
Cα

)
D cos(δ2−δα)−(α → β)

}

(D7)

M3 = 3

40π

√
3

5

[
CA2 cos(δ1−δ2)− 1√

3
A2D cos(δ2−δ1)

]
.

(D8)

Disregarding the small M3 term, the asymmetry is proportional
to Eq. (D6). The physical content of Eq. (D6)’s first two lines
is the interference of strong p-wave pions with CSB s-wave
pions while the content of the last three lines is strong s-wave
and CSB p-wave.

Table III shows the strong reduced matrix elements and
Table IV the CSB reduced matrix elements. The CSB rescatter-
ing numbers were calculated including the new contributions
discovered by Ref. [14]. The np phase shifts (in radians) that
appear in the cross section according to Eqs. (D5)–(D8) are
given in Tables V and VI.
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