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Indication of divergent baryon-number susceptibility in QCD matter
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The baryon-number density formed in relativistic nuclear collisions versus the chemical potential of the
freeze-out states is systematically studied on the basis of existing measurements. A remarkable power-law
behavior of the baryon-number susceptibility is found at the CERN Super Proton Synchrotron, consistent with the
existence of a QCD critical point at µB,c � 222 MeV, Tc � 155 MeV. The equation of state in different asymptotic
regimes of the critical region is also examined and confronted with freeze-out states in these experiments.
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Baryons produced in collisions of nuclei at relativistic
energies play an important role in the identification of critical
states in strongly interacting matter [1,2]. The baryon-number
density nB(�x) is an appropriate order parameter of the critical
system, equivalent to the chiral field σ (�x) because they
both incorporate in their behavior the universal power laws
and the related exponents of the QCD critical point [1].
A complete set of observables associated either with the
baryon-number density or the σ field may form together with
the corresponding measurements in experiments with nuclei
the basic ingredients and tools for the construction of an
observational theory of critical QCD matter [2,3]. Power-law
fluctuations in the isoscalar component of π+π− pairs near
the two-pion threshold or in the net-baryon system produced
at midrapidity are examples of such observables [2,3].

In this article we search for a singular behavior of baryon-
number susceptibility χB exploiting the existing measurements
of baryochemical potential in a series of freeze-out states
ranging from CERN Super Proton Synchrotron (SPS) to
Relativistic Heavy Ion Collider (RHIC) energies. The guide-
lines in this investigation come from the universal properties
of the equation of state for 3D Ising systems, which specify
the universality class of the QCD critical point [4]. The
observables in this treatment are (a) the baryon number density
nB , properly averaged in a space-time region occupied by
the system, and (b) the baryochemical potential µB and the
temperature T of the corresponding freeze-out state. The
behavior near the critical point is described by the order
parameter ρB = nB − nB,c and the conjugate ordering field
m = µB−µB,c

µB,c
. With these variables the equation of state near

the critical point is written as follows:

Bδ
c |m| = |ρB |δF

(
B1/β t

|ρB |1/β
,
R

ξ

)
; t = T − Tc

Tc

, (1a)

where R is the linear size of the system after the collision of nu-
clei and ξ the corresponding correlation length. Equation (1a)
is based on the conjecture of finite-size scaling [5] and in the
limit of infinite volume (R → ∞) one obtains the universal
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form [6]:

Bδ
c |m| = |ρB |δf

(
B1/β t

|ρB |1/β

)
. (1b)

Obviously, Eq. (1b) is approximately valid also for finite
systems under the constraint R � ξ . In this work we exploit
Eq. (1b) in nuclear systems of different sizes assuming that
this constraint holds. With this assumption finite-size effects
in the equation of state become negligible.

In Eq. (1b) the scaling function f (x) is universal and
properly normalized: f (0) = 1 and f (−1) = 0 [6]. Moreover,
the function f (x) is regular at the point x = 0 and follows
a power law, f (x) ∼ xγ , for large x [6]. The constants
Bc and B in Eq. (1b) are nonuniversal amplitudes and the
critical exponents β, γ , and δ are fixed by the 3D Ising-QCD
universality class (β � 1

3 , γ � 4
3 , δ � 5).

In the notation of Ref. [6] the critical equation of state for
strongly interacting matter, given by the generic Eq. (1b), is
specified as follows [6]:

y = f (x); x = B1/β t

|ρB |1/β
, y = Bδ

c |m|
|ρB |δ (2a)

f (x) = 1 +
∞∑

n=1

f (0)
n xn (x � 0) (2b)

f (x) = xγ

∞∑
n=0

f ∞
n x−2nβ (x → ∞). (2c)

For 3D Ising systems, the coefficients (f (0)
n , f ∞

n ) have
been evaluated in Ref. [6] for n � 5, using renormalization
group techniques. The truncation of the series consisting of
Eqs. (2b) and (2c) at the maximal order n = 5 leads to a
good approximation of f (x) in the limiting regimes (x � 0,
x → ∞) but also guarantees a smooth transition from one
region to the other around the point x � 1.

Within the framework of Eqs. (2) one may approach the
critical point following distinct paths in the QCD phase
diagram: for t = 0 one moves along the critical isotherm,
|ρB | = Bc|m|1/δ , and the baryon-number susceptibility, χB =
∂nB

∂µB
, develops a power-law singularity for m = 0, χB ∼ |m|−ε,

a clear signal of a critical point (ε = δ−1
δ

). For t < 0, m = 0 the
coexistence line, |ρB | = B|t |β , which is a limiting curve of the
family (2a) when m → 0 is traced. In the general case (m �= 0),
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Eq. (2a) penetrates the crossover regime for t > 0 with a
smooth dependence of ρB on t . Finally, in the limit x → ∞,
the system follows the critical isochor (ρB → 0) along which
the baryon-number susceptibility obeys the power-law χB =
Cχ |t |−γ with the amplitude Cχ = Bδ

c

f ∞
0 Bγ/β . This landscape of

universal power laws, extracted from the exact equation of
state, may be confronted with measurements of the observables
nB , µB , and T in relativistic nuclear collisions to capture the
critical region of strongly interacting matter.

The net-baryon density nB (fm−3) is fixed, in this treatment,
at midrapidity, with the averaging scale δy � 2 corresponding
to a region of approximately constant rapidity distribution.
The proper time scale for the freeze-out state is taken 〈τ 〉 �
2.5 fm, on the average, assuming a weak dependence of τ

on A. In this description, the density nB(0) is given in terms
of measurable quantities by the simple expression nB(0) =
A

−2/3
min

πr2
0 〈τ 〉 ( dNB

dy
)0, where ( dNB

dy
)0 denotes the baryon number per

unit of rapidity in the central region. In this expression, the
transverse area of the system is fixed by the standard scale of
nuclear sizes r0 � 1.2 fm and the quantity Amin = Aw

2 in the
case of identical colliding nuclei A + A or Amin = min(A,A′)
in the case of nonidentical colliding nuclei A + A′ (Aw denotes
the number of wounded nucleons).

In Table I we summarize the experiments with nuclei
(A + A′) and the corresponding measurements of the relevant
observables, in a wide range of energies and sizes of the col-
liding systems. The baryonic densities and the corresponding
errors have been calculated using either the formula [7]

B − B̄ = (2.07 ± 0.05)(p − p̄) + (1.6 ± 0.1)(� − �̄) (3)

or the formula [8]

B − B̄ = (1 + a)(p − p̄) + 2
1 + b

1 + 2b
(K+ − K−),

(4)
a = 1.07, b = 0.1.

In Fig. 1 the freeze-out states in experiments at the SPS and
RHIC are located in the diagram nB(0) versus µB . The errors
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FIG. 1. The baryon number density at midrapidity nB (0) versus
baryochemical potential µB is illustrated for a series of freeze-out
states, calculated for 〈τ 〉 = 2.5 fm. The solid line represents the
best-fit solution in the description of the Pb + Pb (

√
s = 17.3 GeV)

central and peripheral data with the critical isotherm (T � 155 MeV)
equation of state. The dashed line corresponds to the HG model
prediction in the same region calculated for average baryon volume
v0 = 7.63 fm3 [21].

in µB (listed in Table I) are taken from the corresponding
references. The errors in nB(0) are due to errors in Amin and
( dNB

dy
)0. Data used in Figs. 1, 2, and 4 are given in Table II.

The experimental points belong to three distinct classes of
measurements: (a) central and peripheral Pb + Pb collisions
at the SPS (NA49 experiments), (b) central collisions of light
nuclei (S) at the SPS (NA35 experiments), and (c) central and
peripheral Au + Au collisions at RHIC. In the states of class (a)
and in particular for the highest SPS energy (

√
s � 17 GeV),

the freeze-out temperature remains practically constant

TABLE I. Measurements of the relevant observables in experiments with nuclei.

A + A′ √
s (GeV) Aw

(
dNB

dy

)
0

µB (MeV) T (MeV) Ref.

(S + S)cen. 19.4 54 ± 3 8.6 ± 1a 220 ± 22 180.5 ± 10.9 [9–11]
(S + Ag)cen. 16.3 90 ± 10 15 ± 1a 242 ± 18 178.9 ± 8.1 [10,11]
(S + Au)cen. 13.5 113 22 ± 2a 175 ± 5 165 ± 5 [9,10,12]
(Pb + Pb)cen. 8.77 349 ± 5 104.4 ± 2.7a, 107.8 ± 3.0b 381.6 ± 6.7 144.6 ± 2.3 [13,14]
(Pb + Pb)cen. 12.3 349 ± 5 77.3 ± 2.6a, 84.2 ± 3.2b 296.0 ± 6.4 151.7 ± 2.9 [13,14]
(Pb + Pb)cen. 17.3 362 ± 8 71.0 ± 2.8a, 81.3 ± 3.6b 247.4 ± 5.7 156.1 ± 1.6 [13,14]
(Pb + Pb)0–5% 17.3 361 75.5 ± 2.2a 248.9 ± 8.2 157.5 ± 2.2 [13,15]
(Pb + Pb)5–12.5% 17.3 304 ± 10 57.7 ± 1.4a 235.2 ± 8.5 150.6 ± 3.2 [13,15]
(Pb + Pb)12.5–23.5% 17.3 226 37.3 ± 0.9a 223.7 ± 9.9 156.6 ± 3.7 [13,15]
(Pb + Pb)23.5–33.5% 17.3 158 24.5 ± 1.8a 210 ± 11 154.7 ± 4.2 [13,15]
(Pb + Pb)33.5–43.5% 17.3 110 14.7 ± 0.4a 213 ± 16 153.2 ± 5.9 [13,15]
(Au + Au)cen.−per. 130 381–4.9 (29.2–0.3)a 28.6–17.6 165 [16–19]

aCalculated using � − �̄.
bCalculated using K+ − K−.
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TABLE II. Data used for the vertical axis values in Figs. 1, 2, and
4. The horizontal axis values are listed in the µB column (Figs. 1 and
2) and in the T column (Fig. 4) of Table I.

A + A′ √
s nB (0) |ρB (0)|

(GeV) (fm−3) (fm−3)

(S + S)cen. 19.4 0.084 ± 0.010a 0.041 ± 0.010a

(S + Ag)cen. 16.3 0.132 ± 0.009a 0.006 ± 0.009a

(S + Au)cen. 13.5 0.193 ± 0.018a 0.067 ± 0.018a

(Pb + Pb)cen. 8.77 0.271 ± 0.008b

(Pb + Pb)cen. 8.77 0.263 ± 0.007a 0.137 ± 0.007a

(Pb + Pb)cen. 12.3 0.212 ± 0.008b

(Pb + Pb)cen. 12.3 0.195 ± 0.006a 0.069 ± 0.006a

(Pb + Pb)cen. 17.3 0.225 ± 0.011b 0.099 ± 0.011b

(Pb + Pb)cen. 17.3 0.196 ± 0.008a 0.070 ± 0.008a

(Pb + Pb)0–5% 17.3 0.209 ± 0.006a 0.083 ± 0.006a

(Pb + Pb)5–12.5% 17.3 0.179 ± 0.006a 0.053 ± 0.006a

(Pb + Pb)12.5–23.5% 17.3 0.141 ± 0.003a 0.015 ± 0.003a

(Pb + Pb)23.5–33.5% 17.3 0.117 ± 0.009a 0.008 ± 0.009a

(Pb + Pb)33.5–43.5% 17.3 0.090 ± 0.003a 0.036 ± 0.003a

(Au + Au)cen.−per. 130 0.0079–0.0016a 0.118–0.124a

aCalculated using � − �̄.
bCalculated using K+ − K−.

(Table I) and the actual value measured in these experiments
is fixed, on average, at the level 〈T 〉 � 155 MeV. As a result,
we may assume that the experimental points of class (a)
belong to an isotherm which, as shown in Fig. 1, develops
a very large derivative ∂nB

∂µB
near the value µB � 222 MeV

of the chemical potential. This observation implies that the
baryon-number susceptibility of strongly interacting matter
may become infinitely large in this region of the phase
diagram (T � 155 MeV, µB � 222 MeV). It is therefore
suggestive that the freeze-out states in class (a) form a critical
isotherm associated with the 3D Ising-QCD critical point.

To verify quantitatively this hypothesis, starting from the
observations made earlier in this article, one must employ the
critical equation of state discussed in the first part of this article
[Eqs. (1) and (2)], in the case where t = 0 (critical isotherm).
In other words, one must be able to describe the freeze-out
states of class (a) in the diagram of Fig. 1 with the equation of
state:

∣∣nB(0) − nB,c

∣∣ = Bc

∣∣∣∣µB − µB,c

µB,c

∣∣∣∣
1
δ

. (5)

With the normalization condition nB = 0 for µB = 0, the
best-fit solution (χ2/dof � 0.59) is illustrated in Fig. 1 and
corresponds to the actual values of the parameters nB,c =
(0.126+0.025

−0.007) fm−3, µB,c = (222 ± 14) MeV (Bc � nB,c) with
confidence level (CL) for the errors 95.4%.

The standard description of heavy-ion freeze-out data is
given by the statistical hadron gas (HG) model [20,21], which
also includes volume corrections to account for the repulsive
part of hadron interaction. The HG model explains quite well
the trend of the data in the phase diagram; however, this
model does not include interactions among hadrons (apart
from a repulsive part treated a la Van der Waals) and so
cannot accommodate any kind of phase transition or critical
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FIG. 2. The same illustration as in Fig. 1. The solid line represents
the combination of the two models of Fig. 1 with a Gaussian weight
extended to a region of magnitude σGauss � 142 MeV around the
critical baryochemical potential µB,c.

point. In the vicinity of the critical point the system should
exhibit universal behavior; thus, the system can be better
described by an equation of state (EOS) belonging to 3D Ising
universality class. The different behavior of the two theories
near the critical point is depicted in Fig. 1. The HG model
(with volume corrections) isotherm (for the same temperature:
T � 155 MeV) predicts a smooth behavior in contrast to
the 3D Ising model, which leads to divergent susceptibility,
consistent with the data in this restricted area. The model that
combines the behavior near to, as well as away from, the
critical point is a two-component model. It is calculated using
the HG model EOS with a properly suited Gaussian weight
which switches on the 3D Ising model and switches off the
HG model as one approaches the critical point.

In Fig. 2, the two-component description of the baryon-
number susceptibility is illustrated with the universal 3D
Ising component dominating the nearby region of the critical
point. It is of interest to note that as we depart from the
critical point, the hadron gas becomes important and dominates
the susceptibility with a nonuniversal component for µB >

400 MeV.
In summary, we have been able to isolate a class of

freeze-out states corresponding to central and peripheral
Pb + Pb collisions at

√
s � 17 GeV which form a critical

isotherm associated with a QCD critical point at a location
in the phase diagram fixed by the values Tc � 155 MeV,
µB,c � 222 MeV. The baryon-number susceptibility, χB ∼
|µB − µB,c| 1−δ

δ , diverges at the critical point according to a
universal power law, fixed by the critical exponent δ [Eq. (5)].
In Fig. 3, the singularity of χB corresponding to solution (5) is
illustrated together with the results of a crude differentiation
of nearby experimental points in Fig. 1. The trend is consistent
with the derivative of solution (5), in particular if we take into
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FIG. 3. The baryon-number susceptibility χB for T = Tc versus
µB . The solid line corresponds to the derivative of the best-fit solution
shown in Fig. 2. The dashed line corresponds to the 3D Ising
case with nB,c = 1.71 fm−3 and µB,c = 229 MeV (values within the
CL = 95.4% error of the best-fit parameters of Fig. 1). The data
points are produced using neighboring differences.

account the errors of the fitted parameters. Data used in Fig. 3
are given in Table III.

In this last part of our treatment we attempt to exploit,
beyond the critical isotherm, the universal properties of the
critical equation of state which are rigorously incorporated
in representation (2). To this end, in Fig. 4 we consider the
diagram |ρB(0)| versus T in which the freeze-out states are
properly located together with the critical point found in our
approach. With the help of Eqs. (2) we have constructed,
in the same figure, the family of curves corresponding to
different values of m and representing the critical equation
of state in its full capacity (critical surface). To obtain a line
of constant m we first give a certain value to ρB(0), and so,
according to Eq. (2a), y is fixed. Then we solve numerically
the equation x = f (x) [Eqs. (2b) and (2c)] to obtain x and
finally the temperature T through Eqs. (2a) and (1). Across the
family of curves of constant m we have drawn the curve x � 1

TABLE III. Data used in Fig. 3. The susceptibility is calculated
between neighbors for the

√
s = 17.3 GeV Pb + Pb data for various

centralities i, j , χB (0) = nB (0)j −nB (0)i
µB,j −µB,i

. The corresponding baryochem-
ical potential µB is calculated as the average of the relevant chemical
potentials µB,j , µB,i . The errors in nB (0)i,j and µB,i,j are taken from
Table II.

i, j χB (0) µB

(%) (fm−3 MeV−1) (MeV)

0–5, 5–12.5 0.0022 ± 0.0006 242.1 ± 5.9
5–12.5, 12.5–23.5 0.0033 ± 0.0006 229.5 ± 6.5
12.5–23.5, 33.5–43.5 0.0048 ± 0.0004 218.4 ± 9.4
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FIG. 4. The equation of state |ρB | versus T , for m = const. The
curve m = 0, T � Tc corresponds to the coexistence line and for
T � Tc to the critical isochor. The experimental freeze-out states
are located within the area spanned by the family of curves of
constant m.

[Eq. (2a)] which, as it was already explained, corresponds to
a smooth transition from representation (2b) to the expansion
(2c) of the scaling function f (x). For m = 0, T � Tc, the
coexistence curve has a normal scaling behavior near the
critical point, |ρB(0)| ∼ |t |β , and for B = 3.6/(πr2

0 〈τ 〉) a good
description of the peripheral freeze-out states in class (a) is
obtained along this curve. In general, the lines of constant m

in Fig. 4 provide us with guidance for the identification of
the experimental freeze-out states as critical states. In fact,
the cluster of experimental points in the area |m| � 0.09,
corresponding to a domain in chemical potential 210 � µB �
250 MeV, is an example of freeze-out systems consistent
with the critical equation of state. However, the freeze-
out system at RHIC (Au + Au,

√
s � 130 GeV) violates

strongly the critical equation of state and therefore a drastic
change of the collision parameters is needed (lower energy,
smaller systems) to capture freeze-out states consistent with
criticality [22].

In conclusion, we have shown that the universal form
of the critical equation of state for systems belonging to
the 3D Ising universality class [6] can be fully exploited in
experiments with nuclei to identify critical QCD states at the
freeze-out regime. In this approach, and in accordance with
the universality principle, we have replaced in the scaling
function of the Ising model (critical equation of state) the
order parameter, the reduced temperature, and the external field
(H ) with the net-baryon density nB , the reduced freeze-out
temperature (t), and the chemical potential (m), respectively.
This choice avoids the general construction discussed recently
[23] in which a linear combination of the reduced temperature
and chemical potential appears in the replacement described
earlier in this article. Because the exact solution of the QCD
critical line is not yet known, this ambiguity can be removed
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only with the help of measurements. In fact, assuming that
the critical line (coexistence curve) in the phase diagram
(nB , T ) of strongly interacting matter follows closely the
freeze-out curve in the same diagram, existing measurements
(especially at the SPS) suggest that the freeze-out states near
the critical point are well described by the Ising critical line
as shown in Fig. 4 (coexistence curve: m = 0, T � Tc). This
remark justifies a posteriori the choice of the conventional
replacement (t, H

Hc
) → (t, m) in our treatment, which leads to

the critical equation of state (1b).
Finally, with the help of Eq. (1b) we have found that existing

measurements of nB , T , µB at SPS energies, reveal, within
experimental error, a class of freeze-out states belonging to the

critical isotherm of the QCD universality class and leading, as
a consequence, to a divergent baryon-number susceptibility.
This phenomenon is a strong indication for the existence of a
QCD critical point in the neighborhood of these states (µB,c �
222 MeV, Tc � 155 MeV). The overall analysis suggests that
new, high-precision measurements in experiments with light
nuclei (S + S, Si + Si, C + C) are needed (SPS-NA61, RHIC
at low energies) to discover the exact location of the QCD
critical point in the phase diagram [22,24].
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