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Influence of low-energy scattering on loosely bound states
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Compact algebraic equations are derived that connect the binding energy and the asymptotic normalization
constant (ANC) of a subthreshold bound state with the effective-range expansion of the corresponding partial
wave. These relations are established for positively charged and neutral particles, using the analytic continuation of
the scattering (S) matrix in the complex wave-number plane. Their accuracy is checked on simple local potential
models for the 16O + n, 16O + p, and 12C + α nuclear systems, with exotic nuclei and nuclear astrophysics
applications in mind.
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There is a renewed interest today in the quantum description
of the low-energy scattering of two particles. This interest
is mostly triggered by condensed-matter and ultracold-gases
physics, but similar studies are performed in other fields.
Nuclear physicists in particular are studying low-energy
collisions in the context of nuclear astrophysics and of exotic
nuclei. A problem specific to nuclear physics is that positively
charged particles repel each other, which makes cross sections
extremely small at low energy and hence hard or impossible to
measure. Theory thus plays an important role here but is made
more complicated by the Coulomb interaction.

Particular problems occur in the presence of weakly bound
states: As a result of the wave nature of quantum phenomena,
these states play a role similar to resonances leading to
huge variations of cross sections. Such subthreshold bound
states occur both in neutral cases (e.g., magnetic Feshbach
resonances in atom-atom collisions or the “historical” deuteron
bound state) and in charged cases. Famous examples are the
lowest 2+ and 1− states of the 16O nucleus, which, lying just
below the 12C + α threshold, are thought to strongly influence
the 12C(α,γ )16O capture cross section and hence the carbon
to oxygen ratio in red giant stars [1,2]. Essential quantities
required for the theoretical description of this reaction are
the binding energy of these states and their asymptotic
normalization constant (ANC), which characterizes the tail
of their slowly decreasing wave function [see Eq. (12)]. While
the energy can be precisely measured, the ANC is still rather
poorly known: It is not directly accessible experimentally and
various indirect methods were proposed to infer it. Among
them, a high-precision measurement of elastic scattering is
believed to give crucial information [3,4], but the ANC
extraction from this measurement relies on a reaction-matrix
analysis [5], which is made rather delicate by the description
of the nonresonant cross section [6].

In the present work, a more fundamental approach is pro-
posed to relate scattering properties to bound-state properties,
in particular to the ANC, in the case of a weakly bound state.
This approach is based on general S-matrix properties [7–9]:
Nonresonant scattering states are described with the help of the
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effective-range expansion while bound states are described in
terms of poles of the S matrix in the complex plane. Combining
these allows us to derive compact algebraic equations that
prove particularly useful and promising, as illustrated by the
subsequent examples. In the following, we mostly concentrate
on the charged case, but also discuss the simpler neutral case,
which leads to interesting comparisons.

Let us consider two particles of charges Z1, Z2, and of
reduced mass µ. We denote the center-of-mass energy by
E = h̄2k2/2µ and the dimensionless Sommerfeld parameter
by η = 1/aBk, where k is the relative wave number and
aB = h̄2/Z1Z2e

2µ is the nuclear Bohr radius. The wave
number is allowed to be complex and the upper-half complex
plane corresponds to the physical energy sheet [10]. The
scattering matrix Sl for a partial wave l in the presence of
both a Coulomb and a short-range (e.g., nuclear) interaction is
defined by [11]

Sl(k) = e2iσl e2iδl = �(l + 1 + iη)

�(l + 1 − iη)
× cot δl(k) + i

cot δl(k) − i
. (1)

In these expressions, the first factor is the pure Coulomb
scattering matrix, with σl(k) = arg �(l + 1 + iη) being the
Coulomb phase shift. The second factor is due to the additional
short-range interaction, with δl being the Coulomb modified,
or additional, short-range phase shift.

In the following, we are interested in low physical energies
(either positive or negative) and hence wish to expand the
functions of interest around the origin E = 0. Since the
S matrix defined earlier has a rather complicated analytical
structure in the complex energy plane due to the Coulomb
interaction, we follow Refs. [12,13] and introduce a function
with simpler analyticity properties

Fl(k
2) = e2iδl (k) − 1

2i
× l!2e2iσl (k)eπη

k2l+1�2(l + 1 + iη)
(2)

= 1

cot δl(k) − i
× l!2a2l+1

B (e2πη − 1)

2πwl(η2)
, (3)
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where two alternative expressions are given for both factors.
In the last equation we used

wl(η
2) =

l∏
n=0

(
1 + n2

η2

)
. (4)

Next, we define on the physical energy sheet [7,12]

h(η2) = ψ(iη) − ln(iη) + (2iη)−1, (5)

where ψ is the digamma function [15]. This allows construct-
ing the effective-range function

Kl(k
2) = 1

Fl(k2)
+ 2wl(η2)

l!2a2l+1
B

h(η2), (6)

which is holomorphic in the physical energy sheet, with a
cut along part of the negative real axis [12]. This function
is analytic and regular at the origin, which implies it can be
Taylor expanded [see Eq. (16)]. Moreover, it is real for real
energies.

In the neutral case things are much simpler: By taking
η = 0 in Eqs. (1) and (2), the Coulomb factors simplify and
the additional phase shift reduces to the usual phase shift. An
effective-range function, with the same properties as in the
charged case, can be defined as [10]

Kl(k
2) = 1

Fl(k2)
+ ik2l+1 (η = 0). (7)

Let us now connect the effective-range function with
physical properties for both positive and negative energies.
For positive energies, it is related to the scattering phase shift.
In the charged case, Eq. (3) yields [12,14]

Kl(k
2) = 2wl(η2)

l!2a2l+1
B

[
π

e2πη − 1
cot δl(k) + �h(η2)

]
, (8)

where the imaginary part has vanished because of the value of
the digamma function for an imaginary argument [15]. In the
neutral case, Eq. (2) implies [10]

Kl(k
2) = k2l+1 cot δl(k) (η = 0). (9)

For negative energies, bound states correspond to poles
of the S matrix on the positive imaginary k axis [10]. Let
k = iκb be the location of such a pole and Eb = −h̄2κ2

b /2µ

and ηb = −i/aBκb be the corresponding binding energy and
Sommerfeld parameter. Equation (2) shows that this bound
state corresponds to a zero of F−1

l and Eq. (6) implies that [7]

Kl(−κ2
b ) = 2wl

(
η2

b

)
l!2a2l+1

B

h
(
η2

b

)
. (10)

In the neutral case, Eq. (7) implies instead that

Kl

( − κ2
b

) = (−1)l+1κ2l+1
b (η = 0). (11)

These equations relate the effective-range function to the
bound-state energy. Though Eq. (11) is frequently used in
the literature, in particular to treat the l = 0 deuteron bound
state [10], Eq. (10) is less known.

The ANC Cb of this bound state is defined by the asymptotic
behavior of its normalized radial wave function Rb(r)

Rb(r) ∼
r→∞ Cb exp(−κbr)/r |ηb|+1. (12)

Under specific conditions, this ANC is related to the residue
of the S-matrix bound-state pole by [9,10,16,17]

Sl(k) ∼
k→iκb

(−1)l+1ie−πηb
|Cb|2

k − iκb

. (13)

In Ref. [18], this relation is shown to be valid for potentials
decreasing faster than exp(−2κbr). It thus holds for all bound
states of cutoff potentials and for weakly bound states of
potentials decreasing fast enough, a condition assumed in the
present work. In other cases, in particular for deeply bound
states of exponentially decreasing potentials, Eq. (13) can
be violated [6]. Combining Eqs. (1), (2), and (13) implies
that [7,19,20]

|Cb| = κl
b

�(l + 1 + |ηb|)
l!

⎡
⎣−dF−1

l

dk2

∣∣∣∣∣
k2=−κ2

b

⎤
⎦

− 1
2

, (14)

which provides a second relationship between the effective-
range function and the bound-state properties.

Equations (10), (11), and (14) are quite general; let us now
particularize them to small binding and scattering energies
by using the Taylor expansions of the various holomorphic
functions introduced earlier for k2 → 0 (i.e., for η2 → ∞).
The expansion of function wl directly ensues from its defini-
tion (4); function h expands as

h(η2) = 1

12η2
+ 1

120η4
+ 1

252η6
+ O

(
1

η8

)
, (15)

and we write the first terms of function Kl as

Kl(k
2) = − 1

al

+ rl

2
k2 − Plr

3
l k4 + Qlk

6 + O(k8). (16)

The pole location conditions (10) and (11) lead to different
relations for the charged and neutral cases. Truncating Eq. (10)
to the first order in E leads to

1

al

≈
(

− rl

2
+ 1

6a2l−1
B l!2

)
κ2

b , (17)

while truncating Eq. (11) leads to

1

al

≈ − rl

2
κ2

b + (−1)lκ2l+1
b (η = 0). (18)

Both equations directly relate the scattering length al to the
binding energy, provided the effective range rl is known. They
imply that the scattering length is large when the binding
energy is small, rl being, in general, rather independent of the
binding energy. Note that, for l = 0, Eq. (18) is the well-known
Schwinger relation [21]; for a very small binding energy the
second term then dominates, which implies that the scattering
length becomes independent of the effective range. For l > 0,
on the contrary, the first term dominates and Eq. (18) becomes
closer to Eq. (17).

Combining these equations with Eq. (14) provides useful
expressions for the ANC in terms of the scattering length. For
the charged case, one gets

|Cb| l!

�(l + 1 + |ηb|) ≈ κl+1
b

√
al ∝ κl

b, (19)
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which generalizes Eq. (45) of Ref. [9] to l � 0. This equation
is actually also valid for the neutral case with l > 0, where the
fraction of the first member simplifies. For l = 0, one gets the
very different result [10]

|Cb| ≈
√

2/a0 ≈
√

2κb (η = l = 0). (20)

These simple equations clearly illustrate the possibility of
directly extracting the ANC from the binding energy and
the elastic-scattering phase shifts. However, let us stress that
their validity is limited to low energies since they rely on a
first-order effective-range expansion in energy. Higher-order
expansions can be obtained [see, e.g., Eq. (21)], but lead
to rather heavy expressions not reproduced here for brevity.
Above a few terms, a purely numerical treatment is probably
most appropriate. Let us also note that the precision on the
ANC expected from these equations strongly depends on the
precision available on the scattering length. In the presence
of a subthreshold bound state, we have seen earlier that
the scattering length is very large. Since it appears in the
effective-range expansion (16) with a negative power, it has a
much smaller influence on this expansion than the following
terms. Hence, it is typically difficult to determine al from
scattering phase shifts in such a case. Equations such as (17)
and (18) then serve as a useful tool: They allow one to
calculate al from the binding energy and the next terms of
the expansion, which are easier to determine from scattering
experiments.

Let us now check the accuracy of these results on typical
nuclear physics examples. We first study the binding-energy
dependence of ANC’s for Woods-Saxon potentials of radius
3.023 fm, with and without Coulomb interactions. These
potentials schematically represent the 16O + p and 16O + n

systems. For several values of the potential diffuseness, we
vary the depth of these potentials to scan a wide range
of binding energies. For each binding energy, we calculate
numerically the ANC. The results for the s, p, and d waves
are presented in Fig. 1 for the charged case and Fig. 2 for the
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FIG. 1. ANC of a schematic 16O + p bound state as a function
of its binding energy, for the l = 0, 1, and 2 partial waves and three
different values of the potential diffuseness a. The two 17F physical
bound states are indicated by arrows.
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FIG. 2. Same as Fig. 1, but for the 16O + n system.

neutral case. The noticeable simplicity of these curves up to
about 1 MeV can be easily explained by Eqs. (17) through (20):
The ANC’s have the expected energy dependence, showing the
small sensitivity of the effective range rl to the potential depth.
On the contrary, its sensitivity to the potential diffuseness is
larger and increases with the magnitude of the barrier due to
the Coulomb and/or centrifugal potentials. For the remarkable
s-wave neutral case [Eq. (20)], the behavior at a small binding
energy becomes independent of the potential, a situation also
encountered for the deuteron bound state [21].

The 17F and 17O nuclei both have an s and a d bound
state, well represented by the earlier potentials. Their binding
energies are indicated by arrows in Figs. 1 and 2. For the
17F nucleus, the s state is weakly bound, which suggests a
one-proton halo structure. Quantitatively, Eq. (19) provides
the ANC of this state with an accuracy better than 0.1%.
Equation (17) predicts a0 with an error of 5%, while a
generalization to the second order in energy reduces this error
to 0.4%, which shows the fast convergence of our method.
Now, for this system, a second-order effective-range expansion
turns out to be sufficient to fit experimental scattering data on a
rather wide energy range (a few MeV) [14]. The present results
thus show that both the scattering length and the bound-state
ANC can be precisely deduced from these data.

Let us now turn to a more important example from the phys-
ical point of view. The first 2+ excited state of 16O, which lies
245 keV below the 12C + α threshold, plays a key role in the
calculation of the 12C(α,γ )16O radiative capture cross section
[1,2]. This state is known to have a d-wave 12C + α structure
and is reasonably well described by a 12C + α potential model
[6]. Here, we choose a nuclear Gaussian potential inspired by
Ref. [22], which reads −112.3319 exp(−r2/2.82) MeV, where
r is the internucleus distance in fm and a Coulomb potential
12e2erf(r/2.5)/r , where erf is the error function [15]. This
potential has a bound state at Eb = −245.0 keV, corresponding
to κb = 0.1876 fm−1 with h̄2/2µ = 6.964 MeV fm2 and aB =
0.8060 fm. Numerically, one finds the ANC Cb = 1.384 ×
105 fm−1/2. Let us now try to recover this value with Eq. (19).
The numerical method of Ref. [23] provides a2 = 5.891 ×
104 fm5, r2 = 0.1580 fm−3, and P2 = −65.96 fm8 for this
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potential. Equation (19) then leads to Cb ≈ 1.23 × 105 fm−1/2

(11% error), while Eq. (17) provides a2 ≈ 4.76 × 104 fm5

(19% error). A generalization of these equations to higher
orders thus seems necessary in this case. Up to the third order
in energy the ANC formula reads

|Cb| ≈ κ3
b�(3 + |ηb|)/2√

1
a2

− (
P2r

3
2 + 17

80aB

)
κ4

b − 2
(
Q2 − 191aB

1008

)
κ6

b

. (21)

By neglecting the last two terms of the denominator, one
recovers Eq. (19). Adding the second term leads to Cb ≈
1.414 × 105 fm−1/2 (3% error). To determine the third term,
we need the next coefficient of the effective-range expansion;
for that, we fitted the numerical phase shifts with Eqs. (8)
and (16), which provides Q2 = 0.1411(2) fm. Adding this
term strikingly improves the fit: Within a 1% precision, the
phase shifts are fitted up to 80 keV without it and up to 700 keV
with it. This improvement is very promising as experimental
data, which are only available above 750 keV [24], could
probably be fitted with a limited number of terms in the
effective-range expansion. With the three terms, Eq. (21)

provides Cb ≈ 1.379 × 105 fm−1/2 (0.4% error), a remarkable
precision for a third-order effective-range expansion.

In conclusion, starting from general S-matrix properties,
we establish equations connecting the effective-range function
with the energy and ANC of bound states for an arbitrary
partial wave and for both charged and neutral systems. By
using the effective-range series expansion, we deduce from
these relations compact equations [Eqs. (17)– (21) possibly
extended to higher orders] that relate the energy and ANC of a
subthreshold bound state to the series coefficients (scattering
length, effective range, etc.). We checked on test cases that
these relations are precise and can be used to extract a
subthreshold bound state ANC from scattering data in a
model-independent way when precise experimental phase
shifts are available. We plan to apply our method to the
12C + α experimental phase shifts of Refs. [3,4] in the near
future.
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