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D. Blaschke,1,2,* F. Sandin,3,4,† T. Klähn,1,5,‡ and J. Berdermann6,§
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A scenario is suggested in which the three light quark flavors are sequentially deconfined under increasing
pressure in cold asymmetric nuclear matter as found, for example, in neutron stars. The basis for this analysis is
a chiral quark matter model of Nambu–Jona-Lasinio (NJL) type with diquark pairing in the spin-1 single-flavor,
spin-0 two-flavor, and three-flavor channels. Nucleon dissociation sets in at about the saturation density, n0,
when the down-quark Fermi sea is populated (d-quark drip line) because of the flavor asymmetry induced by
β equilibrium and charge neutrality. At about 3n0, u-quarks appear and a two-flavor color superconducting (2SC)
phase is formed. The s-quark Fermi sea is populated only at still higher baryon density, when the quark chemical
potential is of the order of the dynamically generated strange quark mass. Two different hybrid equations of
state (EOSs) are constructed using the Dirac-Brueckner Hartree-Fock (DBHF) approach and the EOS of Shen
et al. [H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi, Nucl. Phys. A637, 435 (1998)] in the nuclear matter
sector. The corresponding hybrid star sequences have maximum masses of 2.1 and 2.0 M�, respectively. Two-
and three-flavor quark-matter phases exist only in gravitationally unstable hybrid star solutions in the DBHF
case, whereas the Shen-based EOSs produce stable configurations with a 2SC phase component in the core of
massive stars. Nucleon dissociation via d-quark drip could act as a deep crustal heating process, which apparently
is required to explain superbursts and cooling of x-ray transients.
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I. INTRODUCTION

The phenomenology of compact stars is intimately con-
nected to the equations of state (EOSs) of matter at densities
well beyond the nuclear saturation density, n0 = 0.16 fm−3.
Compact stars are, therefore, natural laboratories for the
exploration of baryonic matter under extreme conditions,
complementary to those created in terrestrial experiments
with atomic nuclei and heavy-ion collisions. Recent results
derived from observations of compact stars provide
serious constraints on the nuclear EOS (see Ref. [1] and
references therein). A stiff EOS at high density is required
to explain the high compact-star masses and radii, for which
recent observations have provided growing evidence. A mass
of M ∼ 2.0 M� has been reported for some low-mass x-ray
binaries (LMXBs; for example, 4U 1636-536 [2]) based on
the assumption that the abrupt drop in the coherence of the
lower kilohertz quasiperiodic oscillation (QPO) may be related
to the innermost stable circular orbit (see also Ref. [3]).
From observations of the bright isolated neutron star RX
J1856.5-3754 (or RX J1856 in shorthand) in the optical and
x-ray frequency ranges, a conservative lower limit of the
apparent neutron star radius of R∞ = 16.5 km is derived [4].
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This value corresponds to a true (de-redshifted) radius of
R = 14 km for a 1.4-M� neutron star or, equivalently, to a
star mass of at least 2.1 M� when the radius does not exceed
12 km [1]. Another example is EXO 0748-676, a LMXB
for which the compact-star mass and the radius have been
constrained to M � 2.10 ± 0.28 M� and R � 13.8 ± 0.18 km
[5] by a simultaneous measurement of the Eddington limit,
the gravitational redshift, and the flux of thermal radiation.
However, the status of the results for the latter object is unclear,
because the gravitational redshift of z = 0.35 observed in
the x-ray burst spectra [6] has not been confirmed, despite
numerous attempts. Further constraints on the masses and
radii of compact stars have been reported [7,8], but they
deserve a careful discussion, which is beyond the scope of
the present article. Although compact-star phenomenology
apparently points toward a stiff EOS at high density, heavy-ion
collision data for kaon production [9] and elliptic flow [10] set
an upper limit on the stiffness of the EOS [1].

A key question regarding the structure of matter at high
density is whether a phase transition to quark matter occurs
inside compact stars and whether it is accompanied by
unambiguous observable signatures. It has been argued that
the observation of a compact star with high mass and large
radius, as reported for EXO 0748-676, would be incompatible
with a quark core [5], because quark deconfinement softens the
EOS and lowers the maximum mass and corresponding radius.
However, Alford et al. have demonstrated [11] with a few
counterexamples that quark matter cannot be excluded by this
argument. In particular, for a recently developed hybrid-star
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FIG. 1. (Color online) Schematic of chemical potentials (columns) and sequential deconfinement of quarks with increasing baryon density
(from left to right). The flavor-dependent thresholds for chiral symmetry restoration (deconfinement) are approximately given by the dynamically
generated quark masses mf , f = u, d, s (dashed lines). With increasing quark chemical potential, µ = (µu + µd )/2, the d-quark chemical
potential is the first to reach the threshold in isospin asymmetric matter. Nucleon dissociation therefore sets in as d-quarks are deconfined. Still
higher µ is needed to form two-flavor and three-flavor quark matter phases.

EOS [12], based on the Dirac-Brueckner Hartree-Fock
(DBHF) approach in the nuclear sector and a three-flavor chiral
quark model [13], stable hybrid stars with masses ranging
from 1.2 to 2.1 M� is obtained, in accordance with modern
mass-radius constraints (see also Ref. [14]). In this model,
a sufficiently low critical density for quark deconfinement
has been achieved via a strong diquark coupling, while a
repulsive vector mean field in the quark-matter sector resulted
in sufficient stiffness to achieve a high maximum mass of the
compact-star sequence. The corresponding hybrid EOS for
symmetric matter was shown to fulfill the constraints derived
from elliptic flow in heavy-ion collisions. The present work
discusses a new scenario that comprises a sequential transition
from nuclear matter to deconfined quark matter, which could
play an important role in asymmetric matter, particularly for
the phenomenology of compact stars.

Chiral quark models of Nambu–Jona-Lasinio (NJL) type
with dynamic chiral-symmetry breaking have the property
that the symmetry is restored (and quarks are deconfined)
separately for each flavor. When solving the gap and charge-
neutrality equations self-consistently, the chiral-symmetry
restoration for a given flavor occurs when the chemical
potential of that flavor reaches a critical value that is ap-
proximately equal to the dynamically generated quark mass,
µf = µc,f ≈ mf , where f = u, d, s. In asymmetric matter,
the quark chemical potentials are different. Consequently,
the NJL model behavior suggests that the critical density of
deconfinement is flavor dependent (see Fig. 1). In this scenario,
the down-quark flavor is the first to drip out of nucleons when
the density increases, followed by the up quark flavor and
eventually also by strange quarks. This behavior is absent in
simple and commonly applied bag-model EOSs, because they
are essentially flavor blind.

Under the β-equilibrium condition in compact stars, the
chemical potentials of quarks and electrons are related by
µd = µs and µd = µu + µe. The mass difference between
the strange and the light quark flavors, ms � mu,md , has two
consequences: (1) the down and strange quark densities are

different, so charge neutrality requires a finite electron density
and, consequently, (2) µd > µu. When the baryon chemical
potential is increased, the d-quark chemical potential is
therefore the first to reach the critical value, µc,d ≈ md , where
the chiral symmetry becomes (approximately) restored in a
first-order transition and deconfined d-quarks appear. Due
to the finite value of µe, the u-quark chemical potential is
still below µc,u ≈ mu, whereas the s-quark density is zero
due to the high s-quark mass. A single-flavor d-quark phase,
therefore, forms in coexistence with the positively charged
nuclear-matter medium.

Why has this interesting scenario gone unnoticed? One
reason is that bag models, which are commonly used to
describe quark matter in compact-star interiors, cannot
address sequential deconfinement. Another reason is that the
single-flavor d-quark phase is negatively charged and cannot
be neutralized with leptons. It was therefore disregarded in
dynamic approaches such as NJL models, which in practice
are used to describe the deconfined and “pure” quark matter
phase only. In the following we discuss the single-flavor
phase for the first time, under the natural assumption that the
neutralizing background is nuclear matter. Because nucleons
are bound states of quarks, a mixed phase of nucleons and
free d-quarks could naturally arise when nucleonic bound
states dissociate (Mott effect).

II. PHASE TRANSITION TO QUARK MATTER:
NUCLEON DISSOCIATION

The task to develop a unified description of the phase
transition from nuclear matter to quark matter on the quark
level, as a dissociation of three-quark bound states into their
constituents in the spirit of a Mott transition, has not yet been
solved. Only some aspects have been studied within a nonrela-
tivistic potential model [15,16] and within the NJL model [17].
Here we consider a chemical equilibrium reaction of the form
n + n ↔ p + 3d, which results in a mixed phase of nucleons
and down quarks once the d-quark chemical potential exceeds
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the critical value. This scenario is analogous to the dissociation
of nuclear clusters in the crust of neutron stars (neutron drip
line) and the effect may therefore be called the d-quark drip
line. The quark and nucleon components are approximated as
subphases, which are described by separate models.

For the nuclear matter subphase we use two alternatives:
(1) the DBHF approach [18–22] with the relativistic Bonn
A potential, where the nucleon self-energies are based on
a T-matrix obtained from the Bethe-Salpeter equation in
the ladder approximation, and (2) the EOS by Shen et al.
[23], which is based on relativistic mean-field theory and
includes the contribution of heavy nuclei, described within
the Thomas-Fermi approximation. Despite its drawbacks, this
EOS is instructive because it is available for a large enough
range of densities, temperatures, and isospin asymmetries
that it qualifies for applications in studies of supernova
collapse and protoneutron star evolution. Only very recently
could significant progress be made, for example, in gen-
eralizing the nuclear-statistical equilibrium approach [24]
and in implementing a quantum-statistical description for
cluster formation and dissociation (the Mott effect) [25]. The
quark-matter phase is described within a three-flavor NJL-type
model, which includes diquark pairing channels [13,26–28].
This approach is justified because the µ > 0 domain of the
quantum chromodynamics (QCD) phase diagram is rather
poorly understood. A more fundamental approach, like solving
the in-medium QCD Schwinger-Dyson equations in a concrete
QCD model [29–31], is demanding and, therefore, beyond
scope of this work. The path-integral representation of the
NJL partition function is given by

Z(T , µ̂) =
∫

Dq̄Dq exp

{∫ β

0
dτ

×
∫

d3x[q̄(i/∂ − m̂ + µ̂γ 0)q + Lint]

}
, (1)

Lint = GS

⎧⎨
⎩

8∑
a=0

[(q̄τaq)2 + (q̄iγ5τaq)2]

+ ηD0

∑
A=2,5,7

j
†
D0,AjD0,A + ηD1j

†
D1jD1

⎫⎬
⎭ , (2)

where µ̂ = 1
3µB + diagf ( 2

3 ,− 1
3 ,− 1

3 )µQ + λ3µ3 + λ8µ8 is
the diagonal quark chemical potential matrix and m̂ =
diagf (mu,md,ms) is the current-quark mass matrix. For
a = 0, τ0 = (2/3)1/21f ; otherwise τa and λa are Gell-Mann
matrices acting in, respectively, flavor and color spaces.
C = iγ 2γ 0 is the charge conjugation operator and q̄ = q†γ 0.
The scalar quark-antiquark current-current interaction is given
explicitly and has coupling strength GS . The three-momentum
cutoff, �, is fixed by low-energy QCD phenomenology (see
Table I of Ref. [32]). The spin-0 and spin-1 diquark currents
are jD0,A = qT iCγ5τAλAq and jD1 = qT iC(γ1λ7 + γ2λ5 +
γ3λ2)q. Although the relative coupling strengths ηD0 and ηD1

are essentially free parameters, we restrict the discussion to
the Fierz values, ηD0 = 3/4 and ηD1 = 3/8 (see Ref. [33]).
Color superconducting phases in QCD with one flavor were
first discussed in Refs. [34–36], where it was also pointed out
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FIG. 2. (Color online) Solution of the NJL gap equations for
isospin-asymmetric charge-neutral matter. The upper (lower) panel
corresponds to the hybrid EOS based on the DBHF (Shen) nuclear
EOS. The asymmetry at a given value of the baryon chemical
potential, µB , is different in the two cases because the charge density
of nuclear matter depends on the model used.

that the gap is of order 1 MeV in the spin-1 color-spin-locking
(CSL) phase. This feature of the CSL phase is robust. See
Ref. [37] for an analysis of our isotropic ansatz for the spin-1
diquark current, Ref. [38] for its generalization to the nonlocal
case, and Ref. [39] for a self-consistent Dyson-Schwinger
approach.

The gaps and the renormalized masses are determined
by minimization of the mean-field thermodynamic potential
under the constraints of charge neutrality and β equilibrium
(see Fig. 2; for further details, see Refs. [13,26–28]). Different
phases are characterized by different values of the order
parameters (masses, gaps, etc.) and correspond to different
local minima of the thermodynamic potential. For a partic-
ular choice of the baryon chemical potential there may be
several local minima of the thermodynamic potential. The
physical solution is that with the lowest free energy or,
equivalently, the highest pressure. Figure 3 shows the pressure
of various phase constructions. Because we use separate
models for the confined and deconfined states of quarks,
the dissociation of nucleons does not appear automatically
within the model. Instead, for a given value of the baryon
number chemical potential, three different phase construc-
tions are considered: (1) the homogenous charge-neutral and
β-equilibrated nuclear matter phase; (2) the homogenous
charge-neutral and β-equilibrated quark matter phase; and
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FIG. 3. (Color online) Pressure of matter in β equilibrium for
different nuclear-matter models (DBHF, upper panel; Shen, lower
panel) and phase transition constructions with color superconducting
quark matter (NJL model). Here DBHF (or Shen) + NJL refers to
the mixed phase of nuclear matter and quark matter. At low chemical
potential the quark-matter phase component is the negatively charged
d-CSL phase, which lowers the asymmetry of the system and thereby
gives a higher pressure for the mixed phase. At higher chemical
potentials (1370 MeV for DBHF + NJL and 1230 for Shen + NJL),
there is a transition in the quark sector to a two-flavor color
superconducting (2SC) phase component.

(3) a charge-neutral equilibrium mixture of nuclear matter
and quark matter, or two different quark-matter phases. For
the models considered here we find that the asymmetry in
three-flavor (color-flavor-locked [CFL]) quark matter is so
small that it makes little sense to consider inhomogenous
phase constructions. For mixtures of nuclear matter with
one-flavor (d-CSL) or two-flavor quark matter in the 2SC or
normal quark-matter (NQ) phase, however, the asymmetry is
significantly lower and the pressure is higher when compared
with the homogeneous phases.

Figure 4 plot the thermodynamically favored phase in the
plane of baryon and charge chemical potentials. The hybrid
EOS corresponds to the dash-dotted lines in Fig. 4 (i.e., the
borders between positively and negatively charged phases),
and they are constructed such that the corresponding mixture
of nuclear matter, quark matter, and leptons is charge neutral.
At low densities a mixture with one-flavor quark matter is
favored. At higher density, beyond the up-quark threshold, a
mixture of one-flavor and two-flavor quark matter is favored.
The strange flavor occurs at still higher densities. Note that
the 2SC phase cannot persist at high |µQ| because the large
difference in the Fermi levels of u- and d-quarks prevents
their pairing and the two-flavor quark matter is therefore in the
normal phase (NQ).

Using the hybrid EOS, we calculate compact-star sequences
by solving the Oppenheimer-Volkoff equations for hydrostatic
equilibrium. The hybrid-star sequences fulfill all modern
constraints on the mass-radius relationship (see Fig. 5). For the
DBHF hybrid EOS, all stars with DBHF + CSL matter in the
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FIG. 4. (Color online) Phase diagrams in the plane of baryon and
charge chemical potential. The dash-dotted line denotes the border
between oppositely charged phases. The nuclear-matter EOSs are
DBHF (upper panel) and Shen et al. (lower panel). Only one- and
two-flavor solutions are displayed, because three-flavor matter is
charge neutral for µQ ∼ 0. The transition to the nearly symmetric
three-flavor CFL phase occurrs at µB ∼ 1600 MeV (see Fig. 2). At
low densities the mixture of nuclear matter with one-flavor quark
matter (d-CSL) is favored. At higher densities, beyond the up-quark
threshold, a mixture with two-flavor quark matter is favored. The
two-flavor phases considered here are the normal quark-matter (NQ)
and the superconducting (2SC) phases.

core are stable equilibrium solutions, whereas the appearance
of u-quarks and the associated formation of a 2SC subphase
renders the sequence unstable. The situation is somewhat
different for the Shen hybrid EOS, because in addition to
Shen + CSL stars there are stable solutions with 2SC + CSL
matter in the core. In both cases, configurations with strange
quarks in the core are unstable. The hybrid star sequences
“masquerade” as neutron stars [40] because the mechanical
properties are similar to those of nuclear-matter stars and the
transition from nuclear matter to the mixed phase is associated
with a relatively small discontinuity in the density. Unmasking
neutron star interiors may therefore require observables based
on transport properties, which could be strongly modified in
the presence of color superconductivity. It has been suggested
that such tests of the structure of matter at high density be
based on an analysis of the cooling behavior [41–44] or the
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stability of rapidly spinning stars against r-modes [45,46]. It
has turned out that these phenomena are sensitive to the details
of color superconductivity in quark matter.

The down-quark chemical potential exceeds that of up
quarks in asymmetric nuclear matter and, as illustrated earlier,
this could lead to sequential deconfinement of the quark
flavors. We have checked that the breaking of the U (1)A
symmetry with a six-point ’t Hooft interaction does not rule out
the single-flavor d-CSL solution, but the phase border is shifted
to higher |µQ| (i.e., more asymmetry is needed to realize the
d-CSL phase in that case). A potential consequence is that
the asymmetry of charge-neutral nuclear matter is less than
that of d-CSL matter with broken U (1)A symmetry, and that
the nuclear phase, therefore, is thermodynamically favored.
Because the origin of the U (1)A anomaly is unknown (see,
e.g., the discussion in Ref. [13]), and the critical asymmetry
depends on the parametrization of the NJL model and on the
nuclear-matter model used, a definite answer for whether the
d-CSL phase is realized is a matter of further investigation.
Other effects of the inhomogenous phase mixture (e.g.,
Coulomb interactions and surface tension) should also be
considered in a future detailed investigation. Irrespective of
these unsettled issues, it is clear that the free energy of the
d-CSL phase decreases with increasing asymmetry, in direct
contrast to the behavior of traditional phases such as the
nuclear-matter phase. In the following we discuss another
interesting feature of the d-CSL phase, which could have
important consequences for the phenomenology of compact
stars.

III. BULK VISCOSITY AND URCA EMISSIVITY OF THE
SINGLE-FLAVOR CSL PHASE

Rotating compact stars would be unstable against r-modes
in the absence of viscosity [47,48]. Constraints on the composi-
tion of compact-star interiors can therefore be obtained from
observations of millisecond pulsars [45,46]. In such investi-

gations the bulk viscosity is a key quantity and constraints
on matter phases in neutron-star interiors can be based on its
value. Here we consider some relevant aspects of the bulk
viscosity for color superconducting phases, starting with the
2SC phase and following the approach described in Ref. [49].
Note that the 2SC phase considered in Ref. [50] is a three-flavor
phase, for which the nonleptonic process u + d ↔ u + s is the
dominant contribution. This process is not relevant for the 2SC
phase discussed here, where the strange-quark Fermi sea is not
occupied.

The temperature-dependent bulk viscosity for the
2SC + CSL phase was calculated self-consistently in Ref. [51]
and is based on the flavor-changing weak processes of electron
capture and β-decay:

u + e− → d + νe, d → u + e− + ν̄e. (3)

It has been shown that the bulk viscosity is related to the
direct Urca emissivity, which for normal quark matter was
first calculated by Iwamoto [52] and can be expressed as

ε0 � 914π

1680
G2

F µeµuµdT
6θ2

ue, (4)

where GF is the weak coupling constant and θue is the angle
between the up-quark and electron momenta, which is obtained
from momentum conservation in the matrix element (see
Fig. 6). The triangle of momentum conservation holds for

v
_
e

e−

d u

(a)

0du

p
F,u

0ue

0de

p
F,e

p
F,d

(b)

FIG. 6. Direct Urca process in quark matter (a) and triangle of
momentum conservation for it (b).
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the late cooling stage, when the temperature is below 1 MeV
and neutrinos are untrapped. Trigonometric relations are used
to find an analytical expression for momentum conservation.
To lowest order in θde the result is

pF,d − pF,u − pF,e � − 1
2pF,eθ

2
de. (5)

For small angles, θde � θue, so it is possible to obtain
an expression for the matrix element of the direct Urca
process. Following Iwamoto [52], one has to account either
for quark-quark interactions to lowest order in the strong
coupling constant, αs [Eq. (6)], or the effect of finite masses
[Eq. (7)]:

µi = pF,i

(
1 + 2

3π
αs

)
, i = u, d, (6)

µi � pF,i

[
1 + 1

2

(
mi

pF,i

)2
]

, i = u, d, e. (7)

From Eqs. (5)– (7) and the β-equilibrium condition, µd =
µu + µe, the angle θde that determines the emissivity [Eq. (4)]
is obtained [Eq. (5)]:

θ2
de �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4

3π
αs

m2
d

pF,epF,d

[
1 −

(
mu

md

)2 (
pF,d

pF,u

)
−

(
me

md

)2 (
pF,d

pF,e

)] .

(8)

If interactions and masses are neglected, or the Fermi sea
of one species is closed as in the single-flavor CSL phase,
it follows that the triangle of momentum conservation in
Fig. 6 degenerates to a line or cannot be closed. In that
case, the matrix element vanishes with the consequence that
the direct Urca process does not occur, and also the bulk
viscosity is zero. However, in the mixed nuclear + CSL phase,
there could be important friction and pair-breaking/formation
processes, which we have not yet studied in detail. This could
be an interesting issue for further investigation because of
the large difference in the masses of baryons and deconfined
quarks.

IV. MECHANISM FOR DEEP CRUSTAL HEATING

Superbursts are rare, puzzling phenomena observed as
extremely long (4–14 h) and energetic (∼1042 erg) type-I x-ray
bursts from LMXBs. They take place if the accreted hydrogen
and helium at the surface burns in an unstable manner, which
is the normal case [53]. As suggested in Ref. [54], superbursts
could originate from accreting strange stars with a thin crust
and a core of three-flavor quark matter in the CFL phase. The
suppression of the neutrino emissivity and heat conductivity in
the CFL phase [55–57], caused by pairing gaps that affect all
flavors, is of particular importance in this superburst scenario.
Following Cumming et al. [58], the underlying mechanism
is unstable thermonuclear burning of carbon in the crust, at
column depths of about (0.5–3) × 1012 g cm−2. Carbon is
a remnant of accreted hydrogen and helium at the surface.
Observed superburst light curves suggest that the burning takes
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FIG. 7. (Color online) Density profiles of two stars with masses
1.4 and 2.0 M�. In the model adopted here, the mixed phase of
d-CSL quark matter with nuclear matter extends up to the crust-core
boundary.

place at a depth where the crust reaches temperatures of about
6 × 108 K and column depths of about 1012 g cm−2. Such
high temperatures in the crust at a certain depth are caused
by deep crustal heating [59–61]. The important ingredients for
the strange-star model of superbursts [54] are a thin baryonic
crust of thickness 100–400 m, an energy release of 1–100 MeV
per accreted nucleon by conversion into strange matter, a
suppression of the fast direct Urca neutrino emissivity to the
order of 1021 erg cm−3 s−1, and a thermal conductivity, κ , of
quark matter in the range 1019–1022 erg cm−1 s−1 K−1.

Figure 7 shows that d-CSL quark matter (in the mixed phase
with nuclear matter) extends up to the crust-core boundary, as
strange quark matter does in the case of strange stars. One
of the main arguments for strange matter in the context of a
superburst mechanism is the fact that superconducting phases,
such as the CFL phase, can suppress fast neutrino emission
processes of all quark flavors and are able to fulfill the fusion
ignition condition. This case is also true for the single-flavor
CSL phase. As shown earlier, the fast direct Urca process is
not possible at all in this phase, whereas slow neutrino cooling
processes like bremsstrahlung of electrons and d-quarks
exist.

We want to estimate the order of magnitude of the energy
release �E due to partial conversion of ordinary nuclear matter
to DBHF + CSL hybrid matter at the crust-core boundary.
As we apply the Gibbs construction of a phase transition, a
density-dependent volume fraction of the d-quark admixture
in the nuclear + CSL phase results, varying from zero to
unity. The caveat of this construction is that all thermodynamic
quantities at the onset of the phase transition vary continuously.
However, in reality an infinitesimally small fraction of the
d-quark subphase would imply that large residual color forces
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between d-quarks should occur. Therefore, a solution of the
phase admixture problem with a finite jump of the d-quark
admixture at the onset of the tranistion should be energetically
favored. At the present stage of our work we cannot quantify
this statement because of the absence of confining forces
between color charges in our quark-matter model. An estimate
which we suggest here is to determine the fraction χ of
d-CSL matter at the d-quark drip line in the vicinity of the
crust-core boundary. Then one would multiply the change
in energy per baryon due to the process n → ddu with χ

as an estimate for the probability of this process to occur
per accreted nucleon. A rough estimate (see Fig. 7) gives
0.001 � χ � 0.01, which for a jump of the d-quark mass
gap by 300 MeV (see Fig. 2) at the chiral transition (d-quark
drip line) results in 0.6 � �E � 6 MeV. This meets well the
estimated range �E ∼ 1 − 100 MeV [54,58] and could thus,
in principle, explain burst ignition at appropriate depths for a
suitable value of κ .

Therefore, a strange-matter core is not necessarily required
to resolve the superburst puzzle, because a hybrid-star model
with quark matter in the d-CSL phase could have similar
properties. Stejner et al. [53] show that deep crustal heating
mechanisms at the crust-core boundary (e.g., conversion of
baryonic matter to strange quark matter), which can fulfill the
constraints of the superburst scenario, also provide a consistent
explanation for the cooling of soft x-ray transients. Along the
lines of this argument, we suggest that the d-quark drip effect,
which leads to a mixture of nuclear matter with single-flavor
quark matter in the CSL phase, can serve as a deep crustal
heating mechanism. Superbursts and the cooling of x-ray
transients are not only consistent with quark matter in compact
stars but may qualify as a signature for its occurrence.

V. CONCLUSIONS

In this article, a new quark-nuclear hybrid model for
compact star applications was suggested that fulfills modern
constraints from observations of compact stars. Because of
isospin asymmetry, down quarks may “drip out” from nucleons
and form a single-flavor CSL phase that is mixed with nuclear
matter already at the crust-core boundary in compact stars. The
CSL phase has interesting cooling and transport properties
that are in accordance with constraints from the thermal
and rotational evolution of compact stars [51]. It remains to
be investigated whether this new compact-star composition
could lead to unambiguous observational consequences, and
whether it is also thermodynamically favored when effects
like Coulomb screening and surface tension are accounted for.
We conjecture that the d-quark drip may serve as an effective
deep crustal heating mechanism for the explanation of the
puzzling superburst phenomenon and the cooling of x-ray
transients.
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