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Quark matter under strong magnetic fields in the su(3) Nambu–Jona-Lasinio model
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In the present work we use the mean-field approximation to investigate quark matter described by the su(3)
Nambu–Jona-Lasinio (NJL) model subject to a strong magnetic field. We consider two cases: pure quark matter
and quark matter in β equilibrium possibly present in magnetars. The results are compared with the ones obtained
with the su(2) version of the model. The energy per baryon of magnetized quark matter becomes more bound
than nuclear matter made of iron nuclei, for B around 2 × 1019 G. When the su(3) NJL model is applied to stellar
matter, the maximum mass configurations are always above 1.45M� and may be as high as 1.86M� for a central
magnetic field of 5 × 1018 G. These numbers are within the masses of observed neutron stars.
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I. INTRODUCTION

In noncentral heavy-ion collisions such as the ones per-
formed at the BNL Relativistic Heavy Ion Collider (RHIC) and
the CERN Large Hadron Collider (LHC), physicists have been
looking for a possible signature of the presence of charge parity
(CP)-odd domains in the presumably formed quark-gluon
plasma phase [1]. The study of deconfined quark matter subject
to strong external magnetic fields is then mandatory if one
intends to understand the physics taking place in such colliders.

Neutron stars with very strong magnetic fields of the order
of 1014–1015 G are known as magnetars and they are believed
to be the sources of the intense γ and x rays detected in 1979
[2,3]. The hypothesis that some neutron stars are constituted
by unbound quark matter cannot be completely ruled out [4]
because the Bodmer-Witten conjecture [5] cannot be tested
on earthly experiments. This conjecture implies that the true
ground state of all matter is (unbound) quark matter because
theoretical predictions show that its energy per baryon at zero
pressure is lower than 56Fe binding energy.

In the present work our aim is to investigate quark matter
described by the su(3) version of the Nambu-Jona-Lasinio
(NJL) [6] model exposed to strong magnetic fields. In the case
of pure quark matter, as predicted by the QCD phase transition
possibly taking place in heavy-ion collisions, the magnetic
field is certainly external. In the case of neutron stars, the
magnetic field can be generated by the alignment of charged
particles that are spinning very rapidly. We next use an external
field to mimic the real situation, which we do not know how
to determine. Albeit in an approximate way, the effect of the
magnetic field on the macroscopic quantities such as radius
and mass can be obtained.

Recently the su(2) version of the NJL model was used to
treat both situations described previously [7]. We have shown
that, for pure quark matter, the energy per baryon for magne-
tized quark matter has a minimum that is lower than the one
determined for magnetic free quark matter. We have also deter-
mined that a magnetic field of the order of 2 × 1018 G barely
affects the effective mass as compared with the results for
matter not subject to the magnetic field. For B = 5 × 1019 G,
matter is totally polarized for chemical potentials below
490 MeV. For small values of the magnetic fields the number

of filled Landau levels (LL) is large and the quantization
effects are washed out, whereas for large magnetic fields
the chiral symmetry restoration occurs for smaller values of
the chemical potentials. When β equilibrium is enforced, the
numerical results show that, for the the su(2) case, only very
high magnetic fields (B � 1018 G) affect the equation of state
(EOS) in a noticeable way.

The NJL su(3) model has been discussed in many articles
[8–10]. In the present article we adopt the parametrization
proposed in Ref. [9], which has been chosen so that the
vacuum properties of the pion, kaon, and η are reproduced,
and study the properties of the quark stars predicted by this
model in the presence of a magnetic field. The inclusion of
the s quarks, necessary in the su(3) NJL model, poses some
new numerical difficulties and some questions that need to be
addressed. Those problems are tackled throughout the article.
One of the questions was raised in Refs. [11,12] and refers
to the stability of quark matter described by the NJL model.
The authors show that it is not absolutely stable. As already
mentioned, in Ref. [7] we have seen that the inclusion of the
magnetic field increases stability in the su(2) version and the
same behavior is expected in the su(3) NJL, which is shown
next.

This article is organized is such a way that all calculations
already shown explicitly in Ref. [7] are not repeated but all
important differences are outlined. In Secs. II and III the
formalism (mean-field theory) and the equations of state are
shown and in Sec. IV the final results are displayed and the
conclusions are drawn.

II. GENERAL FORMALISM

To consider (three flavor) quark stars in β equilibrium with
strong magnetic fields we introduce the following Lagrangian
density,

L = Lf + Ll − 1
4FµνF

µν, (1)

where the quark sector is described by the su(3) version
of the NJL model [8], which includes a scalar-pseudoscalar
interaction and the t’Hooft six-fermion interaction, that models
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the axial U(1)A symmetry breaking:

Lf = ψ̄f [γµ(i∂µ − qf Aµ) − m̂c]ψf + Lsym + Ldet, (2)

where Lsym and Ldet are given by

Lsym = G

8∑
a=0

[(ψ̄f λaψf )2 + (ψ̄f iγ5λaψf )2], (3)

Ldet = −K{detf [ψ̄f (1 + γ5)ψf ] + detf [ψ̄f (1 − γ5)ψf ]},
(4)

where ψf = (u, d, s)T represents a quark field with three fla-
vors, m̂c = diagf (mu,md,ms) is the corresponding (current)
mass matrix while qf represents the quark electric charge;
λ0 = √

2/3I , where I is the unit matrix in the three flavor
space; and 0 < λa � 8 denote the Gell-Mann matrices. Here,
we consider mu = md �= ms . The Ldet term is the t’Hooft
interaction that represents a determinant in flavor space, which,
for three flavor, gives a six-point interaction [10] and is
essential in the calculation of the mass splitting of the η mesons

detf (ψ̄fOψf ) :=
∑
i,j,k

εijk(ūOψi)(d̄Oψj )(s̄Oψk), (5)

where εijk is the usual three-dimensional Levi-Civita symbol.
The Lagrangian also contains the Lsym term, which is sym-
metric under global U (Nf )L × U (Nf )R transformations and
corresponds to a four-point interaction in flavor space. In the
Appendix we discuss the steps to obtain Lf in the mean-field
approximation (MFA). The model is not renormalizable, and as
a regularization scheme for the divergent ultraviolet integrals
we use a sharp cutoff 	 in the three-momentum space. The
parameters of the model, 	, the coupling constants G and K ,
and the current quark masses m0

u and m0
s are determined by

fitting fπ , mπ , mK , and mη′ to their empirical values.
The leptonic sector is given by

Ll = ψ̄l[γµ(i∂µ − qlA
µ) − ml]ψl, (6)

where l = e, µ. One recognizes this sector as being repre-
sented by the usual QED type of Lagrangian density. As
usual, Aµ and Fµν = ∂µAν − ∂νAµ are used to account for
the external magnetic field. Then, because we are interested
in a static and constant magnetic field in the z direction,
Aµ = δµ2x1B.

III. THE EOS

We need to evaluate the thermodynamical potential for the
three-flavor quark sector, �f , which as usual can be written
as �f = −Pf = Ef − T S − ∑

f µf ρf , where Pf represents
the pressure, Ef the energy density, T the temperature, S the
entropy density, and µf the chemical potential.

For the present study, just the zero temperature case is
important and, as a consequence, the term with the entropy
vanishes. The total pressure for three flavor quark matter in
β equilibrium is given by

P (µf ,µl, B) = P N
f

∣∣
Mf

+ P N
l

∣∣
ml

+ B2

2
, (7)

where our notation means that P N
f is evaluated in terms

of the quark effective mass, Mf , which is determined in a
(nonperturbative) self-consistent way while P N

l is evaluated
at the leptonic bare mass, ml . The term B2/2 arises due to
the electromagnetic term FµνF

µν/4 in the original Lagrangian
density. The subscript N indicates normalized pressures. Here,
our normalization choice is such that P N

f = 0 at µf = 0
(f = u, s, d) and P N

l = 0 at µl = 0 (l = e, µ), implying
that P (0, 0, B) = B2/2. This choice of renormalization was
done because we want to study the structure of neutron stars
under the influence of strong magnetic fields. To obtain the
total energy density and pressure relevant for neutron star
structure, the contribution from the electromagnetic field must
be included.

A. Quark contribution to the EOS

In the mean-field approximation the pressure can be written
as

Pf = θu + θd + θs − 2G
(
φ2

u + φ2
d + φ2

s

) + 4Kφuφdφs,

(8)

where an irrelevant term has been discarded. The pressure
due to the three quarks is diagrammatically represented in
Fig. 1(a).

For a given flavor, the θf term is given by

θf = − i

2
tr

∫
d4p

(2π )4
ln

(−p2 + M2
f

)
(9)

and the condensates φf are given by

φf = 〈ψ̄f ψf 〉 = −i

∫
d4p

(2π )4
tr

1

( �p − Mf + iε)
, (10)

where, according to standard Feynman rules for this model,
all the traces are to be taken over color (Nc = 3) and Dirac

+ + + + ++

(a)

+= +

(b)

FIG. 1. (a) Feynman diagrams contributing to the quark pressure
in the MFA. The lines represent the three dressed quark propagators
for the different flavors: u (continuous line), d (dashed line), and
s (dotted line). The black dot represents G and the black hexagon
represents K . (b) Diagrammatic representation of the effective mass
for flavor u. The diagrams contributing to the other two flavors display
the same topology.
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space, but not flavor. Also, a minus sign that accounts for
antisymmetry has been included so that, for a given flavor,
each quark loop generates an overall −4Nc factor. To obtain
results valid at finite T and µ in the presence of an external
magnetic field B one can use the following replacements [13]:

p0 → i(ων − iµf ),

p2 → p2
z + (2n + 1 − s), with s = ±1, n = 0, 1, . . .∫

d4p

(2π )4
→ i

T |qf |B
2π

∞∑
ν=−∞

∞∑
n=0

∫
dpz

(2π )
.

In the above relations, ων = (2ν + 1)πT , with ν = 0,±1,

±2, . . . representing the Matsubara frequencies for fermions
while n represents the Landau levels (LL) and s represents the
spin states, which, at B �= 0, must be treated separately. The
case T = 0 in which we are interested can be easily obtained
after the aforementioned substitutions (see Ref. [7]).

The effective quark masses can be obtained self consistently
from [see Fig. 1(b)]

Mi = mi − 4Gφi + 2Kφjφk, (11)

with (i, j, k) being any permutation of (u, d, s). So, to
determine the EOS for the su(3) NJL at finite density and in the
presence of a magnetic field we need to know the condensates,
φf , as well as the contribution from the gas of quasiparticles,
θf . Both quantities, which are related by φf ∼ dθf /dMf , have
been evaluated with great detail in Ref. [7]. Here, we just quote
the results

Pf = (
P vac

f + P
mag
f + P med

f

)
Mf

, (12)

where the vacuum contribution reads

P vac
f = − Nc

8π2

{
M4

f ln

[
(	 + ε	)

Mf

]
− ε	 	

(
	2 + ε2

	

)}
,

(13)

where we have defined ε	 =
√
	2 + M2

f with 	 representing
a non-covariant ultraviolet cutoff. The evaluations performed
in Ref. [7] also give the following finite magnetic contribution

P
mag
f

= Nc(|qf |B)2

2π2

[
ζ ′(−1, xf ) − 1

2

(
x2

f − xf

)
ln xf + x2

f

4

]
,

(14)

where xf = M2
f /(2|qf |B) while ζ ′(−1, xf ) = dζ (z, xf )/

dz|z=−1, where ζ (z, xf ) is the Riemann-Hurwitz ζ function
[14]. Finally, after integration, the medium contribution can
be written as

P med
Mf

=
kf,max∑
k=0

αk

|qf |BNc

4π2

⎡
⎣µf

√
µ2

f − sf (k, B)2

− sf (k, B)2 ln

⎛
⎝µf +

√
µ2

f − sf (k, B)2

sf (k, B)

⎞
⎠

⎤
⎦ ,

(15)

where sf (k, B) =
√
M2

f + 2|qf |Bk, α0 = 1, and αk>0 = 2. The
upper Landau level (or the nearest integer) is defined by

kf,max = µ2
f − M2

f

2|qf |B = p2
f,F

2|qf |B . (16)

Finally, the condensates φf entering the quark pressure at
finite density and in the presence of an external magnetic field
can also be written as

φf = (
φvac

f + φ
mag
f + φmed

f

)
Mf

, (17)

where

φvac
f = −Mf Nc

2π2

[
	ε	 − M2

f ln

(
	 + ε	

Mf

)]
, (18)

φ
mag
f = −Mf |qf |BNc

2π2

[
ln �(xf )

− 1

2
ln(2π ) + xf − 1

2
(2xf − 1) ln(xf )

]
, (19)

and

φmed
f =

kf,max∑
k=0

αk

Mf |qf |BNc

2π2

×
⎡
⎣ln

⎛
⎝µf +

√
µ2

f − sf (k, B)2

sf (k, B)

⎞
⎠

⎤
⎦ . (20)

From the pressure one can obtain the density, ρf , correspond-
ing to each different flavor, which is given by

ρf =
kf,max∑
k=0

αk

|qf |BNc

2π2
kF,f , (21)

where kF,f =
√
µ2

f − sf (k, B)2, because dP/dφf = 0.
The quark contribution to the energy density is

Ef (µf ,B) = −P N
f +

∑
f

µf ρf , (22)

where P N
f = Pf (µf )|Mf (µf ) − Pf (0)|Mf (0).

Throughout this article we consider the following set of
parameters [9]: 	 = 631.4 MeV, mu = md = 5.5 MeV, ms =
135.7 MeV, G	2 = 1.835, and K	5 = 9.29.

B. Lepton contribution to the EOS

The leptonic contribution, Pl , has also been evaluated in
detail in Ref. [7] where the normalization requirement P N

l = 0
at µl = 0 has been adopted. The result shows that, at the one
loop level, only the following (finite) medium contribution
must be considered:

P N
l =

µ∑
l=e

kl,max∑
k=0

αk

|ql|B
4π2

⎡
⎣µl

√
µ2

l − sl(k, B)2

− sl(k, B)2 ln

⎛
⎝µl +

√
µ2

l − sl(k, B)2

sl(k, B)

⎞
⎠

⎤
⎦ . (23)

065805-3



D. P. MENEZES et al. PHYSICAL REVIEW C 80, 065805 (2009)

Then, the leptonic density is also easily evaluated yielding

ρl =
kl,max∑
k=0

αk

|ql|B
2π2

kF,l(k, sl), (24)

where kF,l(k, sl) =
√
µ2

l − sl(k, B)2. Finally, the leptonic en-
ergy density reads

El(µl, B) = −P N
l +

∑
l

µlρl. (25)

The lepton masses are me = 0.511 MeV and mµ =
105.66 MeV. We have not considered the effect of the magnetic
field on the mass of the electron, because, as discussed in
Ref. [15] and later in Refs. [16,17], although the electron
mass grows heavier than me for B > 0.65Be, with Be = 4.4 ×
1013 G, it needs a field as strong as 1032 G to have its ground
state energy doubled [17]. For 1018 G the effective mass of
the electron just exceeds me by approximately 8%. Taking
into account that in β-equilibrium quark matter in compact
stars the fraction of electron does not exceed 1.5%, a different
electron mass would not affect the results even if we had taken
a value twice as large for the mass of the electron (i.e., 2 me).

IV. RESULTS AND CONCLUSIONS

In the sequel we consider two different situations of quark
matter under a strong magnetic field: (a) pure quark matter
with the same chemical potential for all quark flavors, and
(b) β-equilibrium quark stellar matter.

We first discuss the properties of pure quark matter with
equal chemical potentials for all flavors, namely, the behavior
of the dynamical quark masses, the chiral symmetry restoration
with density, and the energy per baryon. In Fig. 2 we display
the masses of quarks u and d as a function of the chemical
potential for different values of the magnetic field and the two
versions of the NJL model. For the magnetic field intensities
used, one can clearly identify the filling of different Landau
levels causing the usual kinks in the curves. For the three
intensities considered the chiral symmetry is approximately
restored for µ = 400 MeV.

It is interesting to see that although the general behavior is
the same, the effect of the LL is more pronounced in the su(2)
version.

In Fig. 3 the mass of the s quark is shown as a function of the
chemical potential for different values of the magnetic field.
One can see how drastically it falls around µ = 450 MeV. For
magnetic free quark matter, this is the same behavior shown in
Fig. 3 of Ref. [18]. One can observe that the curve is no longer
smooth when B is turned on, but the values of the strange quark
mass do not vary much. According to Ref. [18], the fact that
the strange quark mass remains relatively high as compared
with the masses of the other two quarks is the main reason
why deconfined quark matter may not be likely to appear in
the core of hybrid neutron stars. For a magnetic field larger
than 1019 the restoration of chiral symmetry for the s quark
occurs in steps and starts at a smaller chemical potential than
in the B = 0 case.

um
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FIG. 2. Mass of the quarks (a) u and (b) d as a function of the
chemical potential for B = 0, 1019, and 2 × 1019 G within the su(2)
NJL and the su(3) NJL.

The phenomenon of magnetic catalysis, which enhances
chiral symmetry breaking, has been well discussed within
the su(2) version of the NJL model [19]. Here, for reference,
we show the vacuum effective mass of the three quarks as a
function of the magnetic field in Fig. 4. For B > 1019 G the vac-
uum masses increase dramatically with the magnetic field as
expected. A similar increase of the vacuum mass was also ob-
tained for the su(2) version of NJL in Refs. [7,19] and the effect
is related to the fact that the B field facilitates the binding by
antialigning the helicities of the quark and the antiquark, which
are then bound by the NJL interaction. As shown in Fig. 4, an

µ(MeV)

ms

B=1x10    G19

B=2x10    G19

su(3),  B = 0m
 (

M
eV

)

 250

 300

 350

 400

 450

 500

 350  400  450  500

FIG. 3. Mass of the s quarks as a function of the chemical
potential for B = 0, 1019, and 2 × 1019 G within su(3) NJL.
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FIG. 4. Vacuum mass of the quarks as a function of the magnetic
field B.

interesting result of the su(3) version is that, because of its
larger electric charge, the u quark has an effective mass that
becomes larger than that of the s quark for B > 1.5 × 1020 G.

The same phenomenon of magnetic catalysis occurs at finite
density: for a given baryonic density the quark effective masses
are larger for a larger magnetic field. This may not be obvious
from Figs. 2 and 3, where the the effective mass is plotted
against the chemical potential and not the baryonic density.
We point out that there are two opposite effects that must
be considered when discussing the effective mass of quarks:
the constituent quark mass increases with the magnetic field
and decreases with the density. As seen in Fig. 5, where the
baryonic density is shown as a function of the quark chemical
potential for two values of the magnetic field and for both ver-
sions of the NJL model, su(2) and su(3), the relation between
the chemical potential and the baryonic density is not linear.

Let us consider, for instance, the chemical potentials 340
and 360 MeV in Fig. 2. For µ = 340 MeV the largest mass
corresponds to the zero field curve and the smallest one to the
largest field considered, which seems to be inconsistent with
the magnetic field catalysis. However, looking at Fig. 5, it is
seen that for µ = 340 MeV the baryonic density is approx-
imately 0.3 fm−3 for B = 0 G, 0.32 fm−3 for B = 1019 G,
and 0.35 fm−3 for B = 2 × 1019 G. This means that the effect

µ(MeV)

B=1x10    G19

B=2x10    G19
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 0.9
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 0.6

FIG. 5. (Color online) Baryonic density as a function of the quark
chemical potential for B = 0, 1019, and 2 × 1019 G within both su(2)
and su(3) NJL.
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FIG. 6. Mass of the quarks u and d as a function of the baryonic
density for B = 0 and 2 × 1019 G within su(3) NJL.

of the density is stronger than the effect of the magnetic field
and the situation with the largest density (B = 2 × 1019 G) has
the smallest mass. Now let us consider µ = 360 MeV. In this
case the baryonic densities for B = 0 and B = 2 × 1019 G
are approximately equal, that is, ∼0.39 fm−3, whereas for
B = 1019 the baryonic density is ∼0.41 fm−3. It is seen in
Fig. 2 that for µ = 360 MeV the smallest mass corresponds
to B = 1019 G with the largest baryonic density. However, the
largest mass corresponds to B = 2 × 1019 G that, although
associated with a density slightly smaller than the one for
B = 0, has a larger field and, therefore, the magnetic field
catalysis is observed. The magnetic catalysis at finite density
is clearly seen in Fig. 6 where the masses of quarks u and
d are plotted in terms of the baryonic density for B = 0 and
2 × 1019 G.

As already noticed in Ref. [7], for small values of the mag-
netic fields the number of filled LL is quite large and the effects
of the quantization are less visible. Because of the Landau
quantization, the increase of the strength of the magnetic field
gives rise to a decrease of the number of the filled LL and
the amplitude of the oscillations is more clear in the graphics.
For each value of the magnetic field, the kink appearing at the
smallest chemical potential in Fig. 5 corresponds to the case
where only the first LL has been occupied.

In Fig. 7 one can see that the inclusion of the magnetic
field makes matter more and more bound in both versions of
the model. For the present set of parameters, the energy per
baryon E/A of magnetized quark matter becomes more bound
than nuclear matter made of iron nuclei, E

A
|56Fe ∼ 930 MeV

for B around 2 × 1019 G.
We next consider stellar matter made out of quarks,

electrons, and muons in β equilibrium, as possibly occurring
in the interior of magnetars. It is worth mentioning that, in
this case, the three different quarks bear different chemical
potentials, determined by the chemical equilibrium conditions

µd = µs = µu + µe, µµ = µe.

We start by plotting the quark effective masses for different
values of the magnetic field in Fig. 8. It is seen that the results
for nonmagnetized matter (B = 0) almost coincide with the
ones obtained for B = 1018 G. A decrease of the s quark
mass starts only at ∼0.8 fm−3. This behavior has already
been discussed in Ref. [20]. If the magnetic field is strong
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FIG. 7. Energy per nucleon as a function of density for B = 0,
1019, and 2 × 1019 G within NJL su(2) and NJL su(3).

enough the mass of quark s occurs in finite jumps that may
give rise to an increase of the strangeness fraction as shown in
Fig. 9.

The quark fractions Yi = ρi/ρ, i = u, d, s, are shown in
Fig. 9. Again the results for B = 0 are similar to the ones for
B = 1018 G. For strong enough fields the quark u fractions
increase with a reduction of the quark d fraction. The quark
s fraction has a sudden increase for ρ ∼ 0.7 fm−3 but above
ρ ∼ 0.9 fm−3 remains below the B = 0 fraction.

In Fig. 10 the EOS for different values of the magnetic
field is shown. For magnetic fields as large as B = 1018G the
differences are very small as compared with nonmagnetized
matter. For larger fields there is an overall net softening of the
EOS.

It is well known that at the surface the magnetic field should
not be larger than ∼1015 G. We have introduced a density-
dependent magnetic field as in Refs. [7,21]:

Bi = Bsurf + B0

[
1 − exp

{
−β

(
ρb

ρ0

)γ }]
, (26)

where Bsurf = 1015 G is the magnetic field at the surface, Bi is
the magnetic field at the interior of the star for large densities,
and the parameters β = 5 × 10−5 and γ = 3 were chosen in
such a way that the field increases fast with density to its central
value but still describes correctly the surface of the star where

B = 0
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FIG. 8. The quark effective mass for β-equilibrium quark matter
with a constant magnetic field within NJL su(3) as a function of the
baryonic density.
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FIG. 9. Fraction of quarks in β-equilibrium quark matter for a
constant magnetic field within NJL su(3).

the pressure is zero. We show the equations of state for quark
matter in β equilibrium and a density-dependent magnetic field
within both versions of the NJL model in Fig. 11. As implicit
in Eq. (26), the field at the surface is 1015 G. The magnetic field
makes the EOS harder with consequences in the gravitational
and baryonic masses of compact stars, whose properties are
obtained from the integration of the Tolman-Oppenheimer-
Volkoff (TOV) equations, which use as input the EOS obtained
with the density-dependent magnetic field. We are aware
that the TOV equations were obtained for a system with
spherical symmetry in hydrostatic equilibrium, and because
the distribution of the magnetic field is not spherical, the TOV
equations can only be used as an approximation in the present
study. A correct integration of Einstein’s equation was done in
Ref. [22]. This, however, requires a large numerical effort that
was not the aim of the present work. We should, therefore, take
our conclusions on the star properties with care and interpret
them as an average result.

The results obtained from the integration of the TOV
equation are displayed both in Fig. 12 and in Table I, from
where it is seen that both the gravitational and the baryonic
masses increase with the increase of the magnetic field for an
intensity larger than ∼5 × 1018 G for the su(3) version and 1018

G for the su(2) NJL. However, the increase of the gravitational
mass is larger than the increase of the baryonic mass because
the contribution of the magnetic field becomes more and more
important as the field increases. This explains the decrease

19
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−
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FIG. 10. Equation of state of β-equilibrium quark matter for
constant magnetic fields within the NJL su(3).
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FIG. 11. Equation of state of β-equilibrium quark matter for a
density-dependent magnetic field within NJL su(2) and NJL su(3).
The EOS for B = 0 is also shown.

of the central energy/baryonic density for the stronger fields
considered.

Another important effect of the field on the properties of
the stars is the increase of the radius of the star with the largest
radius, which may be as high as 9.5 km for the su(3) NJL. In
general, the maximum mass star configurations for the su(2)
version of the NJL model are smaller with smaller radius,
∼7 km, in average 2 km smaller than the corresponding stars
in the su(3) version of the NJL model.

Within the su(3) NJL the maximum mass configurations
are always above 1.45M� and may be as high as 1.86M�
for a central magnetic field of 5 × 1018 G. These numbers
are within the masses of observed neutron stars. However, the
su(2) version of the NJL model foresees too small star masses
except for very large magnetic fields.

The effects of the anomalous magnetic moments has been
shown to be relevant [23–25] and we intend to take them into
account in the next calculations.

The color superconductivity (CS) [26], which allows the
quarks near the Fermi surface to form Cooper pairs that
condense and break the color gauge symmetry [27], is known
to be present in the QCD phase diagram at sufficiently high
densities. The effect of strong magnetic fields on the CS
properties of quark matter, which can be drastic for sufficiently
high fields, has already been studied by several authors [28]. It
would be important to investigate how this CS phase could

su(2),  B = 0

B=2x10    G
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19
19
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19
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 (
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FIG. 12. Mass-radius curves for the families of stars within NJL
su(2) and NJL su(3) corresponding to the EOS shown in Fig. 10. For
B � 1018, the curves coincide with the B = 0 results.

TABLE I. Maximum mass configurations for NJL su(3) and
su(2), and several magnetic field intensities: the gravitational mass
(M), baryonic mass (Mb), radius (R), central energy density (εc),
baryonic density (ρc), and magnetic field (Bc) are given

B0 M Mb R εc ρc Bc

(G) (M�) (M�) (km) fm−4 fm−3 (G)

su(3)
0 1.46 1.53 8.93 7.49 1.19 1015

1018 1.46 1.53 8.93 7.49 1.19 1.6 × 1017

5 × 1018 1.47 1.54 8.88 7.94 1.24 8.8 × 1017

1 × 1019 1.50 1.58 8.78 8.36 1.25 1.8 × 1018

2 × 1019 1.61 1.69 8.53 9.64 1.25 3.6 × 1018

5 × 1019 1.86 1.88 8.81 9.26 1.01 5.0 × 1018

su(2)
0 1.29 1.24 7.09 13.68 1.86 1015

1 × 1018 1.29 1.25 7.08 13.85 1.88 1.2 × 1017

1 × 1019 1.38 1.33 7.01 14.52 1.72 4.0 × 1018

2 × 1019 1.49 1.41 7.11 14.47 1.49 5.7 × 1018

affect the properties of quark stars under strong magnetic
fields. However, it could be that CS is only affected by
magnetic fields stronger than the ones considered in the present
article, which, however, predicts already a very high maximum
mass, M ∼ 1.9M�. The largest magnetic field we got in the
center of a quark star is 5 × 1018 G, while in Ref. [28] it is
shown that a noticeable effect requires fields above ∼1019 G.
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APPENDIX: THE su(3) NJL MODEL IN THE MFA

In this appendix the main steps to obtain the NJL La-
grangian in the mean-field approximation are explicitly shown.
First, we consider the Lsym term given in Eq. (3). For later
convenience, we define the matrix elements of � and its adjoint
�† as [9]

�ij = ψ̄j (1 − γ5)ψi,�
†
ij = ψ̄j (1 + γ5)ψi,

where i and j are flavor labels. From these definitions, one can
easily show that

ψ̄f (1 − γ5)λaψf = tr(λa�),
(A1)

ψ̄f (1 + γ5)λaψf = tr(λa�
†),

where tr is the trace operator in flavor space. So, adding
and subtracting these expressions, we can rewrite the NJL
symmetric four-point interaction term as

Lsym = G

8∑
a=0

[(ψ̄f λaψf )2 + (ψ̄f iγ5λaψf )2]

= G

8∑
a=0

tr(λa�)tr(λa�
†) = 2Gtr(��†). (A2)
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The summation involved in the latter equality can be performed
noting that an arbitrary matrix A in the Nf = 3 flavor
space, can be expanded in terms of Gell-Mann matrices as
follows:

A =
8∑

a=0

caλa, with ca = 1

2
tr(λaA). (A3)

The expansion coefficients ca are obtained using the Gell-
Mann matrices’ property: tr(λaλb) = 2δab. So, we can write

tr(AA†) = tr

(
8∑

a=0

caλa

8∑
b=0

c�
bλ

†
b

)
= 1

2

8∑
a=0

tr(λaA)tr(λaA
†),

(A4)

where in the latter term we have used that the Gell-Mann
matrices are hermitian, that is, λa = λ

†
a . We then evaluate Lsym

in the mean-field approximation linearizing the interaction
terms. We follow Refs. [9,10] approximating the product of
two operators Ô1 and Ô2 by

Ô1Ô2 ≈ Ô1〈Ô2〉 + 〈Ô1〉Ô2 − 〈Ô1〉〈Ô2〉. (A5)

Therefore, calculating explicitly the trace involved in Eq. (A2)
and taking into account the aforementioned prescription, Lsym

can be written in the MFA as

Lsym = 4G
[
φuu

†u + φdd
†d + φss

†s − 1
2

(
φ2

u + φ2
d + φ2

s

)]
,

(A6)

where we have used

〈ψ̄iψj 〉 = δijφi and 〈ψ̄iγ5ψj 〉 = 0. (A7)

The only three nonvanishing terms are the condensates that
were defined in Eq. (10). Finally, we consider the t’Hooft
term, Eq. (4), which is a six-point interaction in the su(3)
flavor space. Notice that term involves the product of three
operators that we linearize analogously to Eq. (A5):

Ô1Ô2Ô3 ≈ Ô1〈Ô2〉〈Ô3〉 + 〈Ô1〉Ô2〈Ô3〉 + 〈Ô1〉〈Ô2〉Ô3

−2〈Ô1〉〈Ô2〉〈Ô3〉.
So, in the MFA the determinants that appear in the t’Hooft
term can be written as

detf (ψ̄fOψf )

=
∑
i,j,k

εijk(ūOψi)(d̄Oψj )(s̄Oψk)

≈
∑
i,j,k

εijk[(ūOψi)〈d̄Oψj 〉〈s̄Oψk〉 + 〈ūOψi〉(d̄Oψj )〈s̄Oψk〉

+ 〈ūOψi〉〈d̄Oψj 〉(s̄Oψk) − 2〈ūOψi〉〈d̄Oψj 〉〈s̄Oψk〉.
Now, inserting the operator O = 1 ± γ5 and using the proper-
ties given in Eq. (A7), we obtain the t’Hooft term in the MFA:

Ldet = −2K(φdφsūu + φuφsd̄d + φuφd s̄s − 2φuφdφs).

(A8)

From Eq. (2) and Eqs. (A6) and (A8), the su(3) NJL
Lagrangian in the MFA is given by

LMFA
f = ψ̄f (γµ(i∂µ − qf Aµ) − M̂)ψf

− 2G
(
φ2

u + φ2
d + φ2

s

) + 4Kφuφdφs,

where M̂ is a diagonal matrix with elements defined in Eq. (11).
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