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We present a theory of neutrino interactions with nuclei aimed at the description of the partial cross sections,
namely quasielastic and multinucleon emission, coherent and incoherent single-pion production. For this purpose,
we use the theory of nuclear responses treated in the random-phase approximation, which allows a unified
description of these channels. It is particularly suited for the coherent pion production where collective effects
are important, whereas they are moderate in the other channels. We also study the evolution of the neutrino
cross sections with the mass number from carbon to calcium. We compare our approach to the available neutrino
experimental data on carbon. We put a particular emphasis on the multinucleon channel, which at present is
not easily distinguishable from the quasielastic events. This component turns out to be quite relevant for the
interpretation of experiments (K2K, MiniBooNE, SciBooNE). It can account in particular for the unexpected
behavior of the quasielastic cross section.
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I. INTRODUCTION

Neutrino physics has undergone a spectacular development
in the past decade, following the discovery of neutrino oscil-
lations first revealed by the anomaly of atmospheric neutrinos
[1]. A number of results on the interaction of neutrinos with
matter are now available. Neutrino detectors do not usually
consist of pure hydrogen but they involve complex nuclei,
for instance, 12C, as in SciBar [2], where the molecule C8H8

is involved, or in MiniBooNE [3], which uses the mineral oil
CH2. Heavier nuclei are also under consideration, for instance,
in the liquid argon chamber planned for T2K [4,5]. A number
of results have been obtained for neutral or charged current
(K2K, MiniBooNE, SciBooNE) on quasielastic processes or
coherent and incoherent single-pion production [6–17]. The
first question is then if our present understanding of neutrino
interactions with matter can reproduce the available data.
Many works [18–36] have been devoted to this problem,
using various theoretical approaches [37–64]. In this article
we will explore such interactions using the theory of the
nuclear response treated in the random-phase approximation
(RPA) in the quasielastic and � resonance region including
also two and three nucleon knock-out. The formalism is the
same as the one used by Marteau [38] in his work on the
ν-16O interaction. The merit of this approach is that, although
perfectible in several ways, it describes in a unique frame
several final-state channels. This technique has been successful
in a number of problems involving either weakly interacting
probes such as (e, e′) scattering or strongly interacting ones
such as pion scattering or (3He,T) charge exchange reaction
[65]. We give the cross sections for pion production, coherent
or incoherent, and nucleon knock-out, for neutral or charged
currents. We restrict to single-pion production ignoring two-
pion production processes that, for real photons, lead to a
sizable part of the photoabsorption cross section at energies
larger than the � resonance, above �500 MeV. Our treatment

should thus underestimate the cross section when multipion
production starts to show up. Our work ignores as well the
meson exchange effects that play a non-negligible role [66,67].
We take into account only the exchange effect in the time
component of the axial current, which is known to be important
[68]. For single-pion production we assume that the dominant
production mechanism is via the � resonance, ignoring the
other resonance excitations, which also limits the energy for
the validity of our approach. Beyond quasielastic processes and
single-pion production via � excitation we also incorporate
several nucleon knock-out through two-particle-two-hole (2p-
2h) and 3p-3h excitations. These will play a crucial role in the
comparison with data involving quasielastic events.

Among the aims of this work there is the exploration
of the evolution of the neutrino-nucleus interaction as the
mass number of the nucleus goes from the carbon region
to the region of 40Ca. This investigation is motivated by the
project of a liquid argon chamber in the T2K experiment that
raises the question if one keeps control of the understanding
of the interaction of neutrinos with matter by going to a
medium-weight nucleus such as 40Ar. In order to single out the
evolutions linked to the nuclear size we have chosen as element
of comparison an isoscalar nucleus in the 40Ar region, namely
40Ca. For the coherent process that per nucleon fades away
in heavy nuclei, the evolution is relatively rapid but should
remain under control as our theory is particularly well adapted
to this channel. The other exclusive channels, in particular
the incoherent pion production, are sensitive to final-state
interaction not automatically included in our approach. This
leaves some uncertainty in the evolution between the mass 12
and the mass 40 region for this channel.

Our article is organized as follows: Section II introduces
the formalism of the response functions treated in the RPA.
Section III discusses the various final-state channels. In Sec. IV
we compare these predictions with the available data. In Sec. V
we provide a summary and conclusion of the present work.
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II. FORMALISM

The double differential cross section for the reaction
νl(ν̄l) + A −→ l−(l+) + X is given by

∂2σ

∂�k′∂k′ = G2
F cos2 θC k′2

32π2k0k′
0

|T |2, (1)

where GF is the weak coupling constant, θc the Cabbibo
angle, k and k′ the initial and final lepton momenta, and
T the invariant amplitude given by the contraction of the
leptonic L and hadronic W tensors. Their expressions are
given in Appendix A. In order to illustrate how the various
response functions enter and to introduce the variables, we
give below a simplified expression, which in particular ignores
the lepton mass contribution and assumes zero � width. We
stress, however, that in the actual calculations the full formulas
of Appendix A, which do not make these simplifications, have
been used. The simplified double differential cross section
reads

∂2σ

∂�∂k′ = G2
F cos2 θc(k′)2

2π2
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) (
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)
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RNN
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] ± 2GAGM

k + k′
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× tan2 θ

2

[
RNN

στ (T ) + 2RN�
στ (T ) + R��

στ (T )

]⎫⎬⎭ (2)

where qµ = kµ − k′
µ = (ω, q) is the four-momentum trans-

ferred to the nucleus, θ the scattering angle, M� (MN ) the
� (nucleon) mass. The electric, magnetic, and axial form
factors are taken in the standard dipole parametrization with
the following normalizations: GE(0) = 1.0,GM (0) = 4.71,

and GA(0) = 1.255. The corresponding cut-off parameters are
MV = 0.84 GeV/c2 for the electric and magnetic terms and
MA = 1.032 GeV/c2 for the axial one. The plus (minus) sign
in Eq. (2) stands for the neutrino (antineutrino) case. A similar
expression applies to the process : νl(ν̄l) + A −→ νl(ν̄l) + X,
which involves neutral currents. The various responses R

appearing in Eq. (2) are defined according to

RPP ′
α =

∑
n

〈n|
A∑

j=1

OP
α (j )eiq·xj |0〉

×〈n|
A∑

k=1

OP ′
α (k)eiq·xk |0〉∗δ(ω − En + E0). (3)

The upper indices (P,P ′) refer to the type of particle (N
or �) at the vertices that couples to the external probe. The
corresponding operators have the following forms:

ON
α (j ) = τ±

j , (σ j · q̂) τ±
j , (σ j × q̂)iτ±

j ,

for α = τ, στ (L), σ τ (T ), and

O�
α (j ) = (Sj · q̂)T ±

j , (Sj × q̂)iT ±
j ,

for α = στ (L), σ τ (T ). We have thus defined the inclusive
isospin (Rτ ), spin-isospin longitudinal [Rστ (L)], and spin-
isospin transverse [Rστ (T )] nuclear response functions (the
longitudinal and transverse character of these last two re-
sponses refers to the direction of the spin operator with respect
to the direction of the transferred momentum). The operators
S and T are the usual 1/2 to 3/2 transition operators in the
spin and isospin space. We have assumed the existence of a
scaling law between the nucleon and � magnetic and axial
form factors [69]:

G∗
M/GM = G∗

A/GA = f ∗/f,

where f ∗ (f ) is the πN� (πNN) coupling constant. For a
matter of convenience, we have incorporated the scaling factor
f ∗/f = 2.2 into the responses.

The presence of the spin-isospin longitudinal coupling is a
distinct feature of neutrino interaction as compared to inelastic
electron scattering. For instance, coherent pion production
present in ν interactions is partly suppressed in (e, e′) scattering
due to the purely transverse spin coupling of the exchanged
photon. Inclusive electron scattering is nevertheless useful as
a test for the transverse response [64]. The response functions
are related to the imaginary part of the corresponding full
polarization propagators

R(ω, q) = −V
π

Im[�(ω, q, q)], (4)

where V is the nuclear volume such that Vρ = A. They are
calculated within a RPA (random phase) ring approximation
starting from “bare” propagators (meaning that the nuclear
correlations are switched off). The word bare here does not
imply that the corresponding response is free of many-body
effects, as described in the following. The “bare” polarization
propagator is illustrated by some of its components in Fig. 1
where the wiggled lines represent the external probe, the full
lines correspond to the propagation of a nucleon (or a hole),
the double lines to the propagation of a � and the dashed lines
to an effective interaction between nucleons and/or �s.

The dotted lines in Fig. 1 indicate, in each of the channels
introduced previously (NN,N�, or ��), which intermediate
state is placed on-shell. It follows that the bare response is the
sum of the following partial components: NN : quasielastic (as
described by the standard Lindhard function); NN : 2p-2h; N�

and �N : 2p-2h; ��: πN ; ��: 2p-2h; ��: 3p-3h. Notice that
the graphs shown in Fig. 1 do not exhaust all the possibilities
for the bare propagator. For instance, the distortion of the pion
emitted by the � is not explicitly shown, although it will be
included in our evaluation through the modification of the
� width in the nuclear medium. But the type of final states
that we consider is limited to the previous list. Thus, in the
bare case, through the introduction of the partial polarization
propagators illustrated by the Feynman graphs of Fig. 1, the
inclusive expression of Eq. (2) provides an access to the
exclusive ones, with specific final states.

For the actual evaluation of the bare response, i.e., the
imaginary piece of the bare propagator, some of the graphs
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FIG. 1. Feynman graphs of the partial polarization propagators:
NN quasielastic (1), NN (2p-2h) (2), N� (2p-2h) (3), �N (2p-2h)
(3′), �� (πN ) (4), �� (2p-2h) (5), �� (3p-3h) (6). The wiggled
lines represent the external probe, the full lines correspond to
the propagation of a nucleon (or a hole), the double lines to the
propagation of a � and the dashed lines to an effective interaction
between nucleons and/or �s. The dotted lines show which particles
are placed on-shell.

of Fig. 1 amount to a modification of the � width in the
medium. We take into account this modification through
the parametrization of the in-medium � width of Oset and
Salcedo [70], which leads to a good description of pion-nuclear
reactions. The authors split the � width into different decay
channel contributions: the � −→ πN , which is modified
by the Pauli blocking of the nucleon and the distortion
of the pion. Moreover, in the nuclear medium, new decay
channels are possible: the two-body (2p-2h) and three-body
(3p-3h) absorption channels that they also incorporate. They
give a parametrization for the inclusion of these effects,
both in the case of pion interaction with nuclei and for the
photoproduction process. We have used their parametrization
in spite of the fact that in neutrino interaction the intermediate
boson has a spacelike character. An explicit evaluation of the
corresponding contributions in the kinematical situation of
neutrino scattering is desirable. There exist also other 2p-2h
contributions that are not reducible to a modification of the
� width. We include them, as in the work of Marteau [38],
following the method of Delorme and Guichon [71] who
perform an extrapolation of the calculations of Ref. [72]
on the 2p-2h absorption of pions at threshold. For the last
contribution only the imaginary part of the corresponding
propagator is incorporated. The explicit expressions are given
in Appendix B1. It turns out that for neutrino interaction it
is the dominant contribution to the 2p-2h final-state channel,
as will be illustrated later. This piece of the cross section is
subject to some uncertainty as this parametrization has not
been constrained by specific experimental tests. This point
will be discussed in more detail in Secs. III C and IV C.

The “bare” polarization propagator is density dependent. In
a finite system, �0(ω, q, q′), it is nondiagonal in momentum
space. In order to account for the finite size effects we evaluate
it in a semiclassical approximation where it can be cast in the
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FIG. 2. (Color online) Bare response for 12C at q = 300 MeV/c

as a function of the energy transfer with its different components,
quasielastic and pion emission (left panel), 2p-2h and 3p-3h (right
panel).

form

�0(ω, q, q ′) =
∫

d re−i(q−q ′)·r�0

[
ω,

1

2
(q + q ′), r

]
. (5)

In practice we use a local density approximation,

�0

(
ω,

q + q ′

2
, r

)
= �0

kF (r)

(
ω,

q + q ′

2

)
, (6)

where the local Fermi momentum kF (r) is related to the ex-
perimental nuclear density through: kF (r) = [3/2π2ρ(r)]1/3.
The density profiles of the various nuclei considered are taken
from the sum-of-Gaussians nuclear charge density distribution
parameters according to Ref. [73]. The corresponding bare
response for 12C at q = 300 MeV/c as a function of the energy
transfer is illustrated in Fig. 2 with its different components,
quasielastic, pion emission, 2p-2h and 3p-3h. In all figures the
responses incorporate the multiplicative spin-isospin factor.

Turning to the RPA, as the semiclassical approximation is
not suited to evaluate the collective effects, we have used the
previous bare polarization propagator �0 as an input in a full
quantum mechanical resolution of the RPA equations in the
ring approximation. The introduction of the RPA correlations
amounts to solving integral equations that have the generic
form:

� = �0 + �0V �, (7)

where V denotes the effective interaction between particle-
hole excitations. Its diagrammatic representation is given in
Fig. 3. Some detailed expressions are given in Appendix B2.

= +

FIG. 3. Diagrammatic representation of the RPA polarization
propagator. The white bubble is the free p-h propagator while the
black is the full RPA one.
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In the spin-isospin channel the RPA equations couple the L and
T or the N and � components of the polarization propagators.
The effective interaction relevant in the isospin and spin-
isospin channels is the crucial ingredient for determining the
importance of the RPA effects. We use the parametrization in
terms of π, ρ and contact pieces:

VNN = (f ′ + Vπ + Vρ + Vg′)τ 1 · τ 2

VN� = (Vπ + Vρ + Vg′ )τ 1 · T †
2 (8)

V�N = (Vπ + Vρ + Vg′ )T 1 · τ 2

V�� = (Vπ + Vρ + Vg′ )T 1 · T †
2.

For instance, in the NN case one has:

Vπ =
(

gr

2MN

)2

F 2
π

q2

ω2 − q2 − m2
π

σ 1 · q̂σ 2 · q̂

Vρ =
(

gr

2MN

)2

CρF
2
ρ

q2

ω2 − q2 − m2
ρ

σ 1 × q̂σ 2 × q̂ (9)

Vg′ =
(

gr

2MN

)2

F 2
πg′σ 1 · σ 2,

where g′ is the Landau-Migdal parameter and Cρ = 1.5.
Here Fπ (q) = (�2

π − m2
π )/(�2

π − q2) and Fρ(q) = (�2
ρ −

m2
ρ)/(�2

ρ − q2) are the pion-nucleon and ρ-nucleon form
factors, with �π = 1 GeV and �ρ = 1.5 GeV. For the Landau-
Migdal parameter f ′, we take f ′ = 0.6. As for the spin-isospin
parameters g′ we use the information of the spin-isospin
phenomenology [74], with a consensus for a larger value of
g′

NN = 0.7; for the other parameters we take g′
N� = g′

�� =
0.5.

The separation between the specific channels is less
straightforward in the RPA case than in the bare one. Indi-
cations can be obtained with the following method, introduced
in Ref. [38]. The imaginary part of � can be written (again
generically) as:

Im� = |�|2 ImV + |1 + �V |2 Im�0. (10)

It separates into two terms. The first term on the right-hand side
of Eq. (10), |�|2ImV , is absent when the effective interaction
is switched off. In the domain of energy considered it is the
imaginary part of the pion exchange potential Vπ that plays
the major role. This process thus represents the coherent pion
production, i.e., the emission of an on-shell pion, the nucleus
remaining in its ground state. This is illustrated in Fig. 4,
in which the hatched rings represents the RPA polarization
propagator. The second term on the right-hand side of Eq. (10),
proportional to the bare polarization propagator Im�0, reflects
the type of final state already mentioned for the imaginary
part of �0: NN,πN, . . . . The factor in front, |1 + �V |2,
embodies the modification of the exclusive bare responses by
the collective effects. We point out, however, that final-state
interactions are not incorporated in this description. For
instance, a pion produced in the decay of the � resonance can
be absorbed on its way out leading to a multinucleon emission
process. Thus the second term in Eq. (10) is adequate for the
sum of the incoherent pion production and the multinucleon
knock-out channels but not for each channel individually.

FIG. 4. Diagrammatic representation of the coherent process. The
dotted line indicates that pion is placed on-shell.

The separation between these two channels from the type
of final state is approximate for light nuclei such as 12C. In
heavier nuclei it overestimates the incoherent pion channel,
underestimating the multinucleon one. We will illustrate this
fact in the scattering of physical pions.

Having established the formalism, we are now ready to
evaluate the cross sections in the various partial channels. In
the actual numerical calculation we have limited the energy
transfer to ω = 1 GeV as our approach becomes insufficient for
a larger energy transfer. The center-of-mass correction for the
π -N system qCM = q

1+ω/M
[75] is made by dividing the bare

responses by a factor r2 = (1 + ω/M)2. The components of
the neutrino cross section that does not involve the momentum
q at the two ends of the RPA chain are obtained by an overall
multiplication by the factor r2. Interference terms with one
momentum are multiplied by r .

III. RESULTS

A. Coherent cross section

Several types of responses enter the total neutrino cross
section, isovector, spin-isospin: transverse or longitudinal.
The last quantity is naturally associated with the coherent
process, because it has the same coupling as the pion.
The production by a transverse spin coupling requires a
transverse-longitudinal conversion that is partly suppressed.
This difference is illustrated in Fig. 5 where the total responses,
longitudinal and transverse, of 12C are displayed as a function
of the energy transferred to the nuclear system for a fixed
three-momentum q = 300 MeV/c. The coherent component,
much larger in the longitudinal case, is also shown.

Figure 6 illustrates the evolution with the nuclear size of
the coherent part of the longitudinal response per nucleon as a
function of the energy at fixed momentum for some nuclei, 12C,
16O, 40Ca, and also for a fictitious piece of isospin symmetric
nuclear matter with the density profile of lead. Two features
emerge, the first one is that its magnitude decreases in “lead,”
as expected: the coherent response per nucleon vanishes in
nuclear matter when the polarization propagators become
diagonal in momentum space. The second is that the coherent
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FIG. 5. (Color online) Longitudinal and transverse total re-
sponses of 12C at fixed q = 300 MeV/c as a function of ω. The
coherent part of the responses is also shown.

response is not peaked at the energy ωπ = (q2 + m2
π )1/2 where

the mismatch between the incident energy and that of the
physical outgoing pion is smallest. Instead, it is reshaped by
the collective features of the longitudinal response with the
appearance of two collective branches on each side of the pion
line. This is more apparent in the case of the (fictitious) lead.

As a test of our description of the coherent responses we
have investigated the elastic scattering of pions on nuclei in
the � region, related to the coherent part of the spin-isospin
longitudinal response through:

σ elas(ω) =
(

gr

2MN

)2

πqπRcoh
L (ω, qπ ), (11)

where q2
π = ω2 − m2

π and Rcoh
L refers to the coherent part of

the longitudinal response. The resulting cross-section in the
case of 12C is shown in Fig. 7 together with the experimental
points from Ref. [76]. The agreement with data is satisfactory.
A similar accuracy can be expected for the coherent response
that enters the neutrino cross section, at least in the energy
region for the produced pion where we have tested our
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FIG. 6. (Color online) Evolution with the mass number of the
coherent longitudinal response per nucleon at fixed q = 300 MeV/c

as a function of ω. The arrow indicates the energy for on-shell pion.
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FIG. 7. (Color online) π -12C elastic cross section as a function of
pion energy.

model (i.e., between ω � 220 and �450 MeV). The elastic
cross section that depends on the longitudinal response is
particularly sensitive to collective effects in this channel known
to be important. The replacement of the bare response by the
RPA one leads to a different energy behavior, the collective
effects producing a softening of the response, characteristic of
the collective nature of the longitudinal channel.

Figure 8 displays our evaluations of the neutrino coherent
cross section on 12C as a function of the pion kinetic energy,
both for charged and neutral current, for several neutrino
incident energies. The resulting total coherent cross sections
are displayed in Fig. 9. The suppression of the meson exchange
correction in the time component of the axial current, G∗

A →
GA, produces a moderate �10% increase of the cross section.

The data available on the coherent production by neutrino
concern its ratio to the total cross section and to the total
pion production. We will then postpone the comparison with
experimental data after the discussion of the various other
channels.
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FIG. 8. (Color online) Charged and neutral current coherent pion
production differential cross section off 12C versus pion kinetic energy
for several νµ energies.
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FIG. 9. (Color online) Total CC (divided by 2) and NC νµ-induced
coherent pion production cross sections in 12C as a function of
neutrino energy.

1. Adler’s theorem

In the forward direction where q = ω and for vanishing
lepton mass, only the spin longitudinal response contribution
survives. As it also enters in pion scattering, it is possible to
relate the forward neutrino cross section to the cross section of
physical pions, apart from a difference in kinematics: q = ω

(soft pions) for neutrinos, instead of q = qπ = √
ω2 − m2

π

for physical pions. This difference becomes less relevant
at large energies. This is the content of Adler’s theorem
[77]. The coherent channel, which is completely dominated
by the longitudinal response, offers the best application of
this theorem, while for the other channels the transverse
component, which bears no relation to pion scattering, quickly
takes over as soon as one moves away from the forward
direction. This theorem has been used in the approach of
Refs. [18,29,31] to evaluate the coherent neutrino-nucleus
cross section. This is not our aim here. We want to illustrate
the link between the forward direction coherent neutrino cross
section and the elastic pion-nucleus one. For the coherent cross
section Adler’s relation writes(

∂2σ

∂�∂ω

)coh

θ=0

= G2
F cos2 θc

π3
f 2

π

(Eν − ω)2

ω
σ elas(ω), (12)

where fπ = 93.2 MeV is the neutral pion decay constant.
Introducing the experimental values for the elastic cross
section taken from Ref. [76] we obtain the points shown
in Fig. 10 together with our predicted curve. The agree-
ment is rather good. It deteriorates at small energies when
the kinematical difference between soft and physical pions
becomes substantial. A natural correction can be performed
with the introduction into the right-hand side of Eq. (12)
of a multiplicative factor ω

qπ
as suggested by the relation of

Eq. (11) between RL and σ elas. The corresponding corrected
points are also shown in Fig. 10 extending somewhat the
region of agreement. The use of the Adler relation becomes
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FIG. 10. (Color online) νe-12C coherent cross section in the
forward direction. (Continuous line) Our result. (Circles) Deduced,
according to Adler’s relation of Eq. (12), from the experimental values
for the elastic cross section taken from Ref. [76]. (Stars) Introducing
into the right-hand side of Eq. (12) the multiplicative factor ω

qπ
.

problematic at energies near threshold. For small neutrino
energy (Eν < 0.5 GeV) this region has more weight in the
total coherent cross section.

The Adler relation thus provides a good test for our
evaluation of coherent neutrino cross section in the forward
direction. We believe that the extrapolation to the nonforward
direction as performed in our model should be under control.

B. Pion-nucleus cross sections

The various partial cross sections for physical pions on
nuclei constitute a precious piece of information. Elastic cross
section has already been introduced as a test for the coherent
cross section. The total cross section for pions on the nuclei
is given by an expression similar to Eq. (11) with the full
polarization propagator replacing the coherent piece

σ tot(ω) =
(

gr

2MN

)2

πqπRL(ω, qπ ). (13)

The corresponding cross section is displayed in Fig. 11
together with the experimental points. We will show that
in the same way the inelastic cross section provides some
information on the incoherent pion production by neutrinos
and the absorptive cross section on the multinucleon channels.
Figure 11 displays the various partial channels (but the elastic
one, previously shown) that contribute to the π+ cross section
on 12C, namely the inelastic pion scattering channel (which is
the incoherent scattering with a π+ in the final state) and the
absorptive one. We also display the sum of the incoherent pion
(including charge exchange) and true absorption (multinucleon
channels) cross sections. The experimental points are taken
from Ashery et al. [76]. To reduce the clutter, we have not
explicitly plotted the charge-exchange cross section that, in
our approach, is one-fifth of the inelastic π+ cross section
and is consistent with the experimental data. While the
elastic cross section was well reproduced, our approach
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FIG. 11. (Color online) Partial and total π -12C cross sections.

overestimates the π+ inelastic channel in the peak region and
largely underestimates the absorptive channel. We attribute this
deficiency to the absence of pion final-state interaction as the
pion can be reabsorbed on its way out the nucleus. It can also
undergo charge exchange process but this is a smaller effect.
As a counterpart the absorptive multinucleon production is
underestimated, as is apparent in Fig. 11. The sum of the two
channels is instead reasonably well reproduced in the peak
region.

These limitations also affect the incoherent neutrino-
nucleus cross section but we stress that, in contradistinction,
our description for the coherent channel automatically contains
the final-state interactions and no further correction is needed.
The total neutrino cross section is also obviously not affected.
With the information on the pion energy spectrum in neutrino
interactions (that our calculation does not provide) it would
be possible to estimate at each energy an attenuation factor
for the incoherent neutrino production from the difference
between our calculation and inelastic data for physical pions.
For instance, for 12C at Eν = 1 GeV, a rough evaluation of the
overall correction for the incoherent production cross section
with the information on the pion spectrum [78] results in a
moderate reduction of �15%. A similar attenuation was found
in oxygen at Eν = 500 MeV and Eν = 750 MeV [43]. A larger
correction is obviously expected for calcium.

C. Quasielastic and multinucleon channels

The quasielastic (QE) channel corresponds to a single
nucleon knock-out. In the quasielastic process the spacelike
character is pronounced as the quasielastic peak occurs at
ω � q2/(2MN ), hence the distribution in Q2 = q2 − ω2 is
rather broad [9]. At zero order only RNN contributes to
this channel. In the RPA chain instead RN� and R�� also
participate. For instance, the lowest-order contribution of RN�

is illustrated in Fig. 12. In contrast to the coherent channel,
the quasielastic one is totally dominated by the transverse
response. The longitudinal contribution is suppressed by a
cancellation between the space and time components of the
axial current, as observed by Marteau [38] and shown in

FIG. 12. Lowest-order contribution of RN� to the quasielastic
channel.

Appendix A1 for vanishing lepton mass and neglecting the
Fermi momentum. Numerically its contribution is indeed very
small. We have tested our semiclassical approximation on the
bare QE νe-12C cross section through a comparison with the
one obtained by Martini et al. [53] in the continuum shell
model where the mean field is produced by a Woods-Saxon
well. Our result is very similar in shape and magnitude to
the one of Ref. [53] but for a displacement in energy of
27 MeV. This reflects the inclusion of the nucleon separation
energy in the continuum shell model, which is ignored in our
approximation.

The quasielastic cross section is displayed in Fig. 13 as
a function of the energy transfer for neutrino energy Eν =
1 GeV, both in the bare case and in the RPA one. The RPA
influence produces a reduction, as expected from the repulsive
character of the particle-hole interaction, which prevails in
the transverse channel. This reduction is mostly due to the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ω [GeV]

0

5

10

15

20

dσ
/d

ω
  [

10
-3

8 cm
2 /G

eV
]

QE bare
QE RPA
np-nh RPA

νµ+12
C −−> µ− +X

Eν = 1 GeV

FIG. 13. (Color online) Differential CC νµ-12C cross section
versus the energy transfer for quasielastic process (bare and RPA)
and multinucleon emission (np-nh).
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FIG. 14. (Color online) CC νµ-12C QE, multinucleon (np-nh),
incoherent pion emission, and total cross section as a function of
neutrino energy.

interference term RN� that is negative (Lorentz-Lorenz effect
[79]).

The total quasielastic charged current and neutral current
cross section are plotted in Figs. 14 and 15 as a function of the
neutrino energy. In Figs. 13, 14, and 15 we also display the sum
of the two- and three-nucleon knock-out cross sections, which
represents a sizable fraction of the quasielastic one. Singling
out the genuine quasielastic process requires the insurance that
no more than one proton is ejected. This question will appear
in the comparison with data. Among the various contributions
to the multinucleon channel the ones that do not reduce to a
modification of the � width are dominant. The accumulation
of 2p-2h strength at low energy is an artifact of the simplified
extrapolation that we use in this channel. In Sec. IV C this
point is discussed in more detail and another method for the
parametrization, with an explicit momentum dependence, is
introduced. It modifies the ω dependence of dσ

dω
, spreading the
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FIG. 15. (Color online) NC νµ-12C QE, multinucleon (np-nh),
incoherent pion emission, and total cross section as a function of
neutrino energy.
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FIG. 16. (Color online) RPA differential CC cross sections per
neutron in the different channels for 12C (same convention line as
Figs. 13, 14, 15) and 40Ca (dotted lines).

strength over a larger energy region but does not substantially
affect the energy integrated cross section.

Coming now to the evolution of these channels between
12C and 40Ca we compare the corresponding RPA differential
cross sections per neutron for the two nuclei in Fig. 16. One
can see that the evolution of this quantity with the mass
number is quite weak in the QE case. It is also weak in the
multinucleon channel although it should increase faster with
density than the quasielastic one. However, between a light
system such as 12C and 40Ca the evolution is moderate. Only
in the case of deuteron one expects the multinucleon knock-out
to be appreciably smaller in view of the loose binding of the
system.

D. Incoherent pion emission

The pion arises from the pionic decay of the � leaving the
nucleus in a p-h excited state. For the nuclei that we consider
this cross section is much larger than the coherent one. As
compared to a free nucleon the emission probability is already
appreciably reduced in the bare case by the change in the
� width. Moreover the RPA effects, which are moderate,
also tend to a small reduction. The reduction due to the
modification of the � width has a counterpart in the presence
of a component of multinucleon knock-out. Charged current
and neutral current cross sections for incoherent pion emission
for all possibles charges are represented in Fig. 14 and 15 as a
function of neutrino energy. Moreover these figures summarize
all previous results for the other channels and also give the total
cross sections.

On the other hand, Fig. 16 compares the neutrino differ-
ential cross section per neutron in the various channels as a
function of the energy transfer, ω, for the cases of 12C and
40Ca and for a neutrino energy Eν = 1 GeV. The two sets of
curves are very similar. We can conclude that, at the level
of our approximation, i.e., without final-state interaction, it
is possible to extrapolate smoothly from 12C to the region of
40Ar. Only the coherent cross section presents a significant
variation, illustrated in Fig. 17.
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FIG. 17. Differential CC cross sections per neutron in the coher-
ent channel for 12C (continuous line) and 40Ca (dotted line).

IV. COMPARISON WITH DATA

A. Coherent pion production

Experimental data concern ratios between different cross
sections. The first indication of coherent pion production by
neutral current was given by MiniBooNE [10], which found
the ratio of coherent to total π0 production to be 0.195 ±
0.011 ± 0.025. In this experiment the neutrino flux is spread in
energy with a peak at �700 MeV [13]. Our approach leads to a
lower number, namely 0.06, which is difficult to reconcile with
experimental data, a problem that other groups also face. It has
been suggested in Ref. [27] that MiniBooNE, which uses Rein-
Sehgal model [80] for data analysis, possibly overestimates
the π0 coherent cross section. In a preliminary report [81] the
experimental value given for this cross section is (7.7 ± 1.6 ±
3.6) × 10−40 cm2. Our result for this cross section averaged
on the MiniBooNE flux [13], 2.8 × 10−40 cm2, is compatible
with the experiment in view of the large experimental errors.

On the other hand, for charged current, two experimental
groups have given upper limits for the ratio of coherent pion
production to the total cross section. The K2K collaboration
gives a limit of 0.6010−2 averaged over a neutrino flux with
a mean energy of 1.3 GeV [7]. More recently, the SciBooNE
collaboration found for the same quantity 0.6710−2 at neutrino
energy of 1.1 GeV [12] and 1.3610−2 at neutrino energy of
2.2 GeV. We report in Fig. 18 our prediction for this quantity.
Because our approach is appropriate for a limited neutrino
energy range we keep in the comparison only the lowest
energy SciBooNE point. Our curve is just compatible with
the experimental bound.

B. Total pion production

Another measured quantity is the ratio of π+ production to
quasielastic cross section for charged current. The MiniBooNE
collaboration has used a CH2 target. In order to compare with
ANL [82] and K2K [11] data, they presented the results with
an isoscalar rescaling correction [14]. The issue of pion loss
by final-state interaction, which is not incorporated in our
description, has also been taken into account by MiniBooNE,
who correct data for this effect. We can thus compare our π+
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FIG. 18. (Color online) Ratio of the νµ-induced charged current
coherent π+ production to total cross section as a function of
neutrino energy.

over quasielastic ratio (solid line in Fig. 19) to the final-state-
interaction-corrected MiniBooNE results. Our curve incorpo-
rates the small coherent cross section; the incoherent pion one
is multiplied by the isospin factor 5/6 to single out π+ contri-
bution. Our curve is fully compatible with experimental data.

As an additional information, MiniBooNE also gives a ratio
more directly related to the measurements, namely the ratio
of pionlike events (defined as events with exactly one µ− and
one π+ escaping the struck nucleus) and quasielastic signal
(defined as those with one µ− and no pions). In our language
the last quantity represents the total Np-Nh (N = 1, 2, 3,
including the quasielastic for N = 1) exclusive channel.
We have compared this second experimental information to
the ratio between our calculated pion production (which,
however, ignores final-state interactions) and our total Np-Nh
contribution to the total charged current neutrino cross section
(Fig. 20). There is an appreciable difference between the
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FIG. 19. (Color online) Ratio of the νµ-induced charged current
one π+ production to quasielastic cross section as a function of
neutrino energy. The final-state-interaction-corrected data are taken
from Ref. [14].
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FIG. 20. Ratio of the νµ-induced charged current one π+ pro-
duction to quasi-elastic-like cross section as a function of neutrino
energy. The “observed” data are taken from Ref. [14].

two curves of Fig. 19 and Fig. 20: the one of Fig. 20 is
reduced due to a large 2p-2h component in the Np-Nh cross
section, which increases the denominator. The comparison
with the experiment shows an agreement up to Eν � 1.2 GeV.
Final-state interactions for the pion, which are not included,
are expected to reduce our result at the level of 15%, still
maintaining an agreement.

A new result has been presented at NuInt09 by SciBooNE
[16]. It is the ratio of the total neutral current π0 production
cross section to the total charged current cross section at the
mean neutrino neutrino energy of 1.16 GeV. They obtain the
preliminary value:

σ (NCπ0)

σ (CCTOT)
= [

7.7 ± 0.5(stat.)+0.4
−0.5(sys.)

] × 10−2. (14)

Our prediction for this quantity, including coherent contribu-
tion and a factor 2/3 for NC incoherent pion production to
single out π0 contribution is:

σ (NCπ0)

σ (CCTOT)
= 7.9 × 10−2, (15)

which fully agrees with data.
A general comment on the comparison with data: nearly

all the ratios that have been discussed, except the final-
state-interaction-corrected MiniBooNE result of Fig. 19, are
sensitive to the presence of the np-nh (n = 2, 3) component
in the cross section. Because the size magnitude is not so well
tested, we can investigate what becomes the comparison with
data in the extreme situation when we totally suppress this
contribution. For the last ratio discussed we obtain

σ (NCπ0)

[σ (CCTOT) − σ (CCnp−nh)]
= 9.8 × 10−2, (16)

appreciably above the experimental value.
As for the SciBooNE upper limit of the ratio of the π+

coherent to total charged current cross section, our prediction
at Eν = 1.1 GeV, which was 0.71 × 10−2, without np-nh
becomes 0.89 × 10−2, further above the experimental bound
of 0.67 × 10−2.

C. Quasielastic cross section

A new preliminary result on absolute cross sections has
been presented by the MiniBooNE collaboration [15]. This
group gives in particular the absolute value of the cross section
for “quasielastic” events, averaged over the neutrino flux and
as a function of neutrino energy. The comparison of these
results with a prediction based on the relativistic Fermi gas
model using the standard value of the axial cut-off mass
MA = 1.03 GeV/c2 reveals a substantial discrepancy. In the
same model a modification of the axial cut-off mass from
the standard value to the larger value MA = 1.35 GeV/c2 is
needed to account for data. A similar conclusion holds for the
Q2 distribution [8,9]. The introduction of a realistic spectral
function for the nucleon does not alter this conclusion [32].

As a possible interpretation we question here the real
definition of quasielastic events. As already discussed above,
the nuclear medium is not a gas of independent nucleons,
correlated only by the Pauli principle, but there are additional
correlations. The ejection of a single nucleon (denoted as a
genuine quasielastic event) is only one possibility, and one
must in addition consider events involving a correlated nucleon
pair from which the partner nucleon is also ejected. This
leads to the excitation of two-particle–two-hole (2p-2h) states
that have been abundantly discussed throughout this work. In
the spin-isospin channel the correlations, mostly the tensor
ones, add 2p-2h strength to the 1p-1h events [66]. At present,
in neutrino reactions, such events cannot be experimentally
distinguished from the genuine quasielastic events and must
be considered simultaneously. Notice that the standard lower
value of the axial mass, MA = 1.03 GeV/c2, results from
deuterium bubble chamber experiments. In this case the effect
of tensor correlation is also present but at a lower level because
deuteron is a dilute system. Our sum of the combined 12C
quasielastic cross section and the 2p-2h one is displayed in
Fig. 21. This prediction fits the experimental data excellently,
better than expected in view of the uncertainties of our 2p-2h
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FIG. 21. (Color online) “Quasielastic” νµ-12C cross section per
neutron as a function of neutrino energy. Dashed curve: pure
quasielastic (1p-1h) cross section; solid curve: with the inclusion
of np-nh component. The experimental MiniBooNE points are taken
from Ref. [15].
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cross section. As for the flux averaged “quasielastic” cross
section per neutron the experimental value is 9.4 × 10−39 cm2

(with a normalization error of 11%). Our prediction for this
quantity is 6.3 × 10−39 cm2 without 2p-2h contribution and
9.0 × 10−39 cm2 including it, a value more in touch with the
experimental one.

In view of the importance of the issue we want to investigate
if this large 2p-2h contribution is a genuine effect and not
an artifact of the particular parametrization that we have
used for the bare 2p-2h channel. For this, we introduce a
different approach that exploits a microscopic evaluation by
Alberico et al. [66] of the 2p-2h contribution to the transverse
magnetic response of (e, e′) scattering. It does not have the
shortcomings of our previous parametrizations that have no
momentum dependence. In the previous case the maximum
of the 2p-2h response RNN

2p−2h always lies at low energy,
ω � 50 MeV, irrespective of the momentum, separating at
large momentum from the quasielastic peak that instead gets
shifted at larger energies. A similar feature exists in the N�

part. This is not realistic and below we sketch a possible way
for improvements. The aim is to extract the 2p-2h responses
from the results of Alberico et al. [66], although they are
available for a limited set of momenta and energies and they
concern iron instead of carbon. We have thus performed
extrapolations both to cover all the kinematical region of
neutrino reactions and to go to the 12C case. For the set
of Rστ (T )(ω, q) values that we could extract [66] we have
observed an approximate scaling behavior with respect to
the variable x = q2−ω2

2MNω
. A parametrization of the responses

in terms of this variable allows the extrapolation needed to
cover the full neutrino kinematical region and we have now
the new responses, RNN

2p−2h(ω, q) and RN�
2p−2h(ω, q) in all the

range. For the �� part, which is not well covered in Ref. [66]
we have kept the previous parametrization, which already
presents a proper q dependence owing to the contribution of
the in-medium � width [70]. Another remark is in order. The
evluation of Ref. [66] of the 2p-2h channel does not repro-
duce pion absorption in nuclei at threshold, as observed by the
authors. It gives a too large value for the absorptive p-wave
optical potential parameter [75], ImC0 � 0.18m−6

π , instead of
the best fit value ImC0 � 0.11m−6

π . To be as consistent as
possible with our previous parametrization, which comes from
pion absorption, we have applied to our scaling function the
reduction factor 0.11

0.18 . The nuclear mass dependence is taken
care of with the introduction of the Levinger factor, L, which
fixes the number of quasideuteron pairs in the nucleus defined
as LZN/A. We rescale the iron results by a factor r , ratio of the
Levinger factors, for the two nuclei. It is r = 0.8 according to
the A dependence of the Laget formula [83] or a similar value,
r � 0.75 from Ref. [84]. Altogether the global reduction factor
applied to the iron scaling function is �0.5.

Because in the previous case the RPA have little effect on
the 2p-2h component, we introduce directly the bare new 2p-2h
quantities in the neutrino cross section. The influence of the
new modelization of the 2p-2h is displayed in Fig. 22, where
the bare partial and total np-nh differential CC neutrino cross
sections at Eν = 0.7 GeV are shown both for the previous
parametrization and for the new one. The energy behaviors
are quite different, the NN contribution is no longer localized
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FIG. 22. (Color online) Comparison between the CC νµ-12C
np-nh (n = 2, 3) differential cross sections deduced from the two
different parametrizations of the 2p-2h components. (Thin lines)
Parametrization of Sec. III C and used throughout the whole article
(denoted “old”); (bold lines) parametrization of Sec. IV C (“new”).

at small energies but is spread over the whole energy range,
a more realistic feature. A similar behavior occurs for N�

part. However, the integral over the energy, σnp−nh(Eν),
is practically not modified. As a consequence adding this
contributions to the quasielastic cross section we reach a
similar conclusion as before about the important role of the
multinucleon channel, as illustrated in Fig. 23.

It indicates that, in the nuclear medium, neutrinos in this
energy range do not interact only with individual nucleons but
also with pairs of nucleons, mostly n-p pairs correlated by
the tensor interaction. The spin-dependent part of the neutrino
interaction with such a pair is stronger than with the same
two nucleons when isolated. This increase manifests itself
through the 2p-2h strength that adds to the 1p-1h part, an
effect simulated by an increase of the axial cut-off mass.
Quantitatively a confirmation on the theoretical side of the
exact magnitude through a detailed microscopic calculation
of the bare 2p-2h response, which will then be inserted in
our RPA formalism, would be helpful. Also an experimental
identification of the final state would be of a great importance
to clarify this point. In particular the charge of the ejected
nucleons will be quite significant. Because tensor correlations
involve n-p pairs, the ejected pair is predominantly p-p (n-n)
for charged current neutrino (antineutrino) reactions and n-p
for neutral current. This predominance has the same origin as
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FIG. 23. (Color online) Same as Fig. 21 including also our curve
(QE + np-nh “new”) with the new parametrization for the 2p-2h
component (bold line).
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for p-wave π− absorption by nuclei where n-n emission is
favored over n-p emission [72,79].

V. SUMMARY AND CONCLUSION

We have studied neutrino interactions with light nuclei that
enter the targets of present or future experiments. Our theo-
retical tool is the theory of the nuclear response treated in the
RPA, a well-established technique for the treatment of electro-
magnetic or weak interactions with nuclei and that have been
used also for strongly interacting probes. The crucial element
of the RPA treatment is the p-h interaction, in particular for the
spin-isospin one, which has been taken from the accumulated
knowledge on the spin-isospin responses. The main merit of
this approach is to allow unified description of various chan-
nels. It has some limitations that restrict the energy range of the
neutrino to a region below �1.2 GeV. For instance, the only nu-
cleonic resonance incorporated in the description is the � res-
onance. Multipion production is also ignored, as well as most
meson exchange effects. Moreover, although both the � propa-
gator and the center-of-mass correction are the relativistic one,
not all relativistic effects are included in a systematic way.

The final states considered are the quasielastic, 2p-2h,
3p-3h ones, and coherent or incoherent pion production. Some
channels have the problem that final-state interactions are not
incorporated. This is the case for incoherent pion emission
where the produced pion can be absorbed on its way out of
the nucleus leading to a multinucleon state. Incoherent pion
production is therefore overestimated and the multinucleon
channel accordingly underestimated. This effect is visible in
the scattering of physical pions on 12C in the region of the
� peak. For a light nucleus such as 12C the effect is limited but
it becomes more serious in heavier nuclei. Our method should
be supplemented by an evaluation of the final-state interaction,
for instance, by a Monte Carlo method [61,85].

The coherent channel is particularly interesting, although it
represents only a small fraction of the total pion emission.
It does not suffer from the previous limitations as final-
state interactions are automatically incorporated in the RPA
treatment that is particularly suited for this channel. Moreover,
it is the only channel that is dominated by the isospin
spin-longitudinal response where collective effects are very
pronounced while they remain moderate in the other channels.
The difference between the first-order term with one bubble
(with � excitation) and the full RPA chain is quite large.
In this context we have used as a test of our spin longitudinal
response the experimental data on elastic pion scattering in the
� region. It offers a direct test of the forward coherent neutrino
cross section to which it is linked through the Adler theorem.
Except for low pion energies near threshold (ω � 200 MeV)
where Adler’s theorem fails, the elastic cross section can be
used to extract the forward neutrino coherent cross section as
in the method of Rein-Sehgal.

For the evolution of the partial cross sections with mass
number in order to reach the 40Ca region, our description
indicates that, apart from the coherent pion production that
evolves differently, the other partial cross sections scale
essentially as the nucleon number. Final-state interactions
obviously will destroy this scaling.

We have compared our predictions with the available
experimental data. Our ratio for the coherent pion production
over the total neutrino cross section is just compatible with
the experimental upper limit. Another test concerns the ratio
for charged currents π+ production to the quasielastic cross
section. A delicate point in the experiments concerns the
definition of a quasielastic process and its separation from
np-nh that the experiment does not distinguish. In one set
of data a correction is applied to obtain a genuine quasi-
elastic cross section and it is corrected as well for final-state
interaction. In another set of results a generalized quasielastic
is introduced, defined as events with only one lepton. In this
case our 2p-2h and 3p-3h should be added to the quasielastic
component. Both lead to successful comparisons with the
two sets of experimental data. Further data involve a ratio
of neutral current π0 production to the total neutrino cross
section for charged currents. Here again our evaluation agrees
with data. It is quite encouraging that the comparison with
present experimental data is essentially successful.

A distinct feature of our approach, and one of our significant
results, is the large 2p-2h component. It affects all the measured
ratios discussed in this work. At the present level of accuracy
we have not found in these ratios any contradiction to its
presence. It is also supported by preliminary data on the
absolute neutrino quasielastic cross section on carbon. We
suggest that the proposed increase of the axial mass from the
standard value to a larger one to account for the quasielastic
data, reflects the presence of a polarization cloud, mostly due
to tensor interaction, which surrounds a nucleon in the nuclear
medium. It translates into a final state with ejection of two
nucleons, which in the present stage of the experiments is
indistinguishable from the quasielastic final state. Although
the existence of such 2p-2h component is not in question, for a
fully quantitative evaluation we plan to improve the description
of the multinucleon final states by a microscopic treatment.
Future precision experiments, such as T2K, will be able to
identify final states, namely p-p pairs for charged current
and n-p pairs for neutral current and bring an experimental
elucidation of this intriguing effect.
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APPENDIX A: INCLUSIVE NEUTRINO-NUCLEUS
CROSS-SECTION

The invariant amplitude for the lepton-nucleus cross sec-
tion, Eq. (1), results from the contraction between the leptonic
L and the hadronic H tensors

|T |2 = L00W
00 + L33W

33 + (L03 + L30)W 03

+ (L11 + L22)W 11 ± (L12 −L21)W 12

{+ (ν)
− (ν̄) . (A1)

The various L are the component of the leptonic tensor

Lµν = 8(kµk′
ν + kνk

′
µ − gµνk.k′ ∓ iεµναβkαk′β) (A2)
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while the W of the hadronic one

Wµν =
∑

P,P ′=N,�

√
MP

E
q

P

√
MP ′

E
q

P ′
H

µν

PP ′

= MN

E
q

N

H
µν

NN +
√

MN

E
q

N

√
M�

E
q

�

H
µν

N� + M�

E
q

�

H
µν
��, (A3)

where E
q

N = (q2 + MN
2)1/2 and E

q

� = (q2 + M�
2)1/2. This

decomposition takes into account the different channels of
particle-hole excitations. The various leptonic tensor compo-
nents are:

L00 = 8(k0k
′
0 + kk′ cos θ ),

L33 = 8(2k3k
′
3 + k0k

′
0 − kk′ cos θ ),

L03 + L30 = 16(k0k
′
3 + k3k

′
0),

L11 + L22 = 16
(
2k2

1 + k0k
′
0 − kk′ cos θ

)
,

(A4)
L12 − L21 = −i8(k0k

′
3 − k3k

′
0),

with k3 = k

q
(k′ cos θ − k),

k′
3 = k′

q
(k′ − k cos θ ),

and k1 = k2 = kk′

q

sin θ√
2

.

For the hadronic tensor components we keep only the leading
terms in the development of the hadronic current in p/M ,
where p denotes the initial nucleon momentum. Marteau
investigated the importance of the momentum terms and found
them to be small. The components are related to the various
nuclear responses R as follows

H 00
PP ′ = α0

P α0
P ′Rτ + β0

P β0
P ′Rl

H 03
PP ′ = α0

P α3
P ′Rτ + β0

P β3
P ′Rl

H 33
PP ′ = α3

P α3
P ′Rτ + β3

P β3
P ′Rl

(A5)
H 11

PP ′ = γ 0
P γ 0

P ′Rt + δ0
P δ0

P ′Rt

H 22
PP ′ = H 11

PP ′ ,

H 12
PP ′ = −iγ 0

P δ0
P ′Rt − iδ0

P γ 0
P ′Rt .

For sake of illustration we give the explicit expression of H 00:

H 00 =
∑

P,P ′=N,�

H 00
PP ′ = α0

Nα0
NRNN

τ

+β0
Nβ0

NRNN
l + 2β0

Nβ0
�RN�

l + β0
�β0

�R��
l . (A6)

The quantities α, β, γ , and δ are expressed in terms of the
usual form factors, namely

α0
P = N

q

P

[
F1 − F2

q2

2MP

(
E

q

P + MP

)]
,

α3
P = N

q

P

[
F1 − F2

ω

2MN

] |q|
E

q

P + MP

,

β0
P = N

q

P

[
G∗

A − GP

ω

2MN

] |q|
E

q

P + MP

,

β3
P = N

q

P

[
GA − GP

q2

2MN

(
E

q

P + MP

)]
,

γ 0
P = N

q

P

[
F1 − F2

ω

2MN

+ F2
E

q

P + MP

2MP

] |q|
E

q

P + MP

,

δ0
P = −N

q

P GA. (A7)

We have introduced in the time component of the axial
current a renormalization factor G∗

A = GA(1 + δ) to account
meson exchange effects that are known to be important in this
channel [68]. Even with the large value δ = 0.5 the effect of
this renormalization is small. The most affected channel is the
coherent, which is reduced by �10%.

1. Spin longitudinal contribution to the quasielastic cross section

We consider the limit of vanishing lepton mass. In this case
the relevant leptonic tensor components reduce to

L00 = 4[(k + k′)2 − q2] = q2

ω2
L33 = −1

2

q

ω
(L03 + L30).

(A8)

The longitudinal contribution to the quantity |T |2 involves

β0
N

2
L00 + β3

N

2
L33 + β0

Nβ3
N (L00 + L33)

= N
q

N

2
G2

AL00

[
q2(

E
q

N + MN

)2 + ω2

q2
− 2

ω

q

|q|
E

q

N + MN

]
.

(A9)

Neglecting the struck nucleon momentum, the transferred
energy ω in a quasielastic process is ω = E

q

N − MN , which
implies the bracket on the right-hand side of Eq. (A9) to vanish.

APPENDIX B: PARTICLE-HOLE POLARIZATION
PROPAGATORS

1. Bare

In this Appendix we give the expressions of the bare
particle-hole polarization propagators. The nucleon-hole po-
larization propagator is the standard Lindhard function [86].
For the �-hole polarization propagator we use the relativistic
expression

��−h(q) = 32M̃�

9

∫
d3k

(2π )3
θ (kF − k)

×
[

1

s − M̃2
� + iM̃���

− 1

u − M̃2
�

]
, (B1)

where s and u are the Mandelstam variables. M̃� = M� +
40(MeV ) ρ

ρ0
is the mass of the � in the nuclear medium and

�� is the in medium � width. The last two quantities are taken
from Ref. [70].

For the 2p-2h polarization propagators we consider only
the imaginary parts. Their expressions, which represent an
extrapolation of threshold results of [72] are

Im
(
�0

NN

) = 4πρ2 (2MN + mπ )2

(2MN + ω)2
C1�1(ω)

[
1

ω2

]
Im

(
�0

N�

) = −4πρ2 (2MN + mπ )2

(2MN + ω)2
C2�2(ω)Re

065501-13



M. MARTINI, M. ERICSON, G. CHANFRAY, AND J. MARTEAU PHYSICAL REVIEW C 80, 065501 (2009)

×
[

1

ω
(
ω − M̃� + MN + i ��

2

)
+ 1

ω(ω + M̃� − MN )

]
Im

(
�0

��

) = −4πρ2 (2MN + mπ )2

(2MN + ω)2
C3�3(ω)

×
[

1

(ω + M̃� − MN )2

]
. (B2)

The Ci constants are set to C1 = 0.045, C2 = 0.08, C3 =
0.06, while the �i(ω) include phase space, pion, and ρ

propagators.

2. RPA

Here we define the RPA expressions of the response
functions for finite nuclei.

First we introduce the projection of the bare propagators on
the Legendre’s polynomials PL through

�0(L)(ω, q, q ′) = 2π

∫
duPL(u)�0(ω, q, q ′),

(B3)

�
0(L)
kF (R)(ω, q, q ′) = 2π

∫
duPL(u)�0

kF (R)

(
ω,

q + q ′

2

)
,

where q = |q|, q ′ = |q ′|, u = cos(̂q, q̂ ′). Starting from
Eqs. (5) and (B3), after some algebraic manipulations, one
obtains

�0(L)(ω, q, q ′) = 4π
∑
l1,l2

(2l1 + 1)(2l2 + 1)

(
l1 l2 L

0 0 0

)2

×
∫

dRR2jl1 (qR)jl1 (q ′R)�0(l2)
kF (R)(ω, q, q ′)

(B4)

with the usual three-j symbol and l-order Bessel function
jl(x). This is the starting point for the calculations of isovector
and spin-isospin response functions.

The free isovector (or charge) response function can be
expressed through

R0NN
cc (ω, q) = −V

π

∑
J

2J + 1

4π
Im

[
�

0(J )
Nh (ω, q, q)

]
. (B5)

The RPA isovector response function

RNN
cc (ω, q) = −V

π
Im[�ccNN

(ω, q, q),]

= −V
π

∑
J

2J + 1

4π
Im

[
�(J )

ccNN
(ω, q, q)

]
, (B6)

is obtained solving the following equation

�(J )
ccNN

(ω, q, q ′) = �
0(J )
Nh (ω, q, q ′) +

∫
dkk2

(2π )3
�

0(J )
Nh (ω, q, k)

×V NN
c (k)�(J )

ccNN
(ω, k, q ′). (B7)

For the spin-isospin longitudinal and transverse responses
we introduce the following quantities

�
0(J )
llPP ′ (ω, q, q ′) =

∑
L=J±1

a2
JL�

0(L)
PP ′ (ω, q, q ′),

�
0(J )
ltPP ′ (ω, q, q ′) =

∑
L=J±1

aJLbJL�
0(L)
PP ′ (ω, q, q ′), (B8)

�
0(J )
t tPP ′ (ω, q, q ′) =

∑
L=J±1

b2
JL�

0(L)
PP ′ (ω, q, q ′).

where

aJL =

⎧⎪⎨⎪⎩
−

√
J

2J+1 for L = J − 1,√
J+1

2J+1 for L = J + 1.
(B9)

bJL =

⎧⎪⎪⎨⎪⎪⎩
√

J+1
2J+1 for L = J − 1,√

J
2J+1 for L = J + 1,

1 for L = J .

Note that, in general, for finite systems �
0(J )
lt 	= 0. The bare

responses in a particular channel k (k = QE, 2p-2h,. . .) are
given by

R0PP ′
(k)xy (ω, q) = −V

π

∑
J

2J + 1

4π
Im

[
�

0(J )
(k)xyPP ′ (ω, q, q)

]
,

(B10)

with x, y = l, t , referred to the longitudinal or transverse
channel, and PP ′ = N,�.

The second term of Eq. (10) in the channel k, namely

Im�(k) = |1 + �V |2 Im�0
(k), (B11)

with � the full polarization propagator, explicitly writes

�
(J )
(k)xyPP ′ (ω, q, q ′) = �

0(J )
(k)xyPP ′ (ω, q, q ′)

+
∫

dpp2

(2π )3

∑
QR

ww′

�
0(J )
(k)xwPQ

(ω, q, p)

×V
QR
ww′ (p)�(J )

w′yQP ′ (ω,p, q ′)

+
∫

dpp2

(2π )3

∑
QR

ww′

[
�(J )

xwPQ
(ω, q, p)

×V
QR
ww′ (p)

]∗
�

0(J )
(k)w′yQP ′ (ω,p, q ′)

+
∫ ∫

dpp2

(2π )3

dp′p′2

(2π )3

∑
QQ′RR′
ww′zz′

[
�(J )

xwPR

× (ω, q, p)V RQ
wz (p)

]∗
�

0(J )
(k)zz′

QQ′
(ω,p, p′)

×V
Q′R′
z′w′ (p′)�w′yR′P ′ (ω,p′, q ′), (B12)

where x, y,w,w′, z, z′ = l or t and P,P ′,Q,Q′, R,R′ =
N,�. The solution of this equation leads to the corresponding
response functions

RPP ′
(k)xy(ω, q) =−V

π

∑
J

2J + 1

4π
Im

[
�

(J )
(k)xyPP ′ (ω, q, q)

]
. (B13)
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In our calculations the maximum multipole number is set
to J = 25, which turns out to be sufficient to reach the
convergence.

The first term of Eq. (10), which represents coherent
processes, explicitly writes

�
(J )
(co.)xyPP ′ (ω, q, q ′) =

∫
dpp2

(2π )3

[
�

(J )
xlPQ(ω, q, p)

]∗

× Im
[
V QQ′

π (p)
]
�

(J )0
lyQ′P ′ (ω,p, q ′)

= −i
q2

π

16π2

{
f 2

m2
π

[
�

(J )
xlPN (ω, q, qπ )

]∗

× �
(J )
lyNP ′ (ω, qπ , q ′)

ff ∗

m2
π

× [
�

(J )
xlPN (ω, q, qπ)

]∗
�

(J )
ly�P ′ (ω, qπ , q ′)

+ f ∗f
m2

π

[
�

(J )
xlP�(ω, q, qπ )

]∗
�

(J )
lyNP ′

× (ω, qπ , q ′)+ f ∗2

m2
π

[
�

(J )
xlP�(ω, q, qπ )

]∗

× �
(J )
ly�P ′ (ω, qπ , q ′)

}
, (B14)

where

Im(Vπ ) = Im

(
Cπ

q2

ω2 − q2 − m2
π + iη

)
= −iCππq2δ(q2 − q2

π ) = −iCππ
qπ

2
δ(|q| − qπ ),

(B15)

with Cπ the generic nucleon- or �-pion coupling constant and
qπ = √

ω2 − m2
π .
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