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New fit to the reaction γ p → K+�

Alejandro de la Puente, Oren V. Maxwell, and Brian A. Raue
Department of Physics, Florida International University, University Park, Miami, Florida 33199, USA

(Received 29 September 2009; published 23 December 2009)

The reaction γp → K+� has been investigated over the center-of-momentum energy, W , range from threshold
up to 2.2 GeV in a tree-level effective Lagrangian model that incorporates most of the well-established baryon
resonances with spins equal to or below 5

2 . Four less well-established nucleon resonances of higher mass are also
included. The fitted parameters consist, for each resonance included, of the products of the coupling strengths at
the electromagnetic and strong interaction vertices and, for the less-established nucleon resonances, of the total
decay width. For the well-established nucleon resonances, the energy and momentum dependence of the widths
are treated within a dynamical model that is normalized to give the empirical decay branching ratios on the
resonance mass shells. For the less-established resonances, the total decay width is treated as a single parameter
independent of the reaction kinematics. The model is used to fit recent data for the unpolarized differential cross
section (CLAS), the induced hyperon polarization asymmetry, P (CLAS, GRAAL, SAPHIR), the beam spin
asymmetry, � (LEPS and GRAAL), and the double-polarization observables Cx and Cz (CLAS). The model
results were also compared with LEPS data for the unpolarized differential cross section, but those data were
not included in the fit. Two different fits were obtained: one that incorporates SU(3)-symmetry constraints on the
Born contributions to the reaction amplitude and one in which these constraints are relaxed. Explicit numerical
results are given only for the first fit because the two fits gave nearly identical results for the observables and the
χ 2 per degree of freedom obtained with the second fit was only marginally better than that of the first fit (<1%
better). Results are presented for the fitted observables at several different energies and center-of-momentum
(CM) frame kaon angles.
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I. INTRODUCTION

Interest in the electromagnetic production of strangeness
from few-nucleon targets, such as the proton and the deuteron,
dates back to the 1960s [1–3], but it is comparatively recently
that high-quality data, suitable for quantitatively testing theo-
retical models, has become available [4–13]. The strangeness
degree of freedom imparts to these reactions the potential to
provide fundamental information concerning both the strong
and electromagnetic interactions beyond that obtainable from
reactions involving just the nonstrange baryons. Within an
effective Lagrangian model, one could use these reactions to
search for baryon resonances that decay to strange particles and
possibly test SU(3)-symmetry relations among the couplings
of resonances within the same SU(3) multiplets. By comparing
photoproduction and electroproduction results, one might be
able to extract information concerning the electromagnetic
form factors of baryon resonances. Finally, with the aid of a
quantitative model for electromagnetic strangeness production
from the proton, one could, within the impulse approximation,
use results for strangeness production from the deuteron and
other light nuclei to study final state interactions involving the
� and � baryons.

Much of the theoretical work over the past 20 years or
so has been based on effective Lagrangian models [14–28].
Recently, there have been several coupled-channel analyses
[29–32] that have revealed the need for resonances that had not
been previously included in many of the effective Lagrangian
models. Until recently, the fits and models were largely based
on older data and often combined photoproduction data and
electroproduction data to generate the fits. More recent fits

have made use of various combinations of recent data from
the SAPHIR [4], CLAS [8,10,11], LEPS [5], and GRAAL [9]
Collaborations.

In Ref. [27], it was suggested that the photoproduction
data and the electroproduction data should not be fit together;
rather one should first generate a model for the basic reaction
using photoproduction data alone and then use that model, in
conjunction with electroproduction data, to obtain information
concerning the electromagnetic form factors of the various
resonances in the model. This consideration, along with
the abundance of new data, particularly, polarization data,
has motivated us to develop a new model for the reaction
γp → K+� over the energy range from threshold up to a
center-of-momentum (CM) energy of 2.2 GeV. Although the
CLAS data extend up to 2.6 GeV, the lack of s-channel
resonances in our model with masses above 2.2 GeV precludes
a reliable treatment of the higher energy data. As discussed
in Sec. IV, the fits involve a subtle interference between
s-channel contributions to the reaction on the one hand and
u- and t-channel contributions on the other hand, which, to be
effective, requires that the s-channel resonances included in a
particular fit have masses spanning the whole energy range of
that fit.

The model is similar to that described in Refs. [25–27]
but has been expanded to include spin 5

2 baryon resonances
in both the s and u channels, in addition to the spin 1

2 and
spin 3

2 resonances included in the earlier work. This model
also includes several higher energy, less well-established
resonances in the s channel that were not included in the
earlier work. Finally, the fits described here are much more
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elaborate than those described in Refs. [25–27] in that
both single- and double-polarization data are included in
our fits. The reaction model is described in some detail
in Sec. II.

Two separate fits were generated. The first fit has SU(3)-
symmetry constraints imposed on the Born terms in all three
channels. These constraints, along with inputted empirical
values for the baryon magnetic moments, require particular
relationships between the various Born terms and also, in
conjunction with other considerations, provide a range of
values for the �KN coupling. This is discussed more fully in
Sec. III. In the second fit, the �KN coupling was allowed to
move outside the SU(3)-symmetry range and assume whatever
value yielded the best fit to the data. The second fit obtained
is nearly identical to the first fit and yielded a χ2 per degree
of freedom that differs from that of the first fit by less than
1%. For these reasons, only results derived from the first fit
are presented here.

We have used all recently published results for the spin
observables, P [4,8,9], � [5,9], Cx , and Cz [11] in our fits.
Because there appear to be some inconsistencies in cross-
section data obtained by different groups [33], we have used
only the most recently published cross-section data from the
CLAS Collaboration [10] in the fits but have compared the
fit results for the cross section with recent LEPS data [5].
Further details concerning the fitting procedure are contained
in Sec. III.

The resulting fit, along with several figures illustrating the
quality of the fits, are presented and discussed in Sec. IV.
Section IV also contains some concluding remarks and a brief
discussion of future work.

II. THE REACTION MODEL

The reaction model incorporates contributions in the s, u,
and t channels. These are illustrated in Fig. 1. The s-channel
contributions include the Born term with an intermediate
proton and contributions in which an intermediate nucleon
resonance is excited. Similarly, the u-channel Born contribu-
tions with the excitation of an intermediate � or � baryon
are supplemented by contributions involving the excitation
of an intermediate hyperon resonance. In the t channel,
contributions from both K�(892) and K1(1270) exchange
are included, as well as the Born contribution involving
ground-state kaon exchange.

s t u

K +

K + K +Λ

p p
p

 −channel  −channel −channel

Λ

Λ

p,N*

K,K* Y,Y*

γ
γ γ

FIG. 1. Contributions to the amplitude for the reaction γp →
K+�.

In the various channels, the reaction amplitudes have the
general forms

T̂s =
∑
N�

V†
K (pK )D(ps)Vγ (pγ ), (1)

T̂u =
∑
Y �

V†
γ (pγ )D(pu)VK (pK ), (2)

and

T̂t =
∑
K�

V†
γK (pγ , pt )Dt (pt )Vp�(pt ), (3)

where ps = p� + pK , pu = p� − pγ , and pt = pγ − pK are
the intermediate four-momenta in the various channels, the
V’s are the electromagnetic and strong interaction vertices,
and the D’s are the associated intermediate baryon and
meson propagators. In all channels, the forms of both the
electromagnetic vertices and the strong interaction vertices
depend on the spin and the parity of the intermediate hadron
that is excited.

In the t channel, the two vertices are given by

VγK = −eε · (pK − pt ) (4)

and

Vp� = g�Kpγ5 (5)

for an intermediate ground-state kaon (the t-channel Born
term), by

Vµ

γK = gγKK�

msc
εµνρλενpγρptλ (6)

and

Vµ
p� =

(
gV

�K�p + gT
�K�p

mp + m�

γ · pt

)
γ µ (7)

for an intermediate K�(892) resonance, and by

Vµ

γK = gγKK1

msc

(
ε · ptp

µ
γ − pγ · ptε

µ
)

(8)

and

Vµ
p� =

(
gV

�K1p + gT
�K1p

mp + m�

γ · pt

)
γ µγ5 (9)

for an intermediate K1(1270) resonance. Here, ε is the photon
polarization four-vector and msc is a scaling mass, set equal to
1000 MeV, that is introduced to make the electromagnetic
coupling strengths dimensionless. The corresponding kaon
resonance propagators both have the same form:

Dt =
−gµν + ptµptν

m2
K�

p2
t − m2

K�

, (10)

where the label K� now refers to either of the two resonances.
We note that the propagator employed here, in contrast with
that used in Refs. [25–27], does not contain a width because
the intermediate energies in the t channel lie well below the
thresholds of any possible decay channels.

In the s- and u-channel Born contributions and in those
contributions arising from the excitation of intermediate
spin 1

2 resonances, we employ standard expressions for the
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electromagnetic vertices and use the pseudoscalar form for
the strong interaction vertices. For positive-parity intermediate
baryons, this gives

V
K 1

2
+ (pK ) = gγ5 (11)

and

V
γ 1

2
+(pγ ) = gγ εµiσµν(pγ )ν (12)

with

gγ = eκ

2mB

, (13)

where κ is defined by its relation to the transition magnetic
moment,

µT = eκ

mB + mI

, (14)

mB is the mass of the incoming or outgoing baryon (mp or
m�), and mI is the mass of the intermediate baryon. The corre-
sponding expressions for negative-parity intermediate baryons
just have the γ5 factor transposed from the strong interaction
vertex to the electromagnetic vertex. For intermediate protons,
there is an additional term,

Vcharge(pγ ) = eγ µεµ, (15)

arising from the proton’s charge. For the spin 1
2 propagator, we

employ, in agreement with other authors, a relativistic Breit-
Wigner form,

D
1
2 (p) = γ · p + mI

p2 − m2
I + imI�I

, (16)

where the width �I is nonzero only in the s-channel resonance
contributions.

In the s- and u-channel contributions from intermediate
spin 3

2 baryons, several different forms have been employed
for the vertices and the propagator. The authors of Ref. [14]
introduced a form for the spin 3

2 propagator in the s channel in
which the intermediate baryon mass appearing in the numera-
tor and projection operator of the Rarita-Schwinger propagator
was replaced by

√
s. This was motivated by the desire to

ensure gauge invariance off-shell. However, use of the same
prescription in the u channel leads to unphysical singularities.
Moreover, as pointed out in Ref. [34], the propagator employed
in Ref. [14] does not satisfy the differential equation that
defines the propagator as a Green’s function. For these reasons,
we employ the standard Rarita-Schwinger form for the spin
3
2 propagator and use forms for the corresponding vertices
that are similar to those introduced in Ref. [21]. However,
in contrast to the work of Ref. [21], we make no attempt to
include off-shell terms in the vertices. The results reported in
Ref. [21] suggest that these terms, as well as off-shell terms in
the propagator, have a relatively modest effect on the calculated
observables. The resulting vertices for positive-parity spin 3

2
intermediate baryons take the forms

Vµ

K 3
2

+ (pK ) = − g

mπ

p
µ

K (17)

and

Vµ

γ 3
2

+ (pγ ) =
[

g1

2mB

(
εµγ · pγ − pµ

γ γ · ε
)

+ g2

4m2
B

(
ε · pBpµ

γ − pγ · pBεµ
)]

γ5, (18)

where pB is the four-momentum of the incoming or outgoing
ground-state baryon. As for the spin 1

2 contributions, the
negative-parity vertices just have the γ5 factor transposed
from one vertex to the other vertex. Note in these expressions
that the strong interaction coupling has been divided by the
pion mass, rather than by the kaon mass as in Ref. [21].
This makes it easier to compare our coupling strengths
with the corresponding pion couplings for the purpose of
testing SU(3)-symmetry relations among the couplings. The
Rarita-Schwinger propagator is obtained by multiplying the
spin 1

2 propagator given by Eq. (16) on the right by the spin 3
2

projection operator

P
3
2

µν = gµν − 1

3
γµγν + 1

3

pµγν − pνγµ

mI

− 2

3

pµpν

m2
I

. (19)

With the exception of Ref. [20], most of the earlier
work on the photoproduction of strangeness does not include
contributions from intermediate states with spin 5

2 , even though
there are several well-established baryon resonances with this
spin below 2 GeV. Reference [20] and some of the later work
do include spin 5

2 resonances in the s channel but not in the
u channel. To our knowledge, this work is the first analysis to
include resonances with spin greater than 3

2 in both the s and
u channels. For the spin 5

2 vertices, we employ forms similar
to those given in Ref. [20] but modified so as to be consistent
with the forms adopted here for the spin 3

2 vertices. Again, we
do not include any off-shell terms in the spin 5

2 vertices. For
positive-parity intermediate resonances, the resulting vertices
are given by

Vµν

K 5
2

+(pK ) = g

m2
π

p
µ

Kpν
Kγ5 (20)

and

Vµν

γ 5
2

+(pγ ) =
[

g1

2mB

(
εµγ · pγ − pµ

γ γ · ε
)

+ g2

4m2
B

(
ε · pBpµ

γ − pγ · pBεµ
)] pν

γ

mπ

.

(21)

As for the other s- and u-channel vertices, the corresponding
negative-parity vertices just have the γ5 factor transposed from
one vertex to the other vertex. The corresponding propagator is
constructed by multiplying the spin 1

2 propagator on the right
by the spin 5

2 projector operator,

P
5
2

µν,µ′ν ′ = Rµν,µ′ν ′ − 1
5PµνPµ′ν ′ − 1

5 (Pµργ
ργ σRσν,µ′ν ′

+Pνργ
ργ σRσµ,µ′ν ′) (22)

with

Rµν,µ′ν ′ = 1
2 (Pµµ′Pνν ′ + Pµν ′Pνµ′ ), (23)
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where

Pµν = gµν − pµpν

/
m2

I . (24)

A. s-channel resonance widths

The intermediate nucleon resonances excited in the s

channel generally lie at energies above the thresholds for decay
into various decay channels. Thus, the propagators employed
for the s-channel resonances need to include widths, and these
widths are generally required rather far off the resonance mass
shells. Most previous studies have ignored the off-shell nature
of the resonances and simply have used the on-shell values of
the widths. In Ref. [25], a model was proposed to dynamically
generate widths off-shell by making use of partial width data
summarized in the particle data tables [35]. The full width is
first decomposed into a number of different decay channels.
In each such channel, the off-shell energy and momentum
dependence of the partial width is then treated using an
effective Lagrangian model with the required coupling strength
adjusted to yield the empirical on-shell branching ratio for
decay into that channel. Two types of decays are considered:
two-body decays in which both decay products are stable under
the strong interaction, and decays in which one of the decay
products is itself unstable, so that ultimately more than two
decay products result.

Decays of the first type all involve the decay of a nucleon
resonance into a pseudoscalar meson and a spin 1

2 ground-state
baryon. In the resonance rest frame, the corresponding widths
are given by the expressions

�

(
1

2

+
→ 1

2

+
+ 0−

)
= f 2

4π

p√
s

[EB − mB] , (25)

�

(
1

2

−
→ 1

2

+
+ 0−

)
= f 2

4π

p√
s

[EB + mB], (26)

�

(
3

2

+
→ 1

2

+
+ 0−

)
= f 2

12π

p2

m2
π

p√
s

[EB + mB], (27)

�

(
3

2

−
→ 1

2

+
+ 0−

)
= f 2

12π

p2

m2
π

p√
s

[EB − mB], (28)

�

(
5

2

+
→ 1

2

+
+ 0−

)
= f 2

30π

p4

m4
π

p3

√
s(EB + mB)

, (29)

and

�

(
5

2

−
→ 1

2

+
+ 0−

)
= f 2

30π

p4

m4
π

p(EB + mB)√
s

(30)

for the pseudoscalar meson decays, where p is the channel
momentum and mB and EB are the mass and energy of the
baryon decay product. To obtain the total contribution to the
width from two-body channels at a particular energy, the partial
widths are summed over all two-body decay channels open at
that particular energy.

Any part of the full on-shell decay width not accounted for
by the two-body decays discussed earlier is attributed to decays
in which one of the decay products is itself unstable under the
strong interaction. These latter decays are approximated either
as decays into a ground-state baryon and a meson resonance or

as decays into a ground-state meson and a baryon resonance.
In practice, for the low-lying nucleon resonances, only decays
into the Nσ , Nρ, and �(1232)π channels are considered. The
Nσ channel is treated as a decay into a nucleon and a scalar
meson of zero width. The corresponding decay widths are the
same as those for two-body pseudoscalar decays of resonances
with the opposite parity.

The two remaining channels both involve a stable ground-
state hadron and an unstable resonance that itself has a width.
To treat such decays, we employ the method developed in
Ref. [25], which involves an integration over the unstable
decay product mass of the decay phase-space factor multiplied
by a Breit-Wigner distribution function. In particular, for decay
into either channel, the partial width is given by the general
expression

�(s) = g2

4π

∫ mmax

mmin

P(s, x)S(x)dx, (31)

where g is the coupling strength, P is the decay phase-space
factor, and the integration limits are defined by

mmin = √
sthr − mstable,

(32)
mmax = √

s − mstable.

In the last expressions,
√

sthr is the threshold value of the
center-of-momentum energy for decay into that channel and
mstable is the stable decay product mass (either mN or mπ ). The
Breit-Wigner distribution function has the form

S(x) = A

2π

�pr

(x − mC)2 + 1
4�2

pr

, (33)

where �pr is the unstable decay product width, mC is the
mass of the unstable decay product at the center of its
mass distribution, and the parameter A is defined by the
normalization requirement∫ ∞

mmin

S(x)dx = 1. (34)

The vertices for decays of spin 1
2 resonances into the

�(1232)π channel are related to those for decays of spin 3
2

resonances into the Nπ channel by just the interchange of
the initial and final baryon states. The vertices for decays
of spin 3

2 and spin 5
2 resonances into the �(1232)π channel

each involve two independent couplings, only one of which
can be fixed by the on-shell partial width. To avoid this
difficulty, we keep, in each case, only the coupling of lowest
order in the channel momentum. With that proviso, the
phase-space factors for decays into the �(1232)π channel are
given by

P
(

1

2

+
→ 3

2

+
+ 0−

)
= 2

3

p2

m2
π

s

x2

p√
s

(E + x), (35)

P
(

1

2

−
→ 3

2

+
+ 0−

)
= 2

3

p2

m2
π

s

x2

p√
s

(E − x), (36)

P
(

3

2

+
→ 3

2

+
+ 0−

)
= 5

9

p√
s

(E − x), (37)
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P
(

3

2

−
→ 3

2

+
+ 0−

)
= p√

s
(E + x), (38)

P
(

5

2

+
→ 3

2

+
+ 0−

)
= 1

3

p2

m2
π

p(E + x)√
s

, (39)

and

P
(

5

2

−
→ 3

2

+
+ 0−

)
= 7

45

p2

m2
π

p3

√
s(E + x)

, (40)

where x is the mass that is integrated over in the mass
distribution, p is the channel momentum for that value of
x, and E =

√
x2 + p2.

Like the decays of spin 3
2 and spin 5

2 resonances into the
�(1232)π channel, decays into the Nρ channel generally
involve vertices with two independent couplings. For the spin
1
2 resonances decays, we adopt the same procedure as used
in Ref. [25]. For the spin 3

2 and spin 5
2 resonance decays, we

simply drop the couplings of higher order in the momenta and
energies. This yields the phase-space factors

P
(

1

2

+
→ 1

2

+
+ 1−

)
= p2

x2

p√
s

(E+ − E)2 + 2x2

E+
, (41)

P
(

1

2

−
→ 1

2

+
+ 1−

)
= p2

x2

p√
s

(E− − E)2 + 2x2

E−
, (42)

P
(

3

2

+
→ 1

2

+
+ 1−

)

= 1

24

p2

x2

p√
s

2(E2 + p2)2 + x2(E+ − E)2 + 3x2(E+ + E)2

E+m2
B

,

(43)

P
(

3

2

−
→ 1

2

+
+ 1−

)

= 1

24

p2

x2

p√
s

2(E2 + p2)2 + x2(E− − E)2 + 3x2(E− + E)2

E−m2
B

,

(44)

P
(

5

2

+
→ 1

2

+
+ 1−

)
= 1

30

p2

m2
π

p√
s

E+
m2

B

(A2
+ + 2B2

+ + C2
+),

(45)

and

P
(

5

2

−
→ 1

2

+
+ 1−

)
= 1

30

p2

m2
π

p√
s

E+
m2

B

(A2
− + 2B2

− + C2
−),

(46)

where

A+ = √
s − mB

B+ = p2

E+
− A+

2
(47)

C+ = EA+
x

+ p2(E+ − E)

xE+

and

A− = p

E+
(
√

s + mB)

B− = p

(
1 −

√
s + mB

2

)
(48)

C− = p

x

E2 + p2

E+

with E+ = EB + mB and E− = EB − mB .
The dynamic width model described was employed for all

of the three- and four-star status s-channel resonances used
in the fits. For these well-established resonances, there are
generally enough branching ratio data that reasonably good
estimates for the partial widths on the resonance mass shells
can be generated. For the higher energy, less well-established
resonances, this is generally not the case. Hence, for these
resonances, we employ energy-independent widths that are
treated as parameters to be varied in the fits.

B. Evaluation of the matrix elements

The matrix elements for the reaction γp → K+� have the
general structure

ūM�
(p�)T̂ uMp

(pp)

= ūM�
(p�)[Â + B̂γ5 + Ĉγ 0 + D̂γ 0γ5]uMp

(pp), (49)

where pp and Mp are the four-momentum and spin projection
of the proton and p� and M� are the four-momentum
and spin projection of the �. The operators Â, B̂, Ĉ,
and D̂ depend on the spin and parities associated with the
particular contributions considered. Detailed expressions for
these operators are given in the Appendix.

Equation (49) can be either evaluated directly or converted
to the equivalent Pauli form,

ūM�
(p�)T̂ uMp

(pp)

= N�Npχ
†
M�

[(Â + Ĉ) + (B̂ + D̂)σ · p̂p

+ σ · p̂�(D̂ − B̂) + σ · p̂�(Ĉ − Â)σ · p̂p]χMp
, (50)

where

N =
√

E + m

2m
(51)

and

p̂ = p
E + m

. (52)

The Pauli matrix elements can be evaluated analytically, but
the procedure is tedious. Instead, we have evaluated Eq. (50)
numerically. As a check on the procedure, an independent code
was written to evaluate the Dirac matrix elements numerically
without recourse to the Pauli reduction given by Eq. (50),
and the results were compared with those of the numerical
evaluation of Eq. (50).
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III. DETAILS OF THE FITTING PROCEDURE

Table I lists the s- and u-channel resonances with three- or
four-star status in the particle data tables [35] that are included
in our fits.

On-shell branching ratios for the s-channel (nucleon)
resonances included in Table I are given in Table II. Where
data exist, the values appearing in the table are the averages of
the values given in the most recent particle data tables [35]. It
should be noted that these values differ somewhat from those
used in Ref. [27] because in that earlier reference, data from
earlier particle data tables were employed that differ somewhat
from the data in the most recent tables. After summing the
branching ratios obtained from the particle data tables, any
remaining decay width still not accounted for was assigned
to whatever other channels were open for that resonance. For
the two-body decay channels, these assignments were guided
in part by SU(3)-symmetry relations. Previous work by one
of our authors indicates that the numerical results are not
strongly sensitive to the details of the dynamical width model
employed, provided that the total widths are normalized to the

TABLE I. Well-established resonances
considered in the model.

Resonance I J P

N (1440) 1
2

1
2

+

N (1520) 1
2

3
2

−

N (1535) 1
2

1
2

−

N (1650) 1
2

1
2

−

N (1675) 1
2

5
2

−

N (1680) 1
2

5
2

+

N (1700) 1
2

3
2

−

N (1710) 1
2

1
2

+

N (1720) 1
2

3
2

+

�(1405) 0 1
2

−

�(1520) 0 3
2

−

�(1600) 0 1
2

+

�(1670) 0 1
2

−

�(1690) 0 3
2

−

�(1810) 0 1
2

+

�(1820) 0 5
2

+

�(1830) 0 5
2

−

�(1890) 0 3
2

+

�(2110) 0 5
2

+

�(1385) 1 3
2

+

�(1660) 1 1
2

+

�(1670) 1 3
2

−

�(1750) 1 1
2

−

�(1775) 1 5
2

−

�(1915) 1 5
2

+

�(1940) 1 3
2

−

TABLE II. On-shell N� branching ratios.

Resonance Two-body channels Three-body channels

Nπ Nη �K Nσ �(1232)π Nρ

N (1440) 0.65 0.075 0.25 0.025
N (1520) 0.60 0.20 0.20
N (1535) 0.44 0.515 0.02 0.025
N (1650) 0.77 0.06 0.07 0.03 0.07
N (1675) 0.40 0.6
N (1680) 0.60 0.15 0.125 0.125
N (1700) 0.10 0.80 0.10
N (1710) 0.15 0.06 0.14 0.25 0.26 0.14
N (1720) 0.15 0.04 0.06 0.75

empirical width on-shell. The reader should consult Ref. [26]
for details.

In addition to the resonances listed in Table I, four additional
nucleon resonances, which have two-star status in the particle
data tables, were included. These are listed in Table III.

These higher mass s-channel resonances were included
to improve the fits to the data at the higher energy end of
the kinematic region considered. Aside from the empirical
evidence for their existences, as reflected in their particle
data table listings, they are predicted by quark models [36],
and some of them have been included in another recent
analysis of photoproduction data [29]. In accord with our
philosophy to incorporate only resonances for which there
is independent empirical evidence, we have not included the
so-called “missing” 3

2
−

resonance at 1900 MeV in our final
results. Although this resonance has been predicted in quark
models [36] and has been included in several other analyses of
strangeness photoproduction [18,24,29], there has so far been
little evidence for its existence in any other reactions. We will
comment on this further in Sec. IV.

As discussed, width data for the resonances listed in
Table III are extremely limited or nonexistent. For this reason,
no attempt has been made to extend our dynamical off-shell
width model to these resonances. Instead, their widths are
treated as energy-independent parameters to be determined in
the fits to the data. The complete set of varied parameters thus
includes the coupling strength products in all three channels
and the total widths of the resonances in Table III. The coupling
strength products are defined by the relations

FN� = eκpN�g�KN�,

F�� = eκ���g��Kp, (53)

F�� = eκ���g��Kp

TABLE III. Two-star nucleon resonances
considered in the model.

Resonance J P

N (1900) 3
2

+

N (2000) 5
2

+

N (2080) 3
2

−

N (2200) 5
2

−
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for the ground-state baryons and spin 1
2 resonances in the s

and u channels, by

G1
N� = g

pN�

1 g�KN�,

G2
N� = g

pN�

2 g�KN�,

G1
�� = g���

1 g��Kp,
(54)

G2
�� = g���

2 g��Kp,

G1
�� = g���

1 g��Kp,

G2
�� = g���

2 g��Kp

for the spin 3
2 and spin 5

2 resonances in the s and u channels,
by

FK = −eg�Kp (55)

for the ground-state kaon in the t channel, and by

GV
K� = gγKK�gV

�K�p,
(56)

GT
K� = gγKK�gT

�K�p

for the t-channel kaon resonances, where e = 0.3029 is the
dimensionless electric charge. Note in Eqs. (53) that the N�,
��, and �� subscripts refer to either the corresponding ground-
state baryon or a spin 1

2 resonance. For the proton, we also need
the charge-coupling product. This is given by

FCp = eg�Kp. (57)

The various Born term coupling products can be related to
each other through SU(3)-symmetry relations, SU(2) isospin
coupling coefficients, and the well-established values for the
Baryon ground-state magnetic moments. In particular, Fp, F�,
FK , and FCp satisfy the simple relationships

Fp = κpFCp,

F� = κ�FCp, (58)

FK = −FCp.

For the magnetic moment factors in these relations, we
employ the values [35] κp = −1.79 and κ� = −0.729 [note
the definitions of the κ’s as given by Eqs. (13) and (14)].

The two strong coupling strengths, g�Kp and g�Kp, each
can be expressed as a product of an SU(3) isoscalar factor and
an SU(2) Clebsch-Gordon coefficient,

g�Kp =
(

00
1

2

1

2

∣∣∣∣1

2

1

2

)
f�KN,

(59)

g�Kp =
(

10
1

2

1

2

∣∣∣∣1

2

1

2

)
f�KN.

The SU(3) isoscalar factors appearing here are related by
SU(3) symmetry [37]. In particular, their ratio can be expressed
in terms of an SU(3) parameter α,

f�KN

f�KN

= − 1 − 2α

1 − 2
3α

, (60)

which, in turn, can be fixed by other couplings within the
same SU(3) multiplets. Using the empirical values for the
couplings of pions to the � and � baryons [38] yields the value

α = 0.625. Combining Eqs. (59) and (60) with the coupling
product definitions, Eq. (53), we obtain the ratio

F�

F�

= 1√
3

1 − 2α

1 − 2
3α

κ�

κ��

. (61)

For the transition magnetic moment parameter, we use the
particle data table value [35], κ�� = 1.91, to get F�

F�
= 0.647.

The imposition of these relations reduces the number of Born
parameters to be varied to just one, which we choose to be the
parameter FCp.

The parameter FCp is also restricted by SU(3)-symmetry
relations and by other considerations. A recent study by
General and Cotanch [39] based on a generalized Goldberger-
Treiman relation in conjunction with the Dashen-Weinstein
sum rule arrived at the pair of constraints, 0.80 � gK�N√

4π
� 2.72

and −3.90 � gK�N√
4π

� −1.84. The second constraint yields an
upper limit for FCp of −1.98. Because the photoproduction
data, analyzed within the model presented here, seem to favor
a small magnitude for FCp, we use this upper limit in the
first of our fits, which has FCp fixed. For the second fit, we
allowed FCp to assume whatever value yields the best fit to
the data consistent with the Born term relations given earlier.
Comparison of the two fits enabled us to study the extent
to which the quality of the fit is affected by the constraint
on FCp. Note that the choice FCp = −1.98 yields the value
F� = 0.934, which is consistent with General and Cotanch’s
constraint on the value of gK�N .

The fitting procedure required many iterations starting with
a fit of the most recent CLAS data [10] for the unpolarized
differential cross section, given in the CM by

dσ

d�
= 1

(2π )2

mpm�pF

4Eγ s

1

4

∑
spins

|〈F |T̂ |I 〉|2, (62)

where pF is the outgoing three-momentum in the CM and
s = W 2 is the squared CM energy. The resulting parameter
values were then employed as starting values to fit the cross-
section data, the CLAS [8], SAPHIR [4], and GRAAL [9] data
for the hyperon polarization asymmetry P , and the CLAS [11]
data for the double-polarization observables Cx and Cz. Here,
P is defined by

P = dσ+
� − dσ−

�

dσ+
� + dσ−

�

, (63)

where the superscripts + and − refer to spin projections above
and below the scattering plane and Cx and Cz are defined by

Ci′ = dσ+
� − dσ−

�

dσ+
� + dσ−

�

, (64)

where now the superscripts + and − refer to � spin projections
along and opposite to the i = z or i = x axes and the incident
photon is circularly polarized with positive helicity.

At this juncture we used the model to calculate the photon-
beam asymmetry prior to including it in the fit. The photon-
beam asymmetry is defined by the relation

� = dσ⊥
� − σ

‖
�

dσ⊥
� + σ

‖
�

, (65)
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where ⊥ and ‖ refer to polarization vectors perpendicular
and parallel to the scattering plane, respectively. Our results
gave good agreement with the GRAAL [9] data for this
observable if we interpreted their definition of � to be the
negative of the one defined earlier. Our definition is the
standard one used in most theoretical analyses. The GRAAL
definition is given in terms of vertical and horizontal planes
that are not specified relative to the scattering plane, so the
possibility exists that there is a sign discrepancy between
our definition of � and that of the experimentalists. The
definition of � employed by the LEPS collaboration seems
to agree with the GRAAL definition. In any case, we then
completed the fitting procedure by incorporating both the
GRAAL and the LEPS [5] � data in the fit with the sign of
Eq. (65) reversed.

In carrying out the fits, we minimized the χ2 per degree of
freedom defined by the relation

χ2

ν
=

∑ (Ycalc − Yexp)2

σ 2
, (66)

where the sum is over all individual data points, Ycalc and Yexp

are the calculated and experimental values of the observable,
and σ 2 is the squared statistical uncertainty in Yexp. The number
of degrees of freedom is given by ν = Ndata − Npar, where
Ndata is the number of data points and Npar is the number of
parameters in the fit.

A code based on a modified Marquardt prescription was
employed in the fitting procedure. As well as the parame-
ters themselves, this code generates the covariance matrix
associated with the fit from which well-defined parameter
uncertainties can be extracted.

IV. NUMERICAL RESULTS AND DISCUSSION

The parameters from the fit with all of the Born terms
constrained (the first fit described in the previous section) are
presented in Table IV. Here the coupling constant products
obtained for all resonances included in the final fit are listed
together with the total widths obtained for the higher mass
nucleon resonances included. Listed also are the parameter
uncertainties obtained from the covariance matrix of the
fit. These uncertainties measure the sensitivities of the fit
to the corresponding parameters. A small relative value for
this uncertainty means that the corresponding parameter is
well determined by the fit; by contrast, a large relative
value means that the parameter is poorly determined and
is probably strongly correlated with other parameters in the
fit. The χ2 per degree of freedom associated with this fit
is 1.68.

We have not listed the parameters obtained in the second
fit in which the parameter FCp was allowed to vary because
they are very similar to those obtained in the fit in which
FCp was fixed at −1.98. In fact, with the exception of FCp,
the differences in the parameters obtained in the two fits
all lie within the parameter uncertainties derived from the
covariance matrices. As mentioned, the values obtained for
the χ2 per degree of freedom in the two fits differ by less
than 1%, and the results obtained for the observables are

TABLE IV. Fit results. In this fit, the Born parameter FCp was
fixed at the value of −1.98. The width values are given in MeV.

Spin 1
2 resonances

N (1440) FN� 4.839 ± 0.224
N (1535) FN� 0.130 ± 0.027
N (1650) FN� 0.100 ± 0.012
N (1710) FN� 0.0008 ± 0.011
�(1405) F�� 3.43 ± 5.10
�(1670) F�� −8.70 ± 6.51

Spin 3
2 resonances

N (1520) G1
N� 0.370 ± 0.090

G2
N� −0.067 ± 0.128

N (1700) G1
N� −0.453 ± 0.052

G2
N� −0.391 ± 0.067

N (1720) G1
N� −0.105 ± 0.004

G2
N� −0.200 ± 0.013

N (1900) G1
N� −0.051 ± 0.003

G2
N� −0.050 ± 0.008
� 258.6 ± 9.8

N (2080) G1
N� 0.006 ± 0.004

G2
N� 0.003 ± 0.003
� 65.5 ± 21.4

�(1890) G1
�� −4.90 ± 0.59

G2
�� 5.12 ± 4.72

�(1385) G1
�� 1.728 ± 0.414

G2
�� −2.14 ± 3.09

�(1940) G1
�� 0.128 ± 0.341

G2
�� −1.098 ± 0.714

Spin 5
2 resonances

N (1675) G1
N� 0.0069 ± 0.0004

G2
N� 0.0272 ± 0.0014

N (1680) G1
N� −0.0104 ± 0.0040

G2
N� 0.0196 ± 0.0057

N (2000) G1
N� −0.0130 ± 0.0069

G2
N� −0.0272 ± 0.0127
� 1133 ± 490

N (2200) G1
N� −0.0009 ± 0.0003

G2
N� −0.0035 ± 0.0010
� 371.4 ± 91.5

�(1820) G1
�� 0.388 ± 0.170

G2
�� 0.170 ± 1.447

�(1830) G1
�� −0.555 ± 0.075

G2
�� 1.151 ± 0.390

�(2110) G1
�� 0.127 ± 0.120

G2
�� −0.181 ± 0.989

�(1775) G1
�� 0.517 ± 0.072

G2
�� −1.083 ± 0.375

�(1915) G1
�� −0.526 ± 0.287

G2
�� −0.047 ± 2.420

t-channel resonances
K(892) GV

K� 1.090 ± 0.137
GT

K� −2.325 ± 0.338
K(1270) GV

K� 3.074 ± 0.329
GT

K� 3.275 ± 1.350

nearly indistinguishable. In the second fit, the value obtained
for FCp increased to the value −1.71 with an uncertainty
of 0.13—nearly within 1 standard deviation of the upper
limit.
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FIG. 2. (Color online) Differential
cross sections vs. W for bins of cos θCM

K

as indicated. Data above 2.2 GeV (red
points) were not included in the fit. The
curve is from our fit, and the data are from
Ref. [10].

Several observations are in order concerning the contents
of Table IV. First, it will be noted that the number of
hyperon resonances appearing in this table is much smaller
than the number appearing in Table I. We found that at-

tempts to incorporate all of the hyperon resonances listed
in Table I resulted in unacceptably large coupling products
for many of these resonances accompanied by enormous
parameter uncertainties. This clearly indicates that a model that
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FIG. 3. (Color online) Differential cross-section vs. cos θCM
K for bins of W as indicated. The curve is from our fit. The data are from

CLAS [10] (black points) and LEPS [5] (light-blue boxes). Note that the LEPS data are included here only for comparison purposes; they were
note included in the fitting procedure. The highest two W bins are CLAS data that were not included in the fit.

incorporates all of the possible u-channel resonances is too
rich (i.e., the photoproduction reaction is not sensitive to
particular u-channel contributions and, thus, cannot be used
to unambiguously determine individual u-channel coupling
products). The reason for this is obvious once one notes
that the kinematic variable u in the photoproduction reaction
is usually negative. This makes the denominators of the
intermediate baryon propagators in the u channel always

large in magnitude and insensitive to the baryon mass. Thus,
individual contributions to the reaction amplitude in the u

channel are difficult to distinguish from one another and be-
come highly correlated because many different combinations
of the u-channel coupling products yield the same result in
the reaction matrix element. Two consequences of this are
very large parameter uncertainties and the possibility of a
runaway effect in the fitting routine in which small increases
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FIG. 4. (Color online) � polarization,
P , vs. W for bins of cos θCM

K as indicated.
Data above 2.2 GeV were not included in
the fit. The curve is from our fit to data
from CLAS [8] (black points), GRAAL [9]
(pink crosses), and SAPHIR [4] (green
diamonds).

in χ2/ν result from simultaneous huge increases in correlated
couplings.

To avoid this difficulty, we systematically removed those
u-channel resonances with the largest parameter uncertainties
and then refit the remaining parameters, accepting the result if
the resulting χ2/ν did not increase by more than a few percent
over the value obtained with all resonances included. This
procedure led to reduced values of the remaining u-channel
coupling products and greatly reduced parameter uncertainties,
finally culminating in the values listed in Table IV. Attempts
to further reduce the number of u-channel resonances incorpo-
rated in the model led to larger increases in χ2/ν (10% or more)
than we deemed acceptable. As the procedure was carried out,
the values obtained for the s- and t-channel coupling products
did not shift significantly, indicating that these coupling
products are not sensitive to the model employed for the
u channel.

Even with the reduction in the number of u-channel
resonances included in the fit, the parameter uncertainties
associated with the hyperon resonances are still rather large,
often larger than the magnitudes of the couplings themselves.

This indicates that the u-channel couplings are still highly
correlated and poorly determined. Evidently, the photopro-
duction reaction is of limited value as a means for studying the
couplings of hyperon resonances.

The quality of our fits is illustrated in Figs. 2–6. Figure 2
shows the W dependence of the differential cross section for
different values of cos θCM

K . Over the range in W that the data
were fit (up to 2.2 GeV), our fit well reproduces the features
of the data. The minor exception is in the two forward-angle
bins at around W ∼ 1900 GeV, where the data show a peak
not indicated by our fit. This could well be an indication of
the presence of the D13(1900) included by others [18,24,29].
Figure 3 shows the same cross section plotted against cos θCM

K

for a selection of W values. This figure also includes data from
LEPS, but only the CLAS cross-section data were used in the
generation of the fit.

Our model actually does a good job of matching the cross-
section data up to W ∼ 2.3 GeV for forward angles, which is
a trend seen for the other observables as well.

The �-polarization fits are shown as a function of W in
Fig. 4 and as a function of cos θCM

K for selected W bins in
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FIG. 5. (Color online) � polarization, P , vs. cos θCM
K for bins of W as indicated. The curve is from our fit and data are from CLAS [8]

(black points) and SAPHIR [4] (pink crosses) with a similar value of W , which is indicated in the parentheses.

Fig. 5. As with the cross section, our fit reproduces the major
features of the data quite well.

Figure 6 shows the photon-beam asymmetry � as a
function of cos θCM

K . The fit shows excellent agreement with
the GRAAL data (W � 1.906 GeV). However, from W =
1.947 GeV up to 2.2 GeV, disagreement between these LEPS
data and the fit grows with W .

Figures 7 and 8 show the fits of the Cx data. Over most of
the kinematic range of data, we again reproduce the general
features of the data with our fit. The exception here is at low
W (see especially Fig. 8, panel W = 1.679 GeV), where the
data are systematically lower than our fit.

Figures 9 and 10 show the fits of the Cz data. In the two
most forward-angle bins of the W distributions, the fit is
systematically lower than the data from about 1.9 to 2.1 GeV.
Otherwise, the data are well represented by the fit.

Detailed examination of the matrix elements in the model
reveals that the s-channel matrix elements, u-channel ma-
trix elements, and t-channel matrix elements, when taken
individually, all increase monotonically with energy. This
indicates that successful reproduction of the data results
from a subtle interference between the matrix elements in
different channels. Because the Mandelstam variables u and
t are generally negative over the energy range of interest
here, the individual resonance contributions in the u and
t channel are only weakly dependent on the energy. By
contrast, the individual s-channel contributions are strongly
energy dependent, especially at energies near the resonance
masses. Consequently, to successfully fit the data within a
given energy range with reasonable parameter values, it is

necessary to include nucleon resonances with masses that
span the full energy range considered. Because only nucleon
resonances with masses up to 2.2 GeV were included in the fits,
attempts to fit the data beyond 2.2 GeV resulted in a χ2/ν that
increased rapidly with W . Furthermore, because of the subtle
interferences among the three channels that are fine-tuned by
the fit, fits obtained within a given range of energies cannot be
extended significantly beyond that range. Indeed, one finds that
beyond the energy range of the fit, the calculated cross sections
increase precipitously with energy, in marked contrast with the
data.

In summary, we have presented a new fit of the kaon
photoproduction data from a variety of sources using an
effective Lagrangian model. In this fit, the Born terms were
all fixed at values imposed by SU(3)-symmetry constraints
and other considerations. A second fit, in which the value
of the Born parameter FCp was allowed to vary while
requiring the other Born parameters to satisfy SU(3) relations
among the various Born couplings, did not differ significantly
from the first fit. In both fits, data for the unpolarized cross
section, the hyperon polarization asymmetry, photon-beam
asymmetry, and two double-polarization observables from
threshold up to 2.2 GeV were included.

In general, the new fit yields good representations of
both the cross-section data and the spin observables. One
exception is the forward-angle cross-section data around
1.9 GeV. This suggests that our fit is perhaps missing one
or more resonances in this energy range, which is a subject for
future work. Further improvements to our model should result
from including other polarization observables. The CLAS
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FIG. 6. (Color online) � vs. cos θCM
K for bins of W as indicated. The curve is from our fit and the data are from GRAAL [9] (pink crosses)

and LEPS [5] (light-blue boxes).

collaboration expects to produce multiple spin observables
in the near future [40], including data with a polarized target
and a linearly polarized photon beam. Recently, the GRAAL
Collaboration has published results for the double-polarization
observables Ox and Oz [41]. Such data should provide more
constraints and potentially enable inclusion of resonances that
are not necessary in our fit.

The results of this work can be employed to study the
electroproduction of kaons from the proton (i.e., the reaction
ep → e′K+�). The latter reaction involves a virtual, rather
than a real, photon in the strangeness production interaction
and, thus, requires electromagnetic form factors at the photon
vertices. If one uses the photoproduction fits described here
to represent the underlying reaction mechanism in the electro-
production reaction, then one can use electroproduction data
to study the electromagnetic form factors associated with the
intermediate hadrons in the different reaction channels. Of
course, the electroproduction reaction involves longitudinal,
as well as transverse, photons, but the corresponding contribu-
tions to the reaction amplitude are related through the Lorentz
structure of the interaction vertices (i.e., through the fact
that the photon polarization vector is a Lorentz four-vector).
Thus, it should be possible to extract important information

concerning the electromagnetic form factors of hadronic
resonances using the fits described here in conjunction with
electroproduction data. Work in this direction is currently in
progress.

APPENDIX: AMPLITUDE OPERATORS

The operators Â, B̂, Ĉ, and D̂ appearing in Eqs. (49)
and (50) depend on the spin and parity of the particular
intermediate hadron considered. They can all be expressed
in terms of a set of � and � operators defined by the relations

�(a, b) = a0b0 − σ · aσ · b,
(A1)

�(a, b) = b0σ · a − a0σ · b,

�3(a, b, c) = a0�(b, c) − σ · a�(b, c),
(A2)

�3(a, b, c) = a0�(b, c) − σ · a�(b, c),

and

�4(a, b, c, d) = �(a, b)�(c, d) + �(a, b)�(c, d),
(A3)

�4(a, b, c, d) = �(a, b)�(c, d) + �(a, b)�(c, d),
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FIG. 7. (Color online) Cx vs. W for bins
of cos θCM

K as indicated. Data above 2.2 GeV
were not included in the fit. The curve is from
our fit and data are from CLAS [11].

FIG. 8. (Color online) Cx vs. cos θCM
K for bins of W as indicated. The curve is from our fit and the data points are from CLAS [11]. The

data in the highest W bin were not included in the fit.
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FIG. 9. (Color online) Cz vs. W for
bins of cos θCM

K as indicated. Data above
2.2 GeV were not included in the fit. The
curve is from our fit and data are from
CLAS [11].

FIG. 10. (Color online) Cz vs. cos θCM
K for bins of W as indicated. The curve is from our fit and the data points are from CLAS [11]. The

data in the highest W bin were not included in the fit.
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where a0 and a are the time and space components of the
four-vector a. In terms of these operators, the operators for
intermediate baryons with positive parity and spin 1

2 are

Â
1
2

+

s = FD(p)m�(pγ , ε),

B̂
1
2

+

s = FD(p)m�(pγ , ε),
(A4)

Ĉ
1
2

+

s = −FD(p)�3(p, pγ , ε),

D̂
1
2

+

s = −FD(p)�3(p, pγ , ε)

in the s channel and

Â
1
2

+

u = FD(p)m�(pγ , ε),

B̂
1
2

+

u = FD(p)m�(pγ , ε),
(A5)

Ĉ
1
2

+

u = FD(p)�3(pγ , ε, p),

D̂
1
2

+

u = FD(p)�3(pγ , ε, p)

in the u channel, where pγ and ε are the photon four-
momentum and polarization, m and p are the mass and
four-momentum of the intermediate baryon, and D is the
propagator denominator defined by

D(p) = (p2 − m2 + im�)−1. (A6)

The coupling products F are defined by Eqs. (53). Note that
the intermediate baryon width � in Eq. (A6) is zero in the
Born terms. For an intermediate proton, there are additional
contributions to the operators from the charge coupling. These
are given by

Âcharge = eg�KpD(p)�(p, ε),

B̂charge = eg�KpD(p)�(p, ε),
(A7)

Ĉcharge = eg�KpD(p)mσ · ε,

D̂charge = 0.

For contributions with intermediate spin 3
2 resonances, we

define the coupling parameters

β1 = F1 + F2,

β2 = F2 − 2F1, (A8)

β3 = 3F1 − F2

with

F1 = G1

2mBmπ

D(p),
(A9)

F2 = mG2

(2mB)2mπ

D(p),

where mB is the mass of the ground-state baryon at the
photon vertex and G1 and G2 are the couplings defined by
Eqs. (54). With these definitions, the operators for intermediate
resonances of positive parity and spin 3

2 are given by

Â
3
2

+

s = 1

3
[β1�(pK, k1) + 2F1(pK · p)�(pγ , ε)

− 3�(p, q1) − 2F1�4(p, pK, pγ , ε)],

B̂
3
2

+

s = 1

3
[β1�(pK, k1) + 2F1(pK ·p)�(pγ , ε) − 3�(p, q1)

− 2F1�4(p, pK, pγ , ε) − 3F2(pK · k1)],

Ĉ
3
2

+

s = 1

3m
[β1�3(p, pK, k1) + 2F1(pK · p)�3(p, pγ , ε)

+ 3F2(pK · k1)σ · p + 3m2σ · q1

− 2m2F1�3(pK, pγ , ε)],

D̂
3
2

+

s = 1

3m
[β1�3(p, pK, k1) + 2F1(pK · p)�3(p, pγ , ε)

− 3F2(pK · k1)E − 3m2q0
1

− 2m2F1�3(pK, pγ , ε)] (A10)

in the s channel and

Â
3
2

+

u = 1

3
[−β3�(k1, pK ) − 2F1(pK · p)�(ε, pγ )

+ 3�(p, q1) + 2F1�4(p, ε, pγ , pK )],

B̂
3
2

+

u = 1

3
[−β3�(k1, pK ) − 2F1(pK · p)

�(ε, pγ ) + 3�(p, q1)

+ 2F1�4(p, ε, pγ , pK ) − 3β2(pK · k1)],

Ĉ
3
2

+

u = 1

3m
[−β1�3(p, k1, pK ) − 2F1(pK · p)�3(p, ε, pγ )

− 3F2(pK · k1)σ · p − 3m2σ · q2

+ 2m2F1�3(ε, pγ , pK )],

D̂
3
2

+

u = 1

3m

[−β1�3(p, k1, pK ) − 2F1(pK · p)�3(p, ε, pγ )

+ 3F2(pK · k1)E + 3m2q0
2

+ 2m2F1�3(ε, pγ , pK )
]

(A11)

in the u channel, where E is the energy of the intermediate
resonance, pK is the kaon four-momentum,

k1 = (p · ε)pγ − (p · pγ )ε,
(A12)k2 = (pK · ε)pγ − (pK · pγ )ε,

and

q1 = F1k2 + β2
pK · p

3m2
k1,

(A13)
q2 = F1k2 − F2

pK · p

3m2
k1.

For contributions with intermediate spin 5
2 resonances, we

define the coupling parameters

F1 = G1

2mB(mπ )3
D(p),

(A14)

F2 = mG2

(2mB)2(mπ )3
D(p),

where G1 and G2 are the coupling products given by Eqs. (54)
and the linear combinations

ξ1 = b1pγ − b2ε,

ξ2 = a1pγ − a2ε, (A15)

ζ = q · εpγ + q · pγ ε,

065205-16



NEW FIT TO THE REACTION . . . PHYSICAL REVIEW C 80, 065205 (2009)

where

a1 = 2q · pγ pB · ε − q · εpB · pγ ,

a2 = q · pγ pB · pγ ,
(A16)

b1 = q · pγ p · ε + q · εp · pγ ,

b2 = 2q · pγ p · pγ

with

q = pK − βp (A17)

and

β = p · pK

m2
. (A18)

Four other useful combinations are

c1 = q · εpK · pγ + q · pγ pK · ε − pK · pγ pK · ε

+ 1

5
βKp · εp · pγ ,

c2 = (2q · pγ − pK · pγ )pK · pγ + 1

5
βK (p · pγ )2,

c3 = a1p · pγ − a2p · ε

m2
,

c4 = a1pK · pγ − a2pK · ε + pK · pγ (pB · pγ pK

· ε − pB · εpK · pγ ) + 1

5
βKp · pγ

(p · pγ pB · ε − p · εpB · pγ ) (A19)

with

βK = m2
K + 4(βm)2

m2
. (A20)

In terms of these quantities, we have for positive-parity spin 5
2

resonances

Â
5
2

+

s = F1[c1�(p, pγ ) − c2�(p, ε)] + 1

5
F2[c3�(q, p)

−�(q, ξ2)] + 1

5
F1

[
1

m2
�4(p, q, p, ξ1) + 2q

·pγ �4(p, q, pγ , ε) − �4(p, q, ζ, pγ )

]
,

B̂
5
2

+

s = F2c4 + F1[c1�(p, pγ ) − c2�(p, ε)]

+ 1

5
F2[c3�(q, p) − �(q, ξ2)]

+ 1

5
F1

[
1

m2
�4(p, q, p, ξ1)

+ 2q · pγ �4(p, q, pγ , ε) − �4(p, q, ζ, pγ )

]
,

Ĉ
5
2

+

s = F2
c4

m
σ · p + F1m[c1σ · pγ − c2σ · ε]

− 1

5m
F2[c3�3(p, q, p) − �3(p, q, ξ2)]

− 1

5
F1

[
1

m
�3(q, p, ξ1)

+ 2q · pγ m�3(q, pγ , ε) − m�3(q, ζ, pγ )

]
,

D̂
5
2

+

s = −F2c4
E

m
− F1c1mEγ

− 1

5m
F2[c3�3(p, q, p) − �3(p, q, ξ2)]

− 1

5
F1

[
1

m
�3(q, p, ξ1) + 2q

·pγ m�3(q, pγ , ε) − m�3(q, ζ, pγ )

]
(A21)

in the s channel and

Â
5
2

+

u = F1[c1�(pγ , p) − c2�(ε, p)] + 1

5
F2[c3�(p, q)

−�(ξ2, q)] + 1

5
F1

[
1

m2
�4(ξ1, p, p, q)

+ 2q · pγ �4(ε, p, pγ , q) − �4(pγ , p, ζ, q)

]
,

B̂
5
2

+

u = F2c4 + F1[c1�(pγ , p)−c2�(ε, p)]+1

5
F2[c3�(p, q)

−�(ξ2, q)] + 1

5
F1

[
1

m2
�4(ξ1, p, p, q)

+ 2q · pγ �4(ε, p, pγ , q) − �4(pγ , p, ζ, q)

]
,

Ĉ
5
2

+

u = −F2
c4

m
σ · p + F1m[c2σ · ε − c1σ · pγ ]

+ 1

5m
F2[c3�3(p, p, q) − �3(p, ξ2, q)]

+ 1

5
F1

[
1

m
�3(ξ1, p, q)

+ 2q · pγ m�3(ε, pγ , q) − m�3(pγ , ζ, q)

]
,

D̂
5
2

+

u = F2c4
E

m
+ F1c1mEγ + 1

5m
F2[c3�3(p, p, q)

−�3(p, ξ2, q)] + 1

5
F1

[
1

m
�3(ξ1, p, q)

+ 2q · pγ m�3(ε, pγ , q) − m�3(pγ , ζ, q)

]
(A22)

in the u channel.
For intermediate baryons of negative parity, the Â and B̂

operators are given by the same expressions as for intermediate
baryons of positive parity and the same spin, whereas the Ĉ

and D̂ operators are given by expressions that are the negatives
of the corresponding positive-parity expressions.

For the t channel, we define the coupling parameters

αV = GV
K�

msc
D(p),

(A23)

αT = GT
K�

msc(mp + m�)
D(p),

where msc is the same scaling mass that appears in Eqs. (6)
and (8) and the GK� are the coupling products defined by
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Eqs. (56). In terms of these parameters, the t-channel operators
are given by

Ât
K = 0,

B̂t
K = eg�KpD(p),

(A24)
Ĉt

K = 0,

D̂t
K = 0

for an intermediate kaon,

Ât
K� = iαT (Ef − σ · pσ · ξ ),

B̂t
K� = −iαT (Eσ · ξ − f σ · p),

(A25)
Ĉt

K� = iαV f,

D̂t
K� = −iαV σ · ξ

for an intermediate K�(892) resonance, and

Ât
K1 = αT [ε · pK�(p, pγ ) + Epγ · pKσ · ε],

B̂t
K1 = αT [ε · pK�(p, pγ ) + pγ · pKσ · pσ · ε],

(A26)
Ĉt

K1 = αV [pγ · pKσ · ε − ε · pKσ · pγ ],

D̂t
K1 = αV ε · pKEγ

for an intermediate K1(1270) resonance, where p and E

are the four-momentum and energy of the intermediate
meson,

f = ε · pγ × pK, (A27)

and

ξ = ε × (EKpγ − Eγ pK ). (A28)
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76, 065202 (2007).

[34] M. Benmerrouche, R. M. Davidson, and Nimai C.
Mukhopadhyay, Phys. Rev. C 39, 2339 (1989).

[35] W. M. Yao et al., J. Phys. G 33, 1 (2006).
[36] S. Capstick and W. Roberts, Phys. Rev. D 58, 074011 (1998).
[37] J. J. deSwart, Rev. Mod. Phys. 35, 916 (1963).
[38] O. Dumbrajs, R. Koch, H. Pilkuhn, G. C. Oades, H. Behrens,

J. J. de Swart, and P. Kroll, Nucl. Phys. B216, 277 (1983).
[39] I. J. General and S. R. Cotanch, Phys. Rev. C 69, 035202

(2004).
[40] F. J. Klein et al., Jefferson Lab Experiment E02-112.
[41] A. Lleres et al., Eur. Phys. J. A 39, 149 (2009).

065205-18


