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The quantitative dependence of quark-gluon plasma (QGP)-formation probability (PQGP) on the centrality of
Au-Au collisions is studied using a bond percolation model. The PQGP versus the maximum distance Smax for
a bond to form is calculated from the model for various nuclei and the PQGP at different centralities of Au-Au
collisions for the given Smax are obtained therefrom. The experimental data of the nuclear modification factor
RAA(pT ) for the most central Au-Au collisions at

√
sNN = 200 and 130 GeV are utilized to transform Smax to√

sNN . The PQGP for different centralities of Au-Au collisions at these two energies are thus obtained, which is
useful for correctly understanding the centrality dependence of the experimental data.
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I. INTRODUCTION

It is believed that a medium with deconfined quarks
and gluons as constituents, referred to as the quark-gluon
plasma (QGP), can be created in high-energy nucleus-nucleus
collisions. Up to now, a large amount of experimental data have
been collected through the collisions of Si, O, Al, Cu, Au, Pb,
and so on, at center-of-mass energies varying from about 2A

to 200A GeV [1–8]. The recent data analyses of Relativistic
Heavy Ion Collider (RHIC) Au-Au collisions at 200A GeV
show strong evidence for liberated quark degrees of freedom
over nuclear volumes [5–8].

The widely accepted definition for QGP is a (locally)
thermally equilibrated state of matter in which quarks and
gluons are deconfined from hadrons, so that color degrees of
freedom become manifest over nuclear, rather than merely
nucleonic, volumes [5]. From this definition, the formation
of QGP requires quark deconfinement in a large volume, at
least larger than that of a nucleon. Therefore, proton-proton
collisions can certainly not form QGP, even at very high
energy. For the same reason, it can be asserted that, the smaller
the colliding nuclei, or equivalently, the more peripheral the
collision of big nuclei, the less probability for QGP formation.
This assertion has strong support from both experimental data
and theoretical reasoning.

From the experimental side, the RHIC data on Au-Au
collisions at various energies,

√
sNN = 200, 130 GeV, and so

on, found that, in the most central (0%–5% centrality) Au-Au
collisions, the back-side high-pT two-hadron correlations in
the azimuthal angle disappear (i.e., the so-called monojet
phenomenon [9]), which shows that, in central collisions, QGP
is formed with high probability and absorbs the back-side jet.
As centrality increases, the back-side jet appears gradually,
indicating that the probability of QGP formation, denoted by
PQGP, decreases continuously with the increase of centrality.
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While in the most peripheral collisions (60%–80% centrality)
the back-side jets are observed in full strength just as in the
case of p-p collisions.

The suppression of high-pT hadron yields in a dense
medium, quantified by the nuclear modification factor
RAA(pT ), provides another experimental confirmation for the
assertion. The factor RAA(pT ) is defined to be the A-A spectra
relative to the p-p spectrum. It is believed that the suppression
of hadrons at high pT is of significance for final-state partonic
energy loss in dense matter. Obviously, the greater the QGP-
formation probability the more the suppression of hadrons.
It is found that RAA(pT ) is most strongly suppressed for the
most central collisions and becomes more and more weakly
suppressed as centrality increases [10,11].

From the theoretical side, it is believed that QGP can be
created if the energy density is above about ten times that
of normal nuclear matter [12–14]. The energy deposition in
the collision region is due to multiple scattering between
nucleons from two incident nuclei. In the Glauber model [15],
the probability of n multiscattering in the collision of two
nuclei at a given impact parameter is a binomial distribution.
For two head-on nuclei with identical nucleon number A, the
mean number of multiscattering is proportional to A4/3 [16].
Therefore, for small nuclei, the multiscattering number n may
be large enough for QGP formation only at the tail of n

distribution, which has negligibly small probability.
However, the previously mentioned arguments are only

qualitative. A quantitative result on the probability of QGP
formation versus the size of colliding nuclei or versus the
centrality of the collision of big nuclei at different colliding
energies is still lacking. Such a quantitative dependence of
PQGP on the size of the colliding nuclei, or on the centrality,
is important in correctly understanding the data of various
centralities at different energies. Let us take the nuclear modi-
fication factor RAA(pT ), which quantifies the suppression of a
high-pT particle in QGP, for example. This modification factor
takes the p-p spectrum as a reference, that is, by definition
Rp-p(pT ) = 1 at high pT since there is no dense medium
formed in p-p collision. Therefore the probability of QGP
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formation PQGP (where to simplify notation we will use in the
following a single letter r for this probability) vanishes, r = 0.
In contrast, the suppression in the most central A-A collisions
will be the largest RAA(pT |most central) = RAAmax(pT ). For
the collision with other centralities c, the values of RAA(pT |c)
will lie between RAAmax(pT ) and Rp-p(pT ). We want to know
quantitatively how much these values are. This can be achieved
using the following simple formula. If the probability r of the
QGP formation at different centralities, that is, if the functional
dependence r = r(c), is known, then

RAA(pT |c) = RAAmax(pT ) · r(c) + Rp-p(pT ) · [1 − r(c)].

(1)

The aim of the present article is to study the quantitative
dependence of QGP-formation probability, r , on the size, A,
of colliding nuclei, or on the centrality, c, of Au-Au collisions
at various colliding energies.

Our study is carried out using a bond percolation model
[17]. The application of percolation theory to quark deconfine-
ment was first suggested by Baym [18] and further extended
by Satz and co-workers [19–23]. In their work, they used a site
percolation model and discussed the critical nucleon density
of phase transition. In Ref. [17] the bond percolation model is
applied to discuss the cluster formation in an analytic crossover
between hadronic gas and QGP. We are now applying this
model to study the probability of QGP formation.

First, let us have an intuitive look at the process that
occurs in heavy ion collisions. When two nuclei collide with
high velocity, Lorentz contraction causes the scale in the
longitudinal direction to be much less than that in the transverse
plane, and the two nuclei can be described as two disks
without thickness. During the collision, the nucleons in the
two disks interact with each other and the potential barriers
between neighboring nucleons decrease with the increase of
the colliding energy

√
sNN . That is, the wave function of

nucleons will be distorted at high energy, and the infinitely high
confinement potential between neighboring nucleons might
be reduced to a finite-height potential barrier [cf. the central
subfigure in Fig. 1(a)]. The higher the colliding energy is
the more distorted the nucleon wave function and the lower

(a)

S

(b)

FIG. 1. (Color online) A schematic plot for the bond formation.
(a) Nucleons connected by bonds form clusters. The central subfigure
shows how the infinite confinement potential between two neighbor-
ing nuclei reduces to a finite-height potential barrier. Quark tunneling
through the barrier forms bond, shown as full-line segments in the
main figure. (b) A cluster extending from one boundary to another is
an infinite cluster.

the potential barriers. As a result of quantum tunneling, the
quarks in nucleons are able to delocalize from a single nucleon
and the nearer the two nucleons the larger the probability of
delocalization. Let us use S to denote the distance between the
neighboring nucleons that have quark delocalization, [cf. the
central subfigure of Fig. 1(a)]. At fixed energy

√
sNN , there

exists a maximum distance Smax, such that quark delocalization
is possible when S � Smax but is impossible when S > Smax.
The relation between Smax and

√
sNN is determined by the

shape of the confinement potential. At relativistic high energies
the contribution to this potential from the nucleon initial state,
which at these energies are saturated gluons and current quark
antiquark pairs, should be considered. In this article, as a first
step, we focus on the percolation process and use experimental
data as input to obtain the correspondence between Smax and√

sNN (cf. the two vertical lines in Fig. 3). What we can
infer at this step is that, as

√
sNN increases, the maximum

delocalization distance Smax increases, that is, the dependence
Smax = Smax(

√
sNN ) is a monotonically increasing function.

If quark delocalization happens between two nucleons the
two nucleons are connected by a bond, shown as full-line
segments in Fig. 1, to form a cluster, inside of which quarks are
free to tunnel from one nucleon to the other and the nucleons
are turned to colored objects referred to as cells. Only the whole
cluster is a color singlet. The size of a cluster is defined as the
number of cells included in it. It can be seen from Fig. 1(a)
that the clusters can be of various sizes.

As the size of a cluster grows to the nuclear scale, that is,
extending from one boundary to the other [cf. the big cluster
in Fig. 1(b)], the color degree of freedom is manifested over
the nuclear volume and QGP forms.

This picture can be realized by a two-dimensional bond
percolation procedure. In the usual geometrical percolation
model, the control parameter is the probability p of bond or site
occupation [24]. When p equals a critical value pc, an infinite
cluster appears and the system turns from a disconnected
phase to a connected phase. In our bond percolation model,
the control parameter is the maximum delocalization distance
Smax, which depends on the collision energy

√
sNN of the two

nuclei. If two nucleons depart with a distance less than Smax,
there can be a bond formed between them, representing the
tunneling of quarks through the potential barrier. The nucleons
(cells) aggregated through bonds form clusters. When Smax

arrives at a critical value Sc, an infinite cluster appears and the
medium changes from a color insulator to a color conductor,
or from hadron phase to quark-gluon phase.

II. CONSTRUCTION OF A BOND PERCOLATION MODEL

In a percolation model, two head-on colliding nuclei with
nucleon number A are simplified as two overlapped disks of
radius R = 1.2A1/3 and with 2A nucleons (cells) randomly
distributed inside the region. In the site percolation models, the
distribution of nucleons inside the big disk has no restriction.
Two nucleons can be totally overlapped, lying one on the other.
In our bond percolation model, to give enough room for the
cells to move and for the bonds to be able to form between
neighboring cells, the cells must have a “hard core” with radius
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re, or equivalently a minimum distance Smin between the two
neighboring cells, where re = 0.5Smin < rc = 0.34 fm. Here,
rc is the radius of 394 cells closely packed in a large disk of
radius R = 7 fm (see the Appendix). In the calculation we take
re = 0.1 fm. Two cells cannot be located nearer than 2re. A
cell that departs after cluster formation from the center of the
big disk farther than R − re is referred to as a boundary cell.
Note that re is the radius of the “hard core” of cells moving
in a nucleus with radius R = 7 fm. It is not the “hard core” of
nucleons moving in free space.

Let us denote a cell with a center at rα as cell α. Only the
cells with a center at r satisfying Smin � |r − rα| � Smax can
form bonds with the cell α. These are referred to as bond-
candidate cells. In principle, the maximum number nb of cells
that can be connected with cell α by bonds are determined by
the number np of partons inside cell α, which at relativistic
high energy can be very large, in particular, larger than the
number nc of the bond-candidate cells of cell α. In that case,
the largest number nb of bonds connected to cell α will be
equal to nc instead of np.

The percolation procedure is as follows:

(i) Randomly select a cell α as a mother cell.
(ii) Find the bond-candidate cells. As just discussed, the

largest number of bonds nb that can be connected to
cell α, in the case of nc < np, is equal to the number of
candidate cells nc, which is not a very large number. In
the calculation, the value of this number is unimportant
since, according to the theory of percolation [25–28],
the results of bond percolation are the same for different
bond numbers provided nb � 3. This was verified in
Ref. [29] for 3 � nb � 100 using our model. So we
randomly select three cells from the bond-candidate
cells to form three bonds connected to the mother cell
α. These are referred to as daughters. If the number of
candidate cells is less than three, then the number of
daughters is equal to the candidate number.

(iii) For every daughter of cell α find its bond-candidate
cells from the remaining unbounded cells and randomly
select two bond-candidate cells to form bonds. The cells
connected to daughters are called granddaughters.

(iv) Repeat the procedure to granddaughters and grand-
daughters’ daughters and so on, and we will get a
cluster, which grows until no bond-candidate cell can
be found.

(v) Then choose another cell β from the remaining un-
bounded cells as another mother cell, and repeat the
procedure starting from Step (ii).

In this way, every cell is assigned to a cluster. In every cluster,
find the boundary cells, if any, calculate the distance between
every two boundary cells, and denote the maximum distance

 (fm)maxS
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FIG. 2. (Color online) The probability r of an infinite cluster
as a function of the maximum percolation distance Smax for nucleus-
nucleus collisions of different nuclei calculated from bond percolation
model. The statistical errors are within the symbols. The curves
represent the fits to Eq. (3).

by d. A cluster with d >
√

2R is called an infinite cluster.
The probability P∞ for the appearance of an infinite cluster is
defined as

P∞ = N∞
N

, (2)

where N∞ is the number of events with an infinite cluster and
N is the total number of events in the sample. In this model,
P∞ is taken as the probability PQGP of the QGP formation and
will, therefore, be denoted in the following by r .

III. DEPENDENCE OF PQGP ON SYSTEM SIZE
AND CENTRALITY

The bond percolation simulation is done for nucleus-
nucleus collisions of different nuclei. The variation of QGP-
formation probability r as a function of Smax is shown in
Fig. 2 for nuclei with the different nucleon number A. It can
be seen that for each kind of nucleus, with the increase of
Smax, r gradually increases from 0 to a saturation value. This
is typical for the finite-size percolation model, while for an
infinite system r(Smax) will be a step function and the point
where r starts to be greater than 0 will be the threshold Sc. In
our case, the system is of finite size, so we use a function [30]

r(Smax) = a{1 + tanh [b(Smax − f )]}, (3)

to fit the shape of r(Smax) in Fig. 2, where a, b, and f are fitting
parameters. It turns out that the fits are good (cf. the curves
in Fig. 2). The inflection point f of the fitting curve can be
used as an evaluation of the threshold of Smax: Sc = f , and
the saturation value of r is rsat = 2a. The results are listed in
Table I.

TABLE I. The saturation value rsat of PQGP and the critical percolation distance Sc for different sizes of nuclei.

U Pb Au Sn Cu S Si O C

A 238 207 197 119 64 32 28 16 12
rsat (%) 100 99.8 99.8 98.7 91.4 71.6 66.6 45.4 35.6
Sc (fm) 0.67 0.69 0.70 0.78 0.90 1.05 1.08 1.22 1.29
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From Table I, we see that larger nuclei have smaller Sc,
which means that the energy threshold to form QGP for
larger nuclei is lower than that of the smaller ones. The
maximum QGP-formation probability rsat for smaller nuclei
are lower than those of the bigger ones. For small nuclei the
QGP-formation probability is less than 100% even at very large
Smax, or, equivalently, at very high colliding energy

√
sNN , that

is the QGP-formation probability gets saturated. It can be seen
from Table I that the saturation values rsat of PQGP for U-U,
Pb-Pb, and Au-Au collisions are about 100%, while those of
smaller nuclei do not reach 100%. For example, for Cu-Cu
collisions only about 91% events form QGP at very large Smax

(very high
√

sNN ). From the variation of rsat on nuclear size A

shown in Table I, we see that the saturation value rsat of PQGP

decreases quickly when the nuclear size is less than that of
copper.

Similar to Fig. 2, the relation between r and Smax for
different centralities of Au-Au collisions can be calculated
from the percolation model. The idea is that the probability
to create QGP in noncentral collisions with the number of
participants, Npart, is equal to that in head-on collisions with
nuclear size A = Npart/2 at the same collision energy. Based on
this idea, first we obtain the number of participants for different
centralities of Au-Au collisions using the Glauber model, then
A = Npart/2 is taken as input to the bond percolation model
to calculate the relation between r and Smax. The resulting r

versus Smax for different centralities of Au-Au collisions are
shown in Fig. 3.

In the calculation, the Npart values are from the Glauber
model for Au-Au collisions with beam energy 130A GeV [10].
We omit the slight dependence of Npart on beam energy.
For example, for the most central collisions 〈Npart〉200 GeV/

〈Npart〉62.4 GeV ≈ 1.02 [11,31], which makes a slight difference
in the r(Smax) distribution.

We can infer from Figs. 2 and 3 the dependence of
QGP-formation probability r , on nuclear size A, or centrality
c, for different Smax. However, this is of little use because
Smax is not a measurable quantity. The measurable quantity
is the collision energy

√
sNN . In applying the QGP-formation

probability r calculated in our model to explain experimental
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FIG. 3. (Color online) The probability r of an infinite cluster
as a function of the maximum percolation distance Smax for Au-Au
collisions at different centralities calculated from the bond percolation
model.

data, we need to know the correspondence between Smax and√
sNN . In principle, the monotonically increasing function of√
sNN versus Smax should be able to be calculated from a

dynamical model, but there is not yet a reliable dynamical
model. Therefore, we try to utilize the presently available
experimental data to partly solve this problem.

The experimental results on the nuclear modification factor
RAA(pT ) and the monojet (disappearance of back-side jet)
show that both depart from the corresponding values of the
p-p collision, the largest for the most central Au-Au collision
at

√
sNN = 200 GeV, but the departure is smaller from the

corresponding p-p values for the same collisions at
√

sNN =
130 GeV even for the most central collisions. This indicates
that the formation probability r of QGP has (almost) arrived
at saturation for the most central Au-Au collisions at

√
sNN =

200 GeV but is unsaturated at
√

sNN = 130 GeV. Based on
this observation we assume that the central Au-Au collision
at

√
sNN = 200 GeV has just arrived, or nearly arrived, at

saturation. From this assumption, we can get from Fig. 3 the
Smax value of

√
sNN = 200 GeV to be Smax = 0.90 fm or a

little smaller, where the QGP-formation probability r starts to
saturate toward 100% for the most central Au-Au collisions.

Under this assumption, the QGP-formation probability
r(c) for different centralities c of

√
sNN = 200 GeV Au-Au

collisions can be obtained from the function r(Smax) by taking
Smax = 0.90 fm [cf. the (red) dashed line in Fig. 3]. Once
the function r(c) is known, the model predicted RAA(pT )
for various centralities of 200A GeV Au-Au collisions can be
calculated from Eq. (1), by taking the experimental RAA(pT )
data for 0%–5% centrality of Au-Au collisions at

√
sNN =

200 GeV as the RAAmax(pT ) in this equation. The results are
shown as (blue) solid curves in Fig. 4.
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-110
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percolation model

AuAu 200 GeV

R
A
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pT (GeV/c)

2

FIG. 4. (Color online) The comparison of RAA(pT ) between
percolation model predictions and experimental data [11] for

√
sNN =

200 GeV Au-Au collisions at various centralities.
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When applying this method to other energies, for example,√
sNN = 130 GeV Au-Au collisions, we need to know the

location of
√

sNN = 130 GeV on the Smax axis of Fig. 3.
For this reason, we make use of the experimentally ob-

served R
exp
AA130(pT ) for the most central (c = 0%–5%) Au-Au

collisions at this energy. The corresponding QGP-formation
probability r value r(c)|130 GeV

c=0%−5% can then be obtained through
minimizing

� =
∑

i

[
R

exp
AA130(pT

i |c = 0%–5%) − Rmodel
AA130(pT

i |c = 0%–5%)
]2

[
R

exp
AA130(pT

i |c = 0%–5%)
]2 , (4)

where the superscript i indicates the different pT bins, and the
Rmodel

AA130(pT
i |c = 0%–5%) are given by Eq. (1):

Rmodel
AA130(pT

i |c = 0%–5%) = R
exp
AA200(pT

i |c = 0%–5%) · r(c)|130 GeV
c=0%–5% + Rp-p(pT

i) · [
1 − r(c)|130 GeV

c=0%–5%

]
, (5)

where the assumption that the QGP-formation probability r

in the most central (0%–5%) Au-Au collision at 200A GeV
has (just) reached saturation is used. In the minimizing
process, r(c)|130 GeV

c=0%–5% acts as the fitting parameter. The
result is r(c)|130 GeV

c=0%–5% = 84.32%. Then, from the functional
dependence r(Smax) shown in Fig. 3, it is easy to get the
corresponding Smax = 0.76 fm [cf. the (red) dash-dotted line in
Fig. 3]. By knowing the location of

√
sNN = 130 GeV on the

Smax axis of this figure, the QGP formation probabilities r and
the nuclear modification factor RAA for different centralities
of Au-Au collisions at this beam energy can be calculated
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FIG. 5. (Color online) The comparison of RAA(pT ) between
percolation model predictions and experimental data [10] for

√
sNN =

130 GeV Au-Au collisions at various centralities.

c (%)

r
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1
AuAu

200 GeV

130 GeV

0 20 40 60 80

FIG. 6. (Color online) The QGP-formation probability r versus
the centrality c of Au-Au collisions at

√
sNN = 200 and 130 GeV.

using the same method as for 200A GeV Au-Au collisions.
The resulting RAA values for 130A GeV are shown in Fig. 5
as (blue) solid lines.

We see from Figs. 4 and 5 that the model-predicted
RAA(pT ) agree with the Au-Au experimental data at 200A

and 130A GeV within error bars. These results support the
application of our model to evaluate the probability of QGP
formation at various centralities.

We can now obtain the dependence of QGP-formation
probability r on the centrality c of Au-Au collisions for the two
energies

√
sNN = 200 and 130 GeV, as shown in Fig. 6. We see

that both of them are a monotonically decreasing function. For
Au-Au collisions at

√
sNN = 200 GeV, the probability r of the

QGP formation drops to zero at 60%–80% centrality, whereas
this probability for the same collisions at

√
sNN = 130 GeV is

vanishingly small already at 40%–60% centrality.

IV. CONCLUSION AND DISCUSSION

The probability of QGP formation at different centralities of
Au-Au collisions is studied using a bond percolation model.
A colliding-energy-dependent parameter Smax is introduced,
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which is the maximum distance for a bond to form between
two neighboring nucleons. The QGP-formation probability r

versus Smax for different sizes of colliding nuclei, or for various
centralities of Au-Au collisions, is calculated from the model,
and the probability of QGP formation at different centralities of
Au-Au collisions for given Smax are obtained accordingly. The
experimental data of the nuclear modification factor RAA(pT )
for the most central Au-Au collisions at

√
sNN = 200 and

130 GeV are utilized to transform the unmeasurable parameter
Smax to the measurable colliding energy

√
sNN . The probability

of QGP formation at different centralities of Au-Au collisions
for these two energies are then calculated from the model. The
results are consistent with the experimental data within errors.

In the present paper, as a first step the correspondence
between the model parameter Smax and colliding energies is
simply derived by using experimental data. In the future, we
plan to obtain the colliding energy dependence of Smax from
theory. To do that, the confinement potential between quarks
at zero temperature will be extended to high temperature by
using QCD-inspired dynamical models in the framework of
perturbative QCD at finite temperature.
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APPENDIX: THE RADIUS OF SMALL CIRCLES
CLOSELY PACKED IN A BIG CIRCLE

Consider the close packing of disks of radius r over some
plane area in two dimensions, not allowing overlap (see
Fig. 7). The plane can be partitioned into many hexagons.
Disks cannot occupy the entire area. In a hexagon with area
6 × 2r

√
3r

2 the area occupied by disks is 3πr2, resulting in
an occupation rate of π

2
√

3
. With this occupation rate, a big

circle of radius R = 7 fm can accommodate 394 closely
packed disks of radius r = 0.34 fm with the boundary effect
neglected.

FIG. 7. (Color online) Close packing of small circles.
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