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The semi-inclusive properties of the system of neutral and charged particles with net charge equal to zero
are considered in the grand canonical, canonical and microcanonical ensembles as well as in a microcanonical
ensemble with scaling volume fluctuations. Distributions of neutral-particle multiplicity and charged-particle
momentum are calculated as a function of the number of charged particles. Different statistical ensembles lead
to qualitatively different dependencies. They are being compared with the corresponding experimental data on
multihadron production in p + p interactions at high energies.
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I. INTRODUCTION

In relativistic high-energy collisions, many properties of
produced particles follow simple rules of statistical mechanics.
The single-particle momentum spectrum approximately has
the Boltzmann form, dN/d3p ∼ exp[−(p2 + m2)1/2/T ], in
the local rest frame of produced matter [1]. The mean-particle
multiplicity of heavy particles (m � T ) is also governed by
the Boltzmann factor, 〈N〉 ∼ exp(−m/T ). Here T , p, and m

are the temperature parameter, the particle momentum, and its
mass, respectively. The temperature parameter extracted from
the data on p + p interactions is in the range of 160–190 MeV
[2]. Thus, almost all particles are produced at low transverse
momenta, pT , and with low masses (pT , m � 2 GeV).

However, the standard statistical approach fails to repro-
duce the KNO scaling [3] of multiplicity distributions observed
in the data on p + p, p + p, and e+ + e− collisions [4–6].
The other problems are a power-law behavior of the single-
particle transverse momentum spectrum at large transverse
momenta, dN/d3p ∼ p

−Kp

T , and a power-law dependence of
a mean multiplicity of heavy particles, 〈N〉 ∼ m−Km , where
Km

∼= Kp − 3 [7]. In our previous paper [8], an extension of
the standard statistical approach was suggested to a region
of large transverse momenta and/or large particle masses
(pT ,m � 3 GeV) by taking into account volume fluctuations.
The proposed model, the statistical microcanonical ensemble
with scaling volume fluctuations (MCE/sVF), allows for
solving the previously mentioned problems of the statistical
approach.

Hadron production in high-energy collisions is character-
ized by two types of quantities: inclusive and semi-inclusive
ones. Statistical models are usually used to describe inclusive
quantities such as mean multiplicity or mean transverse
momentum. They are calculated by the summation over
all microstates of the system with corresponding statistical
weights. In this article, we study selected properties of semi-
inclusive quantities within statistical models. In this case, the
statistical summation is restricted by the additional condition
(e.g., by a requirement that charged hadron multiplicity is
fixed). The grand canonical, canonical, and microcanonical

ensembles as well as MCE/sVF will be used. In particular, the
mean multiplicity of neutral particles and average transverse
momentum of charged particles are considered at a fixed
charged-particle multiplicity. The obtained model predictions
are compared with the trends observed in the experimental
data.

For the sake of simplicity, the system of noninteracting
massless Boltzmann particles—neutral, positively charged,
and negatively charged—with the total net charge equal to
zero Q = N+ − N− = 0 is considered. The degeneracy factors
are assumed to be g0 = g+ = g− = 1, and the temperature
parameter is set to T = 160 MeV for quantitative calculations.

This article is organized as follows. The joint multiplicity
distributions of neutral and negatively charged particles, cor-
relations, semi-inclusive averages, and the effects of quantum
statistic are calculated in Sec. II. Semi-inclusive momentum
spectra are obtained and discussed in Sec. III. A comparison
with available data is presented in Sec. IV. The summary
presented in Sec. V closes the article.

II. MULTIPLICITY DISTRIBUTIONS

A. Grand canonical ensemble

The grand canonical ensemble (GCE) is defined by the
system volume V , temperature T , and charge chemical
potential µQ. The chemical potential µQ regulates an average
value of the conserved charge Q. For the system with zero net
charge considered here, µQ is equal to zero. The mean-particle
multiplicities and the average energy in the GCE are as follows:

〈N0〉GCE = 〈N+〉GCE = 〈N−〉GCE ≡ N = V T 3/π2, (1)

〈E〉GCE = 3T 〈N0〉GCE + 3T 〈N−〉GCE + 3T 〈N+〉GCE

≡ E = 9T N. (2)

In the GCE, the neutral and charged multiplicities N0 and
N+, N− are uncorrelated and obey the Poisson distribution.
Thus, the joint distribution of neutral N0 and negatively
charged particles N− is given by the product of two Poisson
distributions that can be approximated by the product of two

0556-2813/2009/80(6)/064903(11) 064903-1 ©2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.80.064903
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Gauss distributions at N � 1:

PGCE(N0, N−) = N
N0

N0!
exp(−N ) × N

N−

N−!
exp(−N )

∼= (2πN )−1/2 exp

[
−

(
N0 − N

)2

2N

]

× (2πN )−1/2 exp

[
−

(
N− − N

)2

2N

]
. (3)

B. Canonical ensemble

The canonical ensemble (CE) is described by the variables
V , T , and Q. The GCE expressions (1) and (2) for average
quantities remain valid in the CE at N � 1. From the
assumption, Q = 0 follows that N+ = N−. Consequently,
the distribution of N+ and N− in the CE is narrower than
in the GCE [9]. The CE distribution of neutral particles
remains the same as in the GCE as it is not constrained by
charge-conservation law. The joint distribution of neutral and
negatively charged particles is given by [9]

PCE(N0, N−) = N
N0

N0!
exp(−N ) × 1

I0(2N )

N
2N−

(N−!)2

∼= (2πN )−1/2 exp

[
−

(
N0 − N

)2

2N

]

× (πN )−1/2 exp

[
−

(
N− − N

)2

N

]
, (4)

where I0 is the modified Bessel function.

C. Microcanonical ensemble

The microcanonical ensemble (MCE) is described by the
variables V , E, and Q. The MCE partition function for
N0 neutral and N+ = N− positively and negatively charged
massless particles reads as follows [10]:

�N0,N−(E, V ) = 1

N0!

1

(N−)!2

(
V

π2

)N0+2N− E3N0+6N−−1

�(3N0 + 6N−)
,

(5)

where � is the Euler gamma function. The joint probability
distribution of N0 and N− in the MCE is

PMCE(N0, N−) = �N0,N− (E,V )

�(E,V )
, (6)

where �(E,V ) = ∑
N0,N− �N0,N− (E,V ).

D. Average multiplicities, fluctuations, and correlations

The mean quantities in different statistical ensembles can
be expressed as

〈X〉 =
∑

N0,N−

X(N0, N−)P (N0, N−). (7)

For the MCE distribution (6), one obtains

〈N0〉MCE
∼= 〈N−〉MCE

∼= 1

3
√

3π
(V E3)1/4 (8)

If the MCE energy equals the average energy of the GCE
and CE, E = E, then the average MCE multiplicities (8)
become equal to those in the GCE and CE (1). This reflects the
equivalence of the GCE, CE, and MCE in the thermodynamic
limit. However, the multiplicity distributions are different in
these ensembles even in the thermodynamic limit. As shown
in Appendix A, the MCE distribution (6) for N � 1 can be
approximated as

PMCE(N0, N−) ∼=
√

2

π N
exp

[
− (N0 − N )2

N

− 2(N0 − N )(N− − N )

N
− 3(N− − N )2

N

]
.

(9)

The distributions P (N0, N−) in the GCE (3), CE (4), and
MCE (6) can be written in a general form of the bivariate
normal distribution as follows:

P (N0, N−) = 1

2π N
√

ω0 × ω−(1 − ρ2)
exp

[
− 1

2 N (1 − ρ2)

×
(

(N0 − N )2

ω0
−2 ρ

(N0 − N )(N− − N )√
ω0 × ω−

+ (N− − N )2

ω−

)]
, (10)

where ω0 and ω− are the scaled variances defined as

ω0 ≡
〈
N2

0

〉 − 〈N0〉2

〈N0〉 ,

(11)

ω− ≡ 〈N2
−〉 − 〈N−〉2

〈N−〉 ,

and ρ is the correlation coefficient

ρ ≡ ρ0− ≡ 〈N0 N−〉 − 〈N0〉 〈N−〉√[〈
N2

0

〉 − 〈N0〉2
] × [〈N2−〉 − 〈N−〉2]

= 〈N0 N−〉 − 〈N0〉 〈N−〉√
ω0 × 〈N0〉 × ω− × 〈N−〉 . (12)

The averaging in Eqs. (11) and (12) is expressed according to
Eq. (7).

The scaled variances in the GCE correspond to the
uncorrelated Poisson distributions (3)

ω0
GCE = ω−

GCE = ω+
GCE = 1, (13)

and the correlation coefficient (12) is obviously equal to zero.
One can similarly introduce the coefficients ρ0+ and ρ+−.
They are also equal to zero in the GCE.

In the CE,

ω0
CE = 1, ω−

CE = ω+
CE = 1

2 , (14)
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(a)

(b)

FIG. 1. (Color online) Examples of the
multiplicity distributions (a) and the inclu-
sive momentum spectra (b) of negatively
charged particles obtained within the GCE,
CE, MCE, and MCE/sVF. The distribu-
tions are calculated assuming N = 10 and
T = 160 MeV (see text for details).

for the distribution (4). The strong correlation, N+ = N−, in
each microscopic state of the CE leads to the largest possible
value of the correlation coefficient

ρ+−
CE = 〈N+ N−〉CE − 〈N+〉CE 〈N−〉CE√

ω+
CE × 〈N+〉ce × ω−

CE × 〈N−〉CE

= 1. (15)

However, similar to the GCE, there are no correlations between
neutral and charged particles, ρ0±

CE = 0.
The scaled variances in the MCE are as follows:

ω0
MCE = 3

4 , ω−
MCE = ω+

MCE = 1
4 . (16)

They reflect the suppression of fluctuations of neutral particles
in the MCE compared with the GCE and CE, and they reflect
the stronger suppression of fluctuations of charged particles
compared with the CE. The correlation coefficient, ρ+−

MCE = 1,

is the same as in the CE (15). The exact energy conservation
in the MCE leads to a rather strong anticorrelation between
neutral and charged particles:

ρ0−
MCE = ρ0+

MCE = − 1√
3

∼= −0.577. (17)

In the large volume limit, the multiplicity distribution of
negatively charged particles in the GCE, CE, and MCE can be
approximated by normal distribution [11]:

P (N−) =
∑
N0

P (N−, N0)

∼= (2πω−N )−1/2 exp

[
− (N− − N )2

2ω−N

]
, (18)

with ω−
GCE = 1, ω−

CE = 1/2, and ω−
MCE = 1/4 in the GCE, CE,

and MCE ensembles, respectively. The N− distribution in these
ensembles is presented in Fig. 1(a). As the considered system
has zero charge, the distributions P (N+) are equal to P (N−)
ones in all statistical ensembles.

The neutral-particle multiplicity distribution reads as
follows:

P (N0) =
∑
N−

P (N−, N0)

∼= (2πω0N )−1/2 exp

[
− (N0 − N )2

2ω0N

]
, (19)

with ω0
GCE = ω0

CE = 1 and ω0
MCE = 3/4.

E. MCE with scaling volume fluctuations

The MCE/sVF [8] is described by the variables E, Q,
and V as well as by the distribution function defining the
scaling volume fluctuations.1 All quantities calculated within
the MCE/sVF will be denoted by the subscript α. For a
description of the volume fluctuations it is convenient to
introduce an auxiliary variable y as follows:

y ≡ (V/V )1/4, (20)

and describe the scaling volume fluctuations by the scaling
function ψα(y) (see Ref. [8] for details). Experimental data
on the multiplicity distribution of charged hadrons in p + p

interactions suggest a simple analytical form of the ψα(y)
function [8,14,15]:

ψα(y) = kk

�(k)
yk−1 exp(−k y), (21)

with k = 4 and �(k) being the Euler gamma function.
The joint N0 and N− distribution in the MCE/sVF equals

Pα(N0, N−) =
∫ ∞

0
dyPMCE(N0, N−)ψα(y), (22)

where PMCE(N0, N−) is given by Eq. (6). The analytical
approximations for Pα(N0, N−) are discussed in Appendix B.
The inclusive mean multiplicities in the MCE/sVF are
as follows:

〈N−〉α =
∑

N−,N0

N− Pα(N0, N−) ∼= N,

(23)
〈N0〉α =

∑
N−,N0

N0 Pα(N0, N−) ∼= N,

and, thus, they coincide with those in the GCE, CE, and
MCE at N � 1. The inclusive multiplicity distributions in
the MCE/sVF are as follows:

Pα(N−) =
∑
N0

Pα(N0, N−) ∼= 1

N
ψα

(
N−
N

)
, (24)

Pα(N0) =
∑
N−

Pα(N0, N−) ∼= 1

N
ψα

(
N0

N

)
. (25)

1Statistical ensembles with fluctuating extensive quantities are dis-
cussed in recent papers [12,13].
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(a) (b)

(d)(c)

FIG. 2. (Color online) Examples of
the joint N0 and N− distributions calcu-
lated within the GCE (a), CE (b), MCE (c),
and MCE/sVF (d). The distributions are
calculated assuming N = 10 (see text for
details).

The Pα(N−) distribution is shown in Fig. 1. It is significantly
broader than the corresponding distributions for the GCE, CE,
and MCE. The scaled variance for negatively charged and
neutral particles is as follows:

ω−
α

∼= 1

k
N + ω−

MCE, ω0
α

∼= 1

k
N + ω0

MCE. (26)

Thus, in the MCE/sVF, because of the scaling volume fluctu-
ations, the scaled variance increases in proportion to the mean
multiplicity, whereas the scaled variance is approximately
independent of mean multiplicity, ω ≈ const, in the GCE, CE,
and MCE.

For illustration of the previously discussed properties, the
joint N0 and N− distributions calculated within the GCE (3),
CE (4), MCE (6), and MCE/sVF (22) are shown in Fig. 2. The
multiplicities of neutral and negatively charged particles are
uncorrelated in the GCE and CE [see Figs. 2(a) and 2(b)]. They
are anticorrelated and correlated in the MCE and MCE/sVF,
respectively. A positive correlation between N0 and N− in
the MCE/sVF is caused by the scaling volume fluctuations.
Note that finite-size effects are shown in Fig. 2. For example,
the Poisson distribution (3) is significantly asymmetric for
large deviations from N .

The distributions in Fig. 2 are rather different. Thus, it is
obvious that the dependence on N− of the semi-inclusive mean
multiplicity of neutral particles defined as follows:

〈N0〉∗ ≡
∑

N0
N0P (N0, N−)∑

N0
P (N0, N−)

(27)

is different in various ensembles. Namely, it is independent of
N− in the GCE and CE:

〈N0〉∗GCE = 〈N0〉∗CE = N. (28)

In the MCE, 〈N0〉∗MCE monotonically decreases with increasing
N− and equals approximately (see Appendix C)

〈N0〉∗MCE
∼= N

(
4

3
− N−

3N

)3

. (29)

Finally, the positive correlation between N0 and N− in the
MCE/sVF leads to an approximately linear increase2 〈N0〉∗α
with increasing N−:

〈N0〉∗α ∼= N−. (30)

The semi-inclusive mean multiplicities of neutral parti-
cles calculated within the GCE, CE (28), MCE (29), and
MCE/sVF (30) are shown as functions of N− in Fig. 3.

2A linear increase of 〈N0〉∗
MCE with N− is from the assumption of

massless particles. For the nonzero value of mass m, the relation (30)
is changed at large N−. The maximum value of N− is Nmax

− = E/2m.
Equation (30) remains approximately valid for N− 
 Nmax

− , but 〈N0〉∗
α

approaches zero at N− → Nmax
− .
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(a) (b)

(c) (d)

FIG. 3. (Color online) Examples of
the dependence of the neutral-particle
mean multiplicity on the multiplicity of
negatively charged particles calculated
within the GCE (a), CE (b), MCE (c),
and MCE/sVF (d). The distributions are
calculated assuming N = 10 (see text for
details).

F. Quantum statistics

In this subsection, we illustrate the effects of quantum
statistics in the GCE, CE, and MCE using the microcorrelator
method of Ref. [16]. The mean multiplicities in the CE or MCE
are approximately the same as in the GCE. They are given
by the sum of mean occupation numbers with momentum
p [17]:

〈Na〉CE
∼= 〈Na〉MCE

∼= 〈Na〉GCE

≡
∑

p

〈
na

p

〉 =
∑

p

1

exp(εp/T ) − γ
, (31)

where a is +, −, or 0 and denotes positive, negative, or neutral
particles, εp = p is one particle energy for massless particles,
γ = +1 for Bose statistics, γ = −1 for Fermi statistics, and
γ = 0 corresponds to the Boltzmann approximation used
throughout this article. We study a neutral system; thus, chem-
ical potentials are zero in Eq. (31), and the average occupation
numbers 〈na

p〉 ≡ 〈np〉 are therefore the same for neutral and
charged particles. The summation over discrete levels can be
substituted by the integration in the thermodynamic limit:

∑
p

. . . ∼= V

2π2

∫ ∞

0
p2dp . . . . (32)

The fluctuations and correlations in the GCE, CE, and MCE
are very different; nevertheless they can be expressed in terms
of the fluctuations of the occupation numbers of a single
momentum level in the GCE:〈(


na
p

)2〉
GCE ≡ va 2

p = 〈np〉(1 + γ 〈np〉). (33)

This is a main advantage of the microcorrelator method. It
allows for calculating the fluctuations and correlations using
the following microcorrelators [18]:

〈

na

p
nb
k

〉
GCE = va 2

p δpk δab, (34)

〈

na

p
nb
k

〉
CE = va 2

p δpk δab − qaqb
va 2

p vb 2
k∑

p,a va 2
p qα2

, (35)

〈

na

p
nb
k

〉
MCE = va 2

p δpk δab − va 2
p vb 2

k

|A|

×
[
qaqb

∑
p,a

va 2
p ε2

p + εpεk

∑
p,a

va 2
p qα2

]
,

(36)

where δpk and δab are the Kronecker delta symbols, qa , qb are
particle charges, ±1 or 0, and

|A| ≡
(∑

p,a

va 2
p ε2

p

)
×

(∑
p,a

va 2
p qα2

)
(37)

is the correlation determinant.
The variance and correlations in the GCE, CE, and MCE

are calculated as the sums (integrals) over momentum of the
corresponding microcorrelators (34)–(36):

〈(
Na)2〉 =
∑
p,k

〈

na

p
na
k

〉
, 〈
Na 
Nb〉 =

∑
p,k

〈

na

p
nb
k

〉
.

(38)
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One obtains for Bosons:

ω± Bose
GCE =

∑
p v2

p∑
p〈np〉

∼=
∫ ∞

0 p2dpep/T (ep/T − 1)−2∫ ∞
0 p2dp(ep/T − 1)−1

= π2

6 ζ (3)
∼= 1.368, (39)

ω± Bose
CE =

∑
p v2

p∑
p〈np〉 −

(∑
p v2

p

)2

∑
p〈np〉

∑
p,a v2

p qα2

=
∑

p v2
p

2
∑

p〈np〉 = 1

2
ω± Bose

GCE
∼= 0.684, (40)

ω± Bose
MCE =

∑
p v2

p∑
p〈np〉 −

(∑
p v2

p

)2

∑
p〈np〉

∑
p,a v2

p qα2

−
(∑

p v2
p εp

)2

∑
p〈np〉

∑
p,a v2

p ε2
p

= π2

12 ζ (3)
− 45 ζ (3)

2 π4
∼= 0.407, (41)

where ζ (3) ∼= 1.202 is the zeta Riemann function. In calculat-
ing Eq. (41), we use 〈na

p〉 ≡ 〈np〉 and v+ 2
p = v− 2

p = v0 2
p ≡ v2

p

for a neutral system. This gives
∑

p,a va 2
p qa 2 = 2

∑
p v2

p and∑
p,a va 2

p ε2
p = 3

∑
p v2

p ε2
p. Similarly, one can get the results

for Fermions:

ω± Fermi
GCE = π2

9 ζ (3)
∼= 0.912, (42)

ω± Fermi
CE = 1

2
ω± Fermi

GCE
∼= 0.456, (43)

ω± Fermi
MCE = π2

18 ζ (3)
− 135 ζ (3)

7 π4
∼= 0.218. (44)

The scaled variances for neutral particles are as follows:

ω0 Bose
GCE = ω0 Bose

CE = ω± Bose
GCE

∼= 1.368,
(45)

ω0 Fermi
GCE = ω0 Fermi

CE = ω± Fermi
GCE

∼= 0.912,

ω0 Bose
MCE = π2

6 ζ (3)
− 45 ζ (3)

2 π4
∼= 1.091,

(46)

ω0 Fermi
MCE = π2

9 ζ (3)
− 135 ζ (3)

7 π4
∼= 0.674.

The correlation coefficients can be also calculated using the
microcorrelator method:

ρa b = 〈
Na 
Nb〉√
ωa × 〈Na〉 × ωb × 〈Nb〉

= 1√
ωa ωb

∑
p,k

〈

na

p
nb
k

〉
∑

p〈np〉 . (47)

There are no correlations between positively and negatively
charged particles in the GCE, ρ+−

GCE = 0, and there is the
absolute correlation in the CE and MCE, ρ+−

CE = ρ+−
MCE = 1.

These values are the same for any type of statistics. The
correlation between charged and neutral particles, ρ0− =
ρ0+ (12), is zero for the GCE and CE, but it has a negative value

for the MCE. The correlation coefficient ρ0−
MCE reads as follows:

ρ0−
MCE = − 1√

ω0 ω−

(∑
p v2

p εp

)2

3
∑

p〈np〉
∑

p v2
p ε2

p
. (48)

Equation (48) gives for Bosons and Fermions:

ρ0−Bose
MCE = −

√
2

[(
π6

135 ζ (3)2
−2

) (
π6

135 ζ (3)2
− 1

)]−1/2

∼= −0.417, (49)

ρ0−Fermi
MCE = −

√
2

[(
7π6

1215 ζ (3)2
−2

) (
7π6

1215 ζ (3)2
− 1

)]−1/2

∼= −0.621. (50)

The scaled variances and correlation coeffients for the
Boltzmann approximation can be obtained from Eqs. (41)
and (48) replacing γ = 0 in Eq. (31):

ω± Boltz
GCE = 1, ω± Boltz

CE = 1
2 , ω± Boltz

MCE = 1
4 ,

(51)
ω0 Boltz

GCE = ω0 Boltz
CE = 1, ω0 Boltz

MCE = 3
4 ,

ρ0− Boltz
MCE = − 1√

3
∼= −0.577. (52)

They, of course, coincide with our previous results in
Eqs. (13), (14), (16), and (17) for the Boltzmann statistics.

One can conclude that Bose statistics always makes the
fluctuations bigger and that Fermi statistics always makes them
smaller: ωFermi < ωBoltz < ωBose, in all statistical ensembles
(GCE, CE, and MCE) and for all types of particles (positive,
negative, and neutral). The strongest effect for the neutral
system in equilibrium3 is for the scaled variance of charged
Bosons in the MCE: ω± Bose

MCE /ω± Boltz
MCE

∼= 1.6. The only correla-
tion coefficient that feels an influence of quantum statistics is
ρ0± in the MCE: ρ0±Fermi

MCE < ρ0±Boltz
MCE < ρ0±Bose

MCE < 0. However,
the quantum statistics does not change a sign of this correlation.
Thus, the main features of the GCE, CE, and MCE fluctuations
and correlations found in the Boltzmann approximation—
constant values of ω± and ω0 in the thermodynamic limit,
strong correlations, ρ+−

CE = ρ+−
MCE = 1, caused by the exact

charge conservation, and anticorrelation between neutral and
charged particles, ρ0±

MCE < 0, caused by the exact energy
conservation—remain the same for Bose and Fermi statistics.
The quantum statistics cannot simulate the MCE/sVF effects:
an increase of the scaled variances in proportion to the mean
multiplicities (26) and a strong positive correlation, ρ0±

α
∼= 1,

between neutral and charged particles (30). These new effects
take place because of the scaling volume fluctuations in the
MCE/sVF.

III. SEMI-INCLUSIVE MOMENTUM SPECTRA

In this section, single-particle momentum spectra of nega-
tively charged particles are considered. The inclusive spectra

3The effects of quantum statistics for fluctuations can be much
stronger at nonzero chemical potential. The scaled variance of Bosons
may rise up to infinity near the point of Bose condensation [19].
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are denoted as F (p), and the semi-inclusive at fixed N− are
denoted as F ∗(p). In both cases, the spectra are normalized to
unity:

∫ ∞
0 p2dpF (p) = 1 and

∫ ∞
0 p2dpF ∗(p) = 1.

A. GCE and CE

The inclusive and semi-inclusive momentum spectra in the
GCE and CE are equal and read as follows4:

FGCE(p) = F ∗
GCE(p) = FCE(p)

= F ∗
CE(p) = 1

2T 3
exp

(
−p

T

)
. (53)

This follows from the fact that a single-particle momentum
spectrum and the particle multiplicity are uncorrelated in these
ensembles.

B. Microcanonical ensemble

The inclusive single-particle momentum spectrum of neg-
atively charged particles in the MCE reads as follows:

FMCE(p) = 1

N

1

2E3

∞∑
N0=0

∞∑
N−=1

N−(3N0 + 6N− − 1)!

(3N0 + 6N− − 4)!

×
(

1 − p

E

)3N0+6N−−4
PMCE(N0, N−); (54)

see also Ref. [8]. The spectrum (54) approximately has the
Boltzmann form (53) at momenta p significantly smaller than
the total system energy E. However, large deviations from
Eq. (53) are observed close to the threshold, p = E, where the
MCE spectrum approaches zero. The inclusive spectra F (p)
in the GCE, CE (53), and MCE (54) are shown in Fig. 1(b).

The semi-inclusive momentum spectrum at a fixed number
of negatively charged particles is given by

F ∗
MCE(p) = C

2E3

∞∑
N0=0

(3N0 + 6N− − 1)!

(3N0 + 6N− − 4)!

×
(

1 − p

E

)3N0+6N−−4
PMCE(N0, N−), (55)

where N− � 1 and C = [
∑

N0
PMCE(N0, N−)]−1 is the nor-

malization factor. Examples of the F ∗
MCE(p) spectrum for three

values of N− are shown in Fig. 4(c). The semi-inclusive spectra
in the MCE (55) have the Boltzmann form for p 
 E,

F ∗
MCE(p) ∼= 1

2T ∗3
MCE

exp

(
− p

T ∗
MCE

)
, (56)

and the inverse slope parameter T ∗
MCE depends on N−. This

dependence is presented in Fig. 5 for the MCE and other
ensembles studied here. In the GCE and CE, the T ∗ is
independent of N− and equal to the inverse slope parameter of
the inclusive spectrum, T ∗

GCE = T ∗
CE = T = 160 MeV. In the

4This is true for the Boltzmann statistics used here. The form
of momentum spectrum in the CE becomes different from that
in the GCE for quantum gases in finite volumes. For the isospin
conservation, this was demonstrated in Ref. [20].

MCE, the inverse slope parameter decreases with increasing
N− and it crosses the line T = 160 MeV at N− = N . Thus, the
inclusive momentum spectrum FMCE(p) (54) coincides with
the semi-inclusive one, F ∗

MCE(p) (55), at the crossing point.

C. MCE with scaling volume fluctuations

The inclusive single-particle momentum spectrum in the
MCE/sVF equals

Fα(p) = 1

N

1

2E3

∞∑
N0=0

∞∑
N−=1

N−(3N0 + 6N− − 1)!

(3N0 + 6N− − 4)!

×
(

1 − p

E

)3N0+6N−−4
Pα(N0, N−). (57)

The structure of Eq. (57) is the same as the structure of the
corresponding Eq. (54) for the MCE. The only difference is in
the form of the multiplicity distribution; namely, Pα(N0, N−)
is used in Eq. (57) instead of PMCE(N0, N−) in Eq. (54). The
inclusive spectrum Fα(p) is shown in Fig. 1(b). It can be well
approximated by the power-law dependence:

Fα(p) ∼= kk�(k + 4)

2�(k)
T k+1 (p + T k)−k−4

∼= 11.27 GeV5 (p + 4T )−8, (58)

where k = 4 is used in the last expression (see Ref. [8]).
The semi-inclusive momentum spectrum in the MCE/sVF

reads as follows:

F ∗
α (p) = C

2E3

∞∑
N0=0

(3N0 + 6N− − 1)!

(3N0 + 6N− − 4)!

×
(

1 − p

E

)3N0+6N−−4
Pα(N0, N−), (59)

where C = [
∑

N0
Pα(N0, N−)]−1. The spectrum F ∗

α (p) is
plotted in Fig. 4 for several values of N−. Similar to the MCE
spectrum (56), the MCE/sVF one can be approximated as
follows:

F ∗
α (p) ∼= 1

2T ∗3
α

exp

(
− p

T ∗
α

)
, (60)

with the inverse slope parameter T ∗
α . The dependence of T ∗

α

on N− is shown in Fig. 5(d). The MCE/sVF temperature T ∗
α

decreases with increasing N−. For N− = N , the inverse slope
parameter T ∗ is the same in the MCE and MCE/sVF and
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(a)

(c) (d)

(b)

FIG. 4. (Color online) Examples of
the semi-inclusive momentum spectra of
negatively charged particles calculated
within the GCE (a), CE (b), MCE (c),
and MCE/sVF (d) for three values of N−.
The distributions are calculated assuming
N = 10 and T = 160 MeV (see text for
details).

equals the parameter T in the GCE and CE. The analytical
approximations of the dependence of T ∗ on N− in the MCE
and MCE/sVF are presented in Appendix C.

IV. COMPARISON WITH DATA

A quantitative comparison of the discussed statistical
models with the experimental data requires a significant

FIG. 5. (Color online) The depen-
dence of the inverse slope parameter of
the momentum spectra on the multiplic-
ity of negatively charged particles N−
calculated within the GCE (a), CE (b),
MCE (c), and MCE/sVF (d). The distri-
butions are calculated assuming N = 10
and T = 160 MeV (see text for details).
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FIG. 6. (Color online) The mean mul-
tiplicity of neutral particles (a) and
the transverse momentum of negatively
charged particles (b) as a function of
the multiplicity of negatively charged par-
ticles. The experimental data on p + p

interactions at 205 GeV/c [23] (a) and
[24] (b) are indicated by closed circles.
The predictions of the GCE, CE, MCE, and
MCE/sVF are shown by the lines. The cal-
culations are performed assuming N = 3
and T = 160 MeV (see text for details).

additional effort, which is far beyond the scope of this article. In
particular, one should introduce proper degrees of freedom and
all related conservation laws as well as a longitudinal collective
motion of matter. Nevertheless, a qualitative comparison seems
to be useful already, and consequently, it is presented in this
section.

An excellent review of the experimental data on semi-
inclusive properties of p + p interactions at high energies can
be found in Ref. [21]. The volume scaling function as well
as the value of the temperature parameter used in this work
in quantitative calculations were selected to approximately
reproduce the results on the inclusive distributions in p + p

interactions. Consequently, a comparisons between these data
and the model results is justified. Clearly, as the influence of
global conservation laws is crucial for the considered statistical
approaches, the data referring to the semi-inclusive properties
measured in the full phase space are of primary importance.
Several features of these data are well established [21]. Two of
them are relevant for the comparison with the models discussed
here, namely:

(i) the mean multiplicity of produced π0 mesons increases
with increasing multiplicity of negatively charged
particles and

(ii) the average transverse momentum of negatively
charged particles decreases with increasing multiplicity
of these particles.

Property (ii) needs several comments. First, it is well es-
tablished experimentally [21] for charged hadron multiplicity
and mean transverse momentum measured in full phase space
in p + p interactions at 6.6–400 GeV/c. Clearly, the full
phase-space results are relevant when effects related to the
global conservation laws are of interest. Second, the mean
transverse momentum increases with increasing multiplicity
when midrapidity values are considered [22]. An interpretation
of this dependence is, however, beyond the scope of this article.

For the purpose of the comparison between considered
models and data, the mean transverse momentum was cal-
culated as follows:

〈pT 〉∗ = 2
∫ ∞

0
dpT p2

T

∫ ∞

−∞
dypT F ∗(p)

∼= 1

T ∗3

∫ ∞

0
dpT p2

T

∫ ∞

−∞
dypT exp

(
−pT cosh y

T ∗

)

= 3π

4
T ∗ ∼= 2.36 T ∗. (61)

The mean multiplicity of neutral particles calculated within
the models was identified with the mean π0 multiplicity.

The model predictions are summarized in Fig. 6. In the
GCE and CE, 〈N0〉∗ and 〈pT 〉∗ are independent of N−. The
MCE reproduces property (ii) but leads to a decrease of mean
multiplicity 〈N0〉∗ with increasing N−. Both features (i) and
(ii) are qualitatively reproduced in the MCE/sVF.

V. SUMMARY

Semi-inclusive distributions for the system of neutral and
charged massless particles with net charge equal to zero are
considered in the grand canonical, canonical, and microcanon-
ical ensembles and in the MCE/sVF. The MCE/sVF has been
included in this study as it is the only statistical ensemble that
reproduces the KNO scaling of multiplicity distributions and
the power-law behavior of the inclusive transverse momentum
spectra measured in p + p interactions. The mean multiplicity
of neutral particles and momentum spectra of charged particles
are calculated at fixed charged-particle multiplicity N−.
Different statistical ensembles lead to qualitatively different
results for these semi-inclusive quantities even in the large
volume limit. In other words, the semi-inclusive quantities
can be different in different statistical ensembles despite the
ensemble thermodynamical equivalence.

The obtained model predictions are compared with the
experimental data on p + p inelastic interactions at high
energies. The MCE/sVF follows the trends observed in the
data. This demonstrates the role of volume fluctuations in the
system with exact energy and charge conservation. However,
the detailed comparison with the experimental data is far
beyond the scope of this article. The conclusive comparison
with the experimental results would require inclusion of
several neglected effects in the statistical model calculations.
In particular, the hadron masses and quantum numbers, isospin
symmetry, quantum statistics, and resonance decays should be
taken into account.
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APPENDIX A

The bivariate normal approximation (9) of PMCE(N0, N−)
can be derived as follows. Equation (5) can be rewritten as
follows:

�N0,N− (E,V ) = 1

E
exp[f (N0, N−)], (A1)

where

f (N0, N−) = (N0 + 2N−) ln[A] − ln[N0!] − 2 ln[N−!]

− ln[(3N0 + 6N− − 1)!] (A2)

and A = V E3/π2. Using the Stirling formula, ln(N !) ∼=
(N + 1/2) ln(N ) − N + ln(2π )/2 at N � 1, the right-hand
side of Eq. (A2) can be expanded with respect to N0 and
N− near the maximum of f . Then, the mean multiplicities
can be calculated from the condition ∂f/∂N0 = ∂f/∂N− = 0.
Second derivatives of f with respect of N0 and N− at the point
of maximum are as follows:

∂2f

∂N2
0

∼= − 2

N
,

∂2f

∂N2−
∼= − 6

N
,

∂2f

∂N0 ∂N−
∼= − 2

N
, (A3)

and Eq. (9) follows.

APPENDIX B

Using the approximation (9), the integration over y can be
done analytically. Then the joint N0 and N− distribution in the
MCE/sVF reads as follows:

Pα(N0, N−) ≡
∫ ∞

0
dyPMCE(N0, N−)ψα(y) ∼= kk

�(k)

2
√

2

π N

(
N2

0 + 2N0N− + 3N2
−

6N
2 + N k

)(k−1)/2

× exp(4N0 + 8N−)K1−k

[
2

√(
6 + k

N

) (
N2

0 + 2N0N− + 3N2−
)]

, (B1)

where K1−k is the Bessel function of the second kind. Equa-
tion (B1) can be simplified using the asymptotic expansion:

K1−k(x)

=
√

π

2 x
e−x

[
1 + 4k2 − 8k + 3

8

1

x
+ O(x−2)

]
, x � 1.

(B2)

Consequently,

Pα(N0, N−)

� kk

�(k)

1√
π N

(
N2

0 + 2N0N− + 3N2
−

6N
2 + N k

)(k−1)/2

× 1√
N0 + 2N−

exp

[
− k

N0 + 2N−
3N

− (N0 − N−)2

3N−

]
.

(B3)

APPENDIX C

In the MCE with a fixed multiplicity N−, the system tem-
perature T ∗

MCE can be found as follows. The mean multiplicity
of neutral particles equals 〈N∗

0 〉MCE = V T ∗3
MCE/π2, and their

average energy is 〈E∗
0 〉MCE = 3T ∗

MCE〈N∗
0 〉MCE. Thus, the total

energy reads as follows:

3V T ∗ 4
MCE

π2
+ 6 N− T ∗

MCE = E. (C1)

The first term in the left-hand side of Eq. (C1) corresponds
to the average energy of neutral particles and the second term

to that of charged particles. For the multiplicity of negatively
charged particles close to the mean multiplicity, one can solve
approximately Eq. (C1) with respect to temperature. Denoting
δN− = N− − N and δT = T − T ∗

MCE, the solution reads as
follows:

δT ∼= −T
δN−

2N + N
(C2)

or

T ∗
MCE

∼= T

(
4

3
− N−

3N

)
. (C3)

Consequently, one gets

〈N∗
0 〉MCE = 1

π2
V T ∗3

MCE
∼= N

(
4

3
− N−

3N

)3

. (C4)

In the MCE/sVF at fixed N−, one finds

3T ∗
α 〈N∗

0 〉α + 6 N− T ∗
MCE = E. (C5)

Using Eq. (30), this gives

T ∗
α

∼= T
N

N−
. (C6)
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[9] V. V. Begun, M. Gaździcki, M. I. Gorenstein, and O. S. Zozulya,
Phys. Rev. C 70, 034901 (2004).

[10] V. V. Begun, M. I. Gorenstein, A. P. Kostyuk, and O. S. Zozulya,
Phys. Rev. C 71, 054904 (2005); V. V. Begun, L. Ferroni, M. I.
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