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We analyze experimental data obtained for the mass distribution of fission fragments in the reactions 36S + 238U
and 30Si + 238U at several incident energies, which were performed by the Japan Atomic Energy Agency (JAEA)
group. The analysis of the mass distribution of fission fragments is a powerful tool for understanding the
mechanism of the reaction in the heavy and superheavy-mass regions. Using the dynamical model with the
Langevin equation, we precisely investigate the incident energy dependence of the mass distribution of fission
fragments. This study is the first attempt to treat such experimental data systematically. We also consider the fine
structures in the mass distribution of fission fragments caused by the nuclear structure at a low incident energy. It
is explained why the mass distribution of fission fragments has different features in the two reactions. The fusion
cross sections are also estimated.
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I. INTRODUCTION

The aims of the research of nuclei in the superheavy-mass
region are to find new magic numbers next to Z = 82 and
N = 126 and to verify the existence of the “Island of Stability”
[1]. Moreover, such investigations resulted in the discovery
of new elements [2–4]. In the superheavy-mass region, since
the fission barrier of the liquid drop model is zero or almost
zero, the effect of shell-correction energy is pronounced. The
estimated shell-correction energies at the ground state and the
fission barrier heights are strongly connected to the stability
of superheavy elements.

In a heavy-ion reaction, the shell-correction energy affects
the dynamics of the fusion-fission process at a low incident
energy. When colliding partners have a strong shell structure
the fusion probability is increased [5,6]. In a cold fusion
reaction with a Pb or Bi target [3,4] it is recognized that
the effect of the nuclear structure leads to a compound
nucleus [7,8]. Among the fission fragments obtained from the
reaction with 48Ca projectile and actinide targets there are
some enhanced productions at or close to the magic nuclei Pb
or Sn [9]. These facts suggest that the shell structure plays
an important role in the low-energy fusion-fission process in
the superheavy-mass region. In addition, in the fusion reaction
using an actinide target, the deformation of the nuclei affects
the fusion probability [10,11].

In such nuclear collisions, we can observe various types of
reactions simultaneously, for example, deep-inelastic collision
(DIC), quasifission (QF) reaction, fusion-fission (FF) reaction,
and the production of the evaporation residue (EVR) nuclei.
The clarification of these mechanisms is very important for
obtaining an overall understanding of the reaction processes.
Moreover, such studies are strongly connected to the synthesis
of new elements.

The evaporation residue cross section of superheavy el-
ements is extremely small. Nevertheless, a large amount
of experimental data is available, including the mass and
total kinetic energy (TKE) distributions of fission fragments,
angle distribution, charge distribution, and prescission neutron

multiplicity. First, using a lot of available experimental data,
we verify the validity of our model and establish a reliable
model to describe the fusion-fission process.

Our Flerov Laboratory of Nuclear Reactions (FLNR)
theoretical group recently developed a calculation model that
can treat all reaction processes in heavy- and superheavy-mass
regions, the so-called unified model, which was applied to
several types of reactions [12–14]. The unified model implies
a unified dynamical approach and unified multidimensional
potential energy. We take into account the time evolution
from the diabatic potential to the adiabatic potential [15]. We
connect the diabatic potential and adiabatic potential with a
weight function on the relaxation time τ . We then perform a
trajectory calculation on the time-dependent unified potential
energy surface using the Langevin equation.

Here, we mainly analyze the experimental data obtained
for the mass distribution of fission fragments (MDFF) in
the reactions 36S + 238U and 30Si + 238U at several incident
energies, which were measured by the Japan Atomic Energy
Agency (JAEA) group [16,17]. The analysis of the MDFF
is a powerful tool for investigating the mechanism of the
reaction in the heavy-mass and superheavy-mass regions.
These experimental data are very important because these
reactions are in the intermediate region between the reactions
48Ca + 208Pb and 48Ca + 238U; in the former reaction mass-
symmetric fission events are dominant, while in the latter
reaction mass-asymmetric fission events are dominant [9].
In the reaction 36S + 238U, we can see that the ratio of Pb
fragments to mass-symmetric fission fragments decreases with
increasing incident energy. The shell-correction energy actu-
ally depends on the excitation energy or nuclear temperature,
which disappears at high temperature. However, at the incident
energy of Ec.m. = 166.0 MeV (corresponding to the excitation
energy of the compound nucleus E∗ = 51.5 MeV), a large
number of Pb fragments can still be measured. This is evidence
that the shell structure remains at such an excitation energy.

Using the dynamical model, we precisely investigate the
incident energy dependence of MDFF. This study is the first
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attempt to treat such experimental data systematically. We also
consider the fine structures in the MDFF caused by the shell
structure at a low incident energy. In the reaction 30Si + 238U,
there are two peaks at approximately A = 90 and 178 at a
low incident energy, which do not correspond to nuclei with a
closed shell. Using our model, we analyze the data obtained
from this reaction in an attempt to understand the origin of
these peaks.

The MDFF obtained from the experimental data includes
contributions originating from the FF process and the QF
process. We calculate the capture cross section σcap and
the fusion cross section σfus and compare them with the
experimental data. Experimentally, the fusion cross section is
derived from counting the mass-symmetric fission events [9],
which we here call the mass-symmetric fission cross section
σA/2±20. In the theoretical calculation, however, sometimes
σfus is 1 or 2 orders of magnitude smaller than σA/2±20 in
the superheavy-mass region. The discrepancy between the
experimentally and theoretically estimated values is discussed
very often, but the problem has not been solved yet. In this
study, we attempt to clarify the discrepancy.

In Sec. II, we briefly explain our framework in this study
and the model. We show the calculation results of the MDFF
in the reactions 36S + 236U and 30Si + 236U at several incident
energies in Sec. III. In Sec. IV, we discuss the reason why
the shape of the MDFF for both reactions are different from
each other at the low incident energy. The general features and
fine structures of the MDFF are investigated by analyzing the
landscape of the potential energy surface and the behaviors
of the trajectories. The results in the reaction 31P + 236U are
presented in Sec. V. In Sec. VI, we present a summary of this
study and further discussion.

II. MODEL

Mainly, we focus our attention on the dynamics of the FF
process in the superheavy-mass region. In the experimental
data for the mass and TKE distribution of fission fragments,
each reaction type (FF process, QF process, DIC, elastic
scattering, etc.) appears simultaneously and the reactions
are coupled with each other. Therefore, we apply a unified
dynamical approach and unified multidimensional potential
energy, which were proposed by Zagrebaev and Greiner
[12,13]. We perform a trajectory calculation on the potential
energy surface. Thus, the whole evolution of the heavy nuclear
system can be traced starting from the infinite distance between
the projectile and target to the end of each process.

We apply a new method for the calculation of the
multidimensional potential energy using the extended two-
center shell model [15]. We take into account the time
evolution from the diabatic potential Vdiab(q) to the adiabatic
potential Vadiab(q), here q denotes the collective coordinates
of nuclear deformation. The diabatic potential is calculated
by the folding procedure with an effective nucleon-nucleon
interaction [12,13,15]. As shown in Fig. 4 in Ref. [12], we
can see the “potential wall” in the overlap region of the
colliding system. We use the adiabatic potential energy of the
nuclear system calculated using the two-center shell model.
We connect the diabatic potential and adiabatic potential with

a weight function as follows:

V = Vdiab(q)f (t) + Vadiab(q)[1 − f (t)],
(1)

f (t) = exp

(
− t

τ

)
.

Here, t is the time of interaction and f (t) is a weight
function on the relaxation time τ . We use the relaxation time
τ = 10−21 sec, which was suggested in Ref. [18].

As the coordinates of nuclear deformation, we use the two-
center parametrization [19,20] and employ three parameters
as follows: z0 (distance between two potential centers), δ

(deformation of fragments), and α (mass asymmetry of the
colliding nuclei); α = (A1 − A2)/(A1 + A2), where A1 and
A2 denote the mass numbers of the target and the projectile,
respectively [21]. The parameter δ is defined as δ = 3(a −
b)/(2a + b), where a and b denote the half-length of the axes of
the ellipse in the z0 and ρ direction, respectively, as expressed
in Fig. 1 in Ref. [19]. We assume that each fragment has the
same deformations as the first approximation. δ is related to
the deformation parameter β2, which is familiar to us as

β2 = δ√
5

16π
(3 − δ)

, (2)

here δ < 1.5 because of a > 0 and b > 0. To save computa-
tional time we use scaling and employ the coordinate z. The
coordinate z is defined as z = z0/(RCNB), where RCN denotes
the radius of the spherical compound nucleus. The parameter
B is defined as B = (3 + δ)/(3 − 2δ).

In the two-center parametrization, the neck parameter is
denoted by ε and is different in the entrance and exit channels
[15]. Therefore, we employ ε = 1 for the entrance channel
and ε = 0.35 for the exit channel to describe a realistic
nuclear shape. We introduce the time-dependent potential
energy surface in terms of ε using the relaxation time for ε

of τε = 10−20 sec [22], as follows:

Vadiab = Vadiab(q, ε = 1)fε(t)

+Vadiab(q, ε = 0.35)[1 − fε(t)], (3)

fε(t) = exp

(
− t

τε

)
.

We then perform the trajectory calculation on the time-
dependent unified potential energy using the Langevin-type
equation [12,13,21].

The nucleon transfer for slightly separated nuclei is some-
what possible. Such an intermediate nucleon exchange plays
an important role in the fusion process at the incident energy
near and below the Coulomb barrier. Before both nuclei come
in contact, we treat the nucleon transfer using the producer
described in Refs. [12,13] as

dα

dt
= 2

ACN
D

(1)
A (α) + 2

ACN

√
D

(2)
A (α)	α(t), (4)

where the detail is explained in Refs. [12,13].
After the window of the touching nuclei opens sufficiently

(hereafter “the mononucleus state”), the treatment of the
evolution of the mass-asymmetric parameter α switches from
the use of Eq. (4) to the use of the Langevin equation
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with the procedure described in Ref. [21]. Therefore, the
multidimensional Langevin equation [12,21] is given as

dqi

dt
= (m−1)ijpj ,

dθ

dt
= �

µRR2
,

dϕ1

dt
= L1

�1
,

dϕ2

dt
= L2

�2
,

dpi

dt
= −∂V

∂qi

− 1

2

∂

∂qi

(m−1)jkpjpk − γij (m−1)jkpk

+ gijRj (t),

d�

dt
= −∂V

∂θ
− γtang

(
�

µRR
− L1

�1
a1 − L2

�2
a2

)
R (5)

+RgtangRtang(t),

dL1

dt
= − ∂V

∂ϕ1
+ γtang

(
�

µRR
− L1

�1
a1 − L2

�2
a2

)
a1

− a1gtangRtang(t),

dL2

dt
= − ∂V

∂ϕ2
+ γtang

(
�

µRR
− L1

�1
a1 − L2

�2
a2

)
a2

− a2gtangRtang(t),

where a summation over repeated indices is assumed. For
the separated nuclei, qi denotes the deformation coordinate
specified by z and δ and to treat the evolution of α we
use Eq. (4). For the mononucleus, qi denotes the coordinate
specified by z, δ, and α, and we do not use Eq. (4) for α. pi is
the conjugate momentum of qi . V is the potential energy.

θ and � are the relative orientation of nuclei and relative
angular momentum, respectively. ϕ1 and ϕ2 are the angles
of rotation of the nuclei in the reaction plane (their momen-
tums of inertia and angular momentums are �1,2 and L1,2,
respectively), a1,2 = R/2 ± (R1 − R2)/2 are the distances
from the centers of the fragments up to the middle point
between nuclear surfaces, and R1,2 are the nuclear radii. R

is the distance between the nuclear centers (see Fig. 8 in
Ref. [12]). The total angular momentum L = � + L1 + L2

is conserved. µR denotes the reduced mass. γtang is the friction
force in the tangential direction of colliding nuclei. We are
interested mainly in the reaction at near-barrier energies. The
rotation of heavy nuclei is rather slow and orientation effects
are remarkable. The orientation effects are affected by the
initial orientations of statically deformed nuclei. Therefore,
in Refs. [12,13], Eq. (4) was solved numerically assuming
∂V
∂ϕ1

= ∂V
∂ϕ2

= 0. However, in this study we assume the nose-to-
nose collision as a first approximation. We restrict ourselves to
a nose-to-nose geometry of the colliding nuclei, that is, we take
the line connecting the centers of mass of the two colliding
nuclei as the common symmetry axis for their deformation.

mij and γij are the shape-dependent collective inertia
parameter and friction tensor, respectively. For separated
nuclei, we use the reduced mass and the phenomenological
friction forces with the Woods-Saxon radial form factor, which
is described in Refs. [12,13]. We switch the phenomenological
friction to the friction for mononucleus using the smoothed
function [12,13]. For the mononucleus, the wall-and-window
one-body dissipation is adopted for the friction tensor and
a hydrodynamical inertia tensor is adopted in the Werner-

Wheeler approximation for the velocity field [23–25]. The
normalized random force Ri(t) is assumed to be white noise,
that is, 〈Ri(t)〉 = 0 and 〈Ri(t1)Rj (t2)〉 = 2δij δ(t1 − t2). The
strength of random force gij is given by γijT = ∑

k gij gjk ,
where T is the temperature of the compound nucleus calculated
from the intrinsic energy of the composite system.

The adiabatic potential energy is defined as

Vadiab(q, L, T ) = VLD(q) + h̄2L(L + 1)

2I (q)
+ VSH(q, T ), (6)

VLD(q) = ES(q) + EC(q), (7)

VSH(q, T ) = E0
shell(q)�(T ), (8)

�(T ) = exp

(
−E∗

Ed

)
, (9)

where I (q) is the moment of inertia of a rigid body at
deformation q. VLD and VSH are the potential energy of the
finite-range liquid drop model and the shell-correction energy
taking into account the temperature dependence. E0

shell is the
shell correction energy at T = 0. The temperature dependent
factor �(T ) is discussed in Ref. [26], where E∗ denotes the
excitation energy of the compound nucleus. The shell damping
energy Ed is chosen as 20 MeV, which is given by Ignatyuk
et al. [27].

ES and EC denote a generalized surface energy [28] and
Coulomb energy, respectively. The centrifugal energy arising
from the angular momentum L of the rigid body is also
considered. The detail is explained in Ref. [21]. The intrinsic
energy of the composite system Eint is calculated for each
trajectory as

Eint = E∗ − 1
2 (m−1)ijpipj − V (q, L, T ). (10)

E∗ is given by E∗ = Ec.m. − Q, where Q and Ec.m. denote
the Q-value of the reaction and the incident energy in the
center-of-mass frame, respectively. Each trajectory starts from
a sufficiently large distance between both nuclei.

The capture and fusion cross sections are calculated as
follows:

σcap = πh̄2

2µ0Ec.m.

∞∑
�=0

(2� + 1)T�(Ec.m., �), (11)

σfus = πh̄2

2µ0Ec.m.

∞∑
�=0

(2� + 1)PCN(Ec.m., �), (12)

where µ0 denotes the reduced mass in the entrance channel.
T�(Ec.m., �) is the capture probability of the �th partial wave.
PCN(Ec.m., �) is the probability of forming a compound nuclei
in competition with QF events. The method used to estimate
the probabilities T�(Ec.m., �) and PCN(Ec.m., �) by a dynamical
calculation is explained in the next section.

III. INCIDENT ENERGY DEPENDENCE OF MASS
DISTRIBUTION OF FISSION FRAGMENTS

A. Reaction of 36S + 238U

The fragment mass distributions for fission after a full
momentum transfer were measured by the JAEA group for the
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FIG. 1. (Color online) Mass distributions of fission fragments in
the reaction 36S + 238U. Experimental data and calculation results are
denoted by circles [16] and histograms, respectively. Fusion-fission
events correspond to shaded areas.

reaction 36S + 238U at several bombardment energies around
the Coulomb barrier [16]. Figure 1 shows the MDFF at Ec.m. =
176.0 (E∗ = 61.5) MeV, Ec.m. = 166.0 (E∗ = 51.5) MeV,
and Ec.m. = 154.0 (E∗ = 39.5) MeV, which are denoted by
circles. At the high incident energy, the mass-symmetric fission
fragments are dominant. Nevertheless, at the low incident
energy, the mass-asymmetric fission fragments are dominant.
We can observe Pb fragments, which have a strong nuclear
structure.

Since the nuclei of the actinides are prolately deformed, the
Coulomb barrier height depends on the orientation of the target
nuclei and reactions start from different configurations with
the nuclei in contact. The two extreme cases are collisions at
the poles and equator of the target nucleus. At a low projectile
energy, nuclear contact only occurs in polar collisions, whereas
at a higher energy, nuclear contact also occurs in equatorial
collisions [10,11].

As a first approximation, we start the calculation for the
spherical-spherical configuration at the high incident energy.
Since all configurations are possible at the high incident
energy, we use this assumption when considering average
configurations. At the low incident energy, we take the initial
condition as a collision with the pole of the target 238U
nucleus, whose deformation is β2 = 0.215 (δ ∼ 0.2) [29].
Actually, it is difficult to calculate the adiabatic potential
energy for subsequent shapes of a nuclear system starting
from the configuration of two touching deformed nuclei with
arbitrary orientation and up to nearly spherical compound
nuclei.

The calculation results are denoted by histograms in Fig. 1.
At the incident energies E∗ = 61.5 MeV and E∗ = 51.5 MeV,
we start the calculation for the spherical-spherical configura-
tion. With the low incident energy, E∗ = 39.5 MeV, as the
initial condition we consider the polar collision of the target.
We use the relaxation times τ = 10−21 sec and τε = 10−20 sec,
which are mentioned earlier. The temperature dependence
of the shell-correction energy is taken into account. The
calculations are normalized to agree with the experimental
data in the mass-symmetric fission region. The trend of the
experimental data, that is, the incident energy dependence of
the MDFF, is reproduced by the calculation. However, there
is a discrepancy for the very asymmetric mass region (above
around A = 210 and below 40 or 50).

The MDFF in the experimental data includes only fission
events and does not include the elastic and/or nucleon-transfer
events, or deep inelastic components. In the experiment, fission
events can be separated clearly from the elastic and/or nucleons
transfer events as we can see in Fig. 1(c) of Ref. [16]. The
mass distribution was obtained by using events entering in
the “fission”-gate in Fig. 1(c). In addition, the fission events
followed by the nucleon-transfer were removed in the off-line
analysis by using the information on the fragment emission
angle. That is, the experimental spectra include fission events
when the momentum of the projectile is fully transferred
to the system. However, the calculation was included in all
processes. Therefore, the calculation results do not agree with
the experimental data at a very asymmetric mass region.

The calculation and experimental data at the low incident
energy show the peak around A = 200 in the MDFF. It
seems that this peak originated from the shell effects, as R.
Kalpakchieva et al. pointed out [30]. We precisely discuss the
mechanism creating this peak in Sec. IV B.

Contrary to this idea, Kratz et al. explained this peak
using another reason [31]. They carried out the experiment
using a radiochemical procedure. In this case, products may
be accumulated near the A = 200 region as α-decaying
descendants of the nuclei around 238U, produced by nuclear
transfer reactions. However, the experimental data by Nishio
were obtained by the in-beam experiment using detectors [16].
In this case, such decaying products cannot enter in the
spectrum.

In the experiment, the cross sections for the full momentum
transfer fission (σfiss) are shown in Fig. 2 as a function of the
incident energy [16]. The cross sections are almost equal to
those of the projectiles captured inside the Coulomb barrier.
The calculation results for the capture cross section σcap
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FIG. 2. (Color online) Excitation function of σcap, σA/2±20, and
σfus in the reaction 36S + 238U. Experimental data of σfiss are denoted
by circles [16].

and fusion cross section σfus are denoted by black and red
lines, respectively. To estimate the cross sections, we start the
calculation for the spherical-spherical configuration as a first
approximation. The calculation using the Langevin equation is
a classic one, therefore, we obtain the cross sections above the
Bass barrier region (V Bass

c.m. = 158.8 MeV) [32]. We calculate
the capture cross section using the procedure in Refs. [9,33], in
which the capture cross sections were derived by counting the
events within a frame using a two-dimensional matrix of counts
as a function of the mass and TKE. The calculated fusion cross
section σfus is derived from the trajectory crossing the fusion
region. We define the fusion region as the inside of the fission
barrier in the three-dimensional coordinate space [21]. The
blue line in Fig. 2 denotes the cross section σA/2±20, which
derives from the yield of mass-symmetric fission fragments
whose mass number is greater than ACN/2 − 20 and less than
ACN/2 + 20, respectively. Here, ACN denotes the mass number
of the compound nucleus. The fusion cross section σfus is
1 or 2 orders of magnitude smaller than the cross section
σA/2±20. In the MDFF, we also plot the fusion events, which
are denoted by the shaded areas in Fig. 1. We can see that it is
possible to obtain the mass-symmetric fission events in the QF
process [21].

B. Reaction of 30Si + 238U

In the MDFF for the reaction 36S + 238U at the low incident
energy, mass-asymmetric fission events are dominant. We
can observe a peak near Pb fragments in Fig. 1. However,
in the reaction 30Si + 238U at the low incident energy, the
overall tendency and shape of the MDFF are different from
those in the reaction 36S + 238U. The MDFF in the reaction
30Si + 238U was also measured by the JAEA group [17]. In
Fig. 3, the experimental data at the incident energies Ec.m. =

FIG. 3. (Color online) Mass distributions of fission fragments in
the reaction 30Si + 238U. Experimental data and calculation results are
denoted by circles [17] and histograms, respectively. Fusion-fission
events correspond to shaded areas.

144.0 (E∗ = 50.5) MeV, Ec.m. = 134.0 (E∗ = 40.5) MeV, and
Ec.m. = 129.0 (E∗ = 35.5) MeV are denoted by circles. At
the low incident energy, E∗ = 35.5 MeV, mass-symmetric
fission events are dominant and three significant peaks appear
at A ∼ 90, 134, and 178. It is not obvious that the peaks at
A ∼ 90 and 178 correspond to nuclei with a strong nuclear
structure.

The calculation results are shown in Fig. 3 as histograms,
in which we use the same parameters as those in the reaction
36S + 238U. At the incident energies, E∗ = 51.5 MeV and
E∗ = 40.5 MeV, we start the calculation for the spherical-
spherical configuration. At the low incident energy, E∗ =
35.5 MeV, we take the initial condition as a collision with
the pole of the target 238U nucleus. The results at high and
low incident energies are in agreement with the tendencies
of the experimental data. The calculation results of the
capture cross section σcap, fusion cross section σfus, and
mass symmetric fission cross section σA/2±20 are denoted
by black, red, and blue lines in Fig. 4, respectively. We
obtain these cross sections performing the calculation for the
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FIG. 4. (Color online) Excitation function of σcap, σA/2±20, and
σfus in the reaction 30Si + 238U. Experimental data of σfiss are denoted
by circles [17].

spherical-spherical configuration as a first approximation. The
Bass barrier of this system is V Bass

c.m. = 141.1 MeV. σfus is
1 or 2 orders of magnitude smaller than the cross section
σA/2±20, which shows the same tendency as that in the
reaction 36S + 238U. We also plot the fusion events, which
are denoted by the shaded area in Fig. 3. It shows that mass-
symmetric fission events come from both the FF process and
QF process.

IV. ANALYSIS OF MASS DISTRIBUTION OF FISSION
FRAGMENTS AT LOW INCIDENT ENERGY

A. General features of mass distribution of fission fragments

The most interesting challenge is to understand the reason
why the shapes of the MDFF for the reactions 36S + 238U and
30Si + 238U are different from each other at the low incident
energy. The compound nuclei produced in each reaction (Z =
108 and 106) are intermediate systems between those produced
in the reactions 48Ca + 208Pb and 48Ca + 238U (Z numbers of
the compound nuclei are Z = 102 and 112, respectively); in
the former, mass-symmetric fission events are dominant and in

the latter, mass-asymmetric fission events are dominant, which
were measured by the FLNR group [9]. Thus, the reactions
36S + 238U and 30Si + 238U may correspond to transitional
systems from mass-symmetric fission to mass-asymmetric
fission.

In the reaction 30Si + 238U at a low incident energy, we
attempt to clarify the origin of the peaks at A ∼ 90, 134, and
178 in the MDFF. The MDFF is essentially governed by the
dynamics of the trajectory in the potential energy surface and
it is affected by the inertia mass, the friction, and the relaxation
times τ and τε . Though the MDFF is under the influence of
many factors, we try to find the main contributor to control the
fine structure and the general feature of the MDFF. The shape
of the MDFF is affected by the landscape of the potential
energy surface because the trajectories are affected by the
potential energy surface. The potential energy surface depends
on the temperature owing to the temperature dependence of
the shell-correction energy.

We first attempt to determine the effect of the potential
energy surface by calculating the MDFF using the potential
energy in the liquid drop model for the adiabatic potential
energy part and that with the full shell-correction energy,
which corresponds to the potential energy surface at T =
0 MeV. These potential energies are represented by VLD and
VLD + E0

shell, respectively. The results for VLD and VLD + E0
shell

in the reaction 36S + 238U at E∗ = 39.5 MeV are shown in
Figs. 5(a) and 5(b), respectively. The experimental data are
denoted by circles [16]. When we employ the potential energy
VLD, the general shape of the MDFF is convex as shown in
Fig. 5(a). Although the calculated MDFF does not reproduce
the peak due to Pb fragments, it represents the general trend of
the experimental data. Furthermore, when we use VLD + E0

shell,
peaks appear at A ∼ 80 and 180 as shown in Fig. 5(b) and
the overall trend does not correspond to the experimental
data.

We perform the same calculation for the reaction 30Si +
238U at E∗ = 35.5 MeV, and the results for VLD and VLD +
E0

shell are shown in Figs. 6(a) and 6(b), respectively. In this
reaction, when we use VLD, the calculated MDFF has a concave
shape and corresponds to the general trend of the experimental
data. When we use VLD + E0

shell, we can observe two peaks at
A ∼ 90 and 175, similarly to those observed in the result for
36S + 238U using VLD + E0

shell. The positions of the two peaks
agree with the experimental data. However, mass-asymmetric
fission events do not appear and the general trend of the MDFF
does not agree with the experimental data.

FIG. 5. (Color online) Mass distributions of
fission fragments for VLD (a) and VLD + E0

shell

(b) at E∗ = 39.5 MeV in the reaction 36S + 238U.
Experimental data are denoted by circles [16].
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FIG. 6. (Color online) Mass distributions of
fission fragments for VLD (a) and VLD + E0

shell

(b) at E∗ = 35.5 MeV in the reaction 30Si +
238U. Experimental data are denoted by circles
[17].

B. Effect of the shell correction energy

We now discuss the landscape of the potential energy
surface at the scission point, which is directly connected
with the shape of the MDFF. Figures 7(a) and 7(b) show
the adiabatic potential energy surface near the scission point
of the nuclei 274Hs and 268Sg, which are produced in the
reactions 36S + 238U and 30Si + 238U, respectively. VLD and
VLD + E0

shell with δ = 0.22 are denoted by red and blue lines,
respectively. The numbers near the lines denote values of
the deformation parameter δ. For δ = 0.16, the yellow and
light-blue lines denote VLD and VLD + E0

shell, respectively.
Although the trajectory of the FF process approaches the
compact shape region and moves to the reseparation region
with a large deformation, the trajectory of the QF process
quickly moves to the reseparation region and usually does
not have sufficient time for the fragments to markedly deform
dynamically [26,34].

For the potential energy VLD + E0
shell of both 274Hs and

268Sg, we can observe valleys at A ∼ 80 and 180. Generally,
owing to the nuclear structure, the shell-correction energy
E0

shell is large at A ∼ 208, which corresponds to the nucleus
208Pb. However, in the case of VLD + E0

shell, as shown in Fig. 7,
because VLD has a parabolic shape, at the scission point the
valley based on the shell-correction energy of 208Pb shifts to
a more mass-symmetric region. Thus, the valleys appear at
A ∼ 80 and 180. Therefore, when we use VLD + E0

shell, the
peaks appear at A ∼ 80 and 180 in the reaction 36S + 238U,
and at A ∼ 90 and 175 in the reaction 30Si + 238U in the MDFF.
We consider this as a detailed feature of the MDFF.

C. Effect of diabatic potential energy surface

Next we consider the effect of the diabatic potential energy
surface. In our model, at the early stage of the reaction process,
the trajectories appear to be affected by the diabatic potential.
The events in the mass-asymmetric fission part (around the
injection point) of the MDFF mainly originate from the
trajectories with short reaction times, such as elastic scattering,
the DIC process, and the QF process with a small number of
nucleons transferred. Therefore, these processes are affected
by the diabatic potential energy surface.

Figures 8(a) and 8(b) show the diabatic potential energy
surface at the contact point leading to the compound nuclei
274Hs and 268Sg, respectively. The numbers near the lines
denote values of the deformation parameter δ.

We can see a strong fluctuating structure in the diabatic
potential as a function of the mass asymmetry. It originates
from the difference among the reaction Q-values for each
combination leading to the same compound nucleus. We
define the origin of the potential energy as the ground state
of the compound nucleus with the liquid drop model, which
is obtained by the reaction 36S + 238U in Fig. 8(a) and 30Si +
238U in Fig. 8(b), respectively. We apply these origins for
another combination leading to the same compound nucleus.

For δ = 0, we can observe a valley at approximately A ∼
208, which corresponds to 208Pb in Fig. 8(a), but in Fig. 8(b) the
valley at A ∼ 208 is not pronounced. This valley corresponds
to the so-called cold fusion valley [35,36]. When we take into
account the deformation of the target nuclei, the valley is not
particulary remarkable.

FIG. 7. (Color online) Adiabatic potential
energy surface near the scission point of the nu-
clei 274Hs (a) and 268Sg (b). VLD and VLD + E0

shell

are denoted by red and blue lines, respectively.
The numbers near the lines denote values of the
deformation parameter δ.
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FIG. 8. (Color online) Diabatic potential en-
ergy surface at the contact point leading to the
compound nuclei 274Hs (a) and 268Sg (b). The
numbers near the lines denote values of the
deformation parameter δ.

According to the analysis in the previous section, in
the reaction 36S + 238U at the low incident energy, the QF
process with a short reaction time is dominant because
mass-asymmetric fission events are dominant. Therefore, the
trajectories are mainly affected by the diabatic potential energy
surface. Nevertheless, in the reaction 30Si + 238U at the low
incident energy, since the QF process with a long reaction
time, which we call the “deep quasifission process,” [21] is
dominant, the trajectories are mainly affected by the adiabatic
potential energy surface.

D. Analysis of the reaction dynamics using sample trajectories

We next discuss the origin of the QF process with the
long and short reaction time by analyzing sample trajectories.
The trajectory analysis allows us to directly observe the time
evolution of the dynamical process [34]. Figure 9 shows
sample trajectories projected onto the z-V plane. That is
to say, they correspond to the potential energy surface that
the trajectories actually pass through. The trajectories in the
reaction 36S + 238U at E∗ = 39.5 MeV and in the reaction
30Si + 238U at E∗ = 35.5 MeV with � = 0 are shown in
Figs. 9(a) and 9(b), respectively. Each trajectory in Fig. 9(b)
is calculated using the same initial random numbers as those
for each trajectory in Fig. 9(a).

Although some of the trajectories in the reaction 30Si +
238U reach the compact shape region z ∼ 0 after overcoming
the Coulomb barrier, the trajectories in the reaction 36S + 238U
return to the reseparation region even if they overcome the
barrier. Figures 10(a) and 10(b) show the same trajectories,
which are projected on the z-α and z-δ planes in the reaction
36S + 238U, respectively. The arrows denote the injection
points of those reactions. As shown in Fig. 10(a), the
trajectories cannot enter the small-z region and do not have

sufficient time to transfer the nucleons between the nuclei.
Therefore, the trajectories move to the reseparation region
without changing the α parameter significantly. In Fig. 10(b),
after the trajectories overcome the Coulomb barrier and reach
the wall of the diabatic potential, they proceed in the +δ

direction. It appears that they move along the valley (z ∼
1.2, 0.2 < δ < 0.7), which follows the pockets of the diabatic
potential energy surface.

Moreover, in the reaction 30Si + 238U, since the trajectories
can enter the small-z region, they have sufficient time to change
the α parameter significantly, then some of them can exit the
mass-symmetric fission region. The trajectories projected onto
the z-α and z-δ planes are shown in Figs. 11(a) and 11(b),
respectively. According to Fig. 11(a), trajectories exist that
enter the reseparation region with A ∼ 175 (α ∼ 0.3). In
Fig. 11(b), although the trajectories follow the valley of the
diabatic potential similarly to the trajectories in the reaction
36S + 238U, some of them enter the small-z region. After
overcoming the Coulomb barrier, such trajectories remain
around the region of z ∼ 1.2 for some time owing to their
fluctuation and during that time the potential energy surface
changes from a diabatic potential to an adiabatic potential.
Then the trajectories can enter the small-z region owing to
the disappearance of the wall of the diabatic potential. In
the reaction 30Si + 238U, it appears that the average time
that the trajectories spend in the region around z ∼ 1.2 is
longer than that in the reaction 36S + 238U. This is one of the
reasons that the overall trend of the MDFF is different between
the reactions 30Si + 238U and 36S + 238U at the low incident
energy.

To analyze the characteristic behavior of sample trajectories
in the reactions 36S + 238U and 30Si + 238U, we employ the
mean trajectory. In Fig. 12, the red and thin blue lines

FIG. 9. (Color online) Sample trajectories
projected onto the z-V plane in the reaction
36S + 238U at E∗ = 39.5 MeV with � = 0 (a) and
in the reaction 30Si + 238U at E∗ = 35.5 MeV
with � = 0 (b).
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FIG. 10. (Color online) Sample trajectories
projected on the z-α (a) and z-δ (b) planes
in the reaction 36S + 238U at E∗ = 39.5 MeV,
respectively. The arrows denote the injection
points of this reaction.

denote the mean trajectories in the reaction 36S + 238U at
E∗ = 39.5 MeV using VLD and VLD + E0

shell for the adiabatic
potential energy part, respectively. The orange and thin
light-blue lines denote the mean trajectories in the reaction
30Si + 238U at E∗ = 35.5 MeV, using VLD and VLD + E0

shell,
respectively.

As discussed in the previous section, when we use VLD,
we can observe the overall trend of the MDFF. The mean
trajectories collide with the wall of the diabatic potential at
points A and B in Fig. 12 in the reactions 36S + 238U and
30Si + 238U, respectively. Then the trajectories proceed in the
+δ direction and finally move to the reseparation region. The
value of z at position B is smaller than that at position A. This
slight difference of the positions, which originates from the
difference of the potential energy surface, appears to determine
whether mass-symmetric fission events or mass-asymmetric
fission events are dominant. Actually, when we use VLD +
E0

shell, the mean trajectory in the reaction 30Si + 238U can enter
the small-z region at B, although in the reaction 36S + 238U it
cannot enter the small-z region, similar to the case when we
use VLD.

Figure 13 shows the diabatic potential energy with δ = 0.2
and � = 0 in the reactions 36S + 238U and 30Si + 238U, which
are denoted by black and red lines, respectively. The position
of the wall of the potential for the reaction 30Si + 238U is
inside (i.e., at a position with a smaller value of z) that for the
reaction 36S + 238U. Therefore, the trajectory in the reaction
30Si + 238U collides with the wall at a smaller value of z than
that in the reaction 36S + 238U.

The general future of MDFF is affected by the landscape of
potential energy around the contact point, which is created by
the delicate balance between the diabatic potential and VLD of
the adiabatic potential.

V. MASS DISTRIBUTION OF FISSION FRAGMENTS IN
REACTION 31P + 238U

As discussed previously, the general futures of the MDFF
for 36S + 238U and 30Si + 238U at the low excitation energy
are clearly different; the MDFF has a concave shape and
a convex shape, respectively. The former reaction leads to
a compound nucleus with Z = 108 and the latter leads to
one with Z = 106. Here, as an intermediate system between
them, we consider the reaction 31P + 238U, which leads to a
compound nucleus with Z = 107, using the same values of the
parameters as those in the previous section. The experiment
in this reaction was done by the JAEA group in March 2009
and now they are analyzing the data. The calculation results
of the MDFF are shown in Fig. 14 at the incident energies
E∗ = 60, 50, and 45 MeV. In this reaction, the Bass barrier
in the excitation energy is rather high, V ∗

Bass = 57.4 MeV,
compared with that for the reactions 36S + 238U (V ∗

Bass =
45.5 MeV) and 30Si + 238U (V ∗

Bass = 51.3 MeV) [32]. There-
fore, at the incident energy E∗ = 60 MeV, we start the
calculation assuming the spherical-spherical configuration as
an initial condition. At the incident energies, E∗ = 50 and
45 MeV, as initial conditions, we consider the polar collision
of the target.

In Fig. 14, the general trend at E∗ = 45 MeV is similar
to that in the reaction 30Si + 238U. Moreover, we can observe
peaks at A ∼ 100 and 170, which are caused by the landscape
of the adiabatic potential energy surface. Figure 15 shows the
capture cross section σcap, the mass symmetric cross section
σA/2±20, and the fusion cross section σfus, which are denoted by
black, blue, and red lines, respectively. We also plot the fusion
events, which are denoted by the shaded areas in Fig. 14. The
results show that mass-symmetric fission events originate not
only from the FF process but also from the QF process.

FIG. 11. (Color online) Sample trajectories
projected on the z-α (a) and z-δ (b) planes
in the reaction 30Si + 238U at E∗ = 35.5 MeV,
respectively. The arrows denote the injection
points of this reaction.
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FIG. 12. (Color online) Mean trajectories in the reaction 36S +
238U at E∗ = 39.5 MeV using the adiabatic potential energies VLD

and VLD + E0
shell are denoted by red and thin blue lines, respectively.

The orange and thin light-blue lines denote the mean trajectories in the
reaction 30Si + 238U at E∗ = 35.5 MeV, using the potential energies
VLD and VLD + E0

shell, respectively. A and B denote the position where
the trajectories collide with the wall of the diabatic potential in the
reactions 36S + 238U and 30Si + 238U, respectively.

VI. SUMMARY

In this article we analyze the experimental data obtained for
the MDFF in the reactions 36S +238U and 30Si + 238U at several
incident energies, which were measured by the JAEA group
[16,17]. We apply a unified model and perform a trajectory
calculation. The incident energy dependence of the MDFF
is precisely investigated. This study is a first attempt to treat
such experimental data systematically. We also discuss the fine
structures in the MDFF caused by the shell structure at a low
incident energy.

In the MDFF in the reaction 36S + 238U, at the high incident
energy, the mass-symmetric fission fragments are dominant.
Furthermore, at the low incident energy, the mass-asymmetric
fission fragments are dominant. The trend of the experimental
data was reproduced by the calculation. At the low incident
energy, it is significant that we take the initial condition as

FIG. 13. (Color online) Diabatic potential energy with δ = 0.2
and � = 0 in the reactions 36S + 238U and 30Si + 238U are denoted by
black and red lines, respectively.

FIG. 14. (Color online) Calculated mass distributions of fission
fragments in the reaction 31P + 238U. Fusion-fission events correspond
to shaded areas.

a collision with the pole of the target 238U nucleus. We also
stress that it is very important to consider the temperature
dependence of shell-correction energy on the potential energy
surface.

In the MDFF for the reaction 36S + 238U at the low
incident energy, mass-asymmetric fission events are dominant.
Nevertheless, in the reaction 30Si + 238U, mass-symmetric
fission events are dominant. Thus, the reactions 36S + 238U
and 30Si + 238U correspond to transitional systems from mass-
symmetric fission to mass-asymmetric fission, that is to say,
the distribution changes from a convex shape to a concave
shape.

We investigate the reason why the shapes of the MDFF for
both reactions are different from each other at the low incident
energy. The shape of the MDFF is affected by the landscape
of the potential energy surface. Therefore, we investigate
the effect of the potential energy surface by calculating
the MDFF using the potential energy VLD and VLD + E0

shell for
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FIG. 15. (Color online) Excitation function of σcap, σA/2±20, and
σfus in the reaction 31P + 238U.

the adiabatic potential energy part. When we use VLD + E0
shell,

the peaks appear at A ∼ 90 and 178 in the reaction
30Si + 238U in the MDFF because the potential energy surface
has valleys at A ∼ 90 and 180 which appear owing to the
balance between VLD and E0

shell. This is a fine feature of the
MDFF. Nevertheless, the general features of the MDFF appear
to be mainly governed by the landscape of potential energy
around the contact point, which is caused by the delicate
balance between the diabatic potential and VLD of the adiabatic
potential. It determines whether the distribution has a convex
or concave shape.

The trajectory analysis allows us to directly observe the
time evolution of the dynamical process. The main reason for
the difference between the general features of the MDFF in the
reactions 36S + 238U and 30Si + 238U at the low incident energy
is the slight difference between the positions at which the
trajectories collide with the wall of the diabatic potential. This
slight difference determines whether mass-symmetric fission
or mass-asymmetric fission is dominant.

In the next step, we should consider all orientation effects
of the colliding nuclei that play an important role in the
sub-barrier fusion of deformed nuclei and estimate the capture
cross section and fusion cross section. In the experiment,
the evaporation residue cross section is measured at the
sub-barrier region [16,17]. We precisely investigate the role of
the orientation effects and the mechanism of the enhancement
of the capture and fusion cross sections.
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