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We have calculated the total nuclear reaction cross sections of exotic nuclei in the framework of the Glauber
model, using as inputs the standard relativistic mean field (RMF) densities and the densities obtained from the
more recently developed effective-field-theory-motivated RMF (the E-RMF). Both light and heavy nuclei are
taken as the representative targets, and the light neutron-rich nuclei as projectiles. We found the total nuclear
reaction cross section to increase as a function of the mass number, for both the target and projectile nuclei. The
differential nuclear elastic scattering cross sections are evaluated for some selected systems at various incident
energies. We found a large dependence of the differential elastic scattering cross section on incident energy.
Finally, we have applied the same formalism to calculate both the total nuclear reaction cross section and the
differential nuclear elastic scattering cross section for the recently discussed superheavy nucleus with atomic
number Z = 122.
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I. INTRODUCTION

Study of unstable nuclei with radioactive ion beam (RIB)
facilities has opened up an exciting new channel to look for
some crucial issues in the context of both nuclear structure and
nuclear astrophysics [1,2]. Unstable nuclei play an important,
and in some cases dominant, role in many phenomena in the
cosmos such as novae, supernovae, x-ray and γ -ray bursts
(GRBs), and other stellar explosions. A recent work [3] shows
that in relativistic jets of GRBs or supernovae jets near the
nascent neutron star, the formation of ultra-neutron-rich and
superheavy nuclei is possible. The sources of the formation of
these nuclei are the nuclear reactions and fusion phenomena
in the cosmological objects.

The direct study of stellar properties in ground-based
laboratories has become more attractive, thanks to the avail-
ability of RIBs; for example, the study of the 18Ne-induced
neutron pickup reaction could reveal information about the
exotic 15O + 19Ne reaction, happening in the CNO cycle
in burning stars. Study of the structure and reactions of
unstable nuclei is therefore required in order to improve our
understanding of the astrophysical origin of atomic nuclei and
the evolution of stars and their (sometimes explosive) death.
Recently, Satpathy et al. [4] reported that the neutron-rich
U and Th isotopes are thermally fissile and could release
an order of magnitude more energy than 235U fission in a
new fission-decay mode, called multifragmentation fission,
which happened often in astrophysical objects. The possible
formation of these highly neutron-rich nuclei and the recent
report on the possible discovery of 292X122 nucleus [5] in a
chemical process motivated us to study the nuclear reaction
properties of some highly neutron-rich targets as well as the
projectiles.

The secondary radioactive beam technique is useful in
studying the various nuclear reaction cross sections, such as

the total reaction cross sections, differential elastic scattering
cross sections, and Coulomb breakup cross sections. Study
of these quantities enables us to know the nuclear structure
of unstable nuclei in detail, particularly the halo structure
near the drip lines [6–9]. This will also help in studying
the formation of neutron-rich nuclei that are surrounded by a
high pressure or temperature. Thus, the total nuclear reaction
cross section, both for proton-nucleus and nucleus-nucleus
scattering, has been a subject of interest for the last few
decades [10–13]. The main objective of the present work is
to study the total nuclear reaction cross sections of exotic
nuclei using the densities obtained from relativistic mean
field (RMF) and field-theory-motivated effective Lagrangian
(E-RMF) approaches in conjunction with the Glauber model.

The paper is designed as follows. The RMF and E-RMF
formalisms, used in the calculations of density profiles, are
explained briefly in Sec. II. The reaction formalism in the
framework of the Glauber model is also explained in that
section. The results obtained from our calculations using both
the RMF and E-RMF densities are discussed in Sec. III. The
ground-state properties of finite drip line and heavy nuclei,
which are relevant for the present study, are also presented
here. Applications are also made to the recently observed
superheavy element Z = 122 [5]. Finally, a brief summary
and concluding remarks are given in Sec. IV.

II. THEORETICAL FRAMEWORK

A. RMF and E-RMF formalisms

The use of RMF and E-RMF formalisms on finite nuclei
as well as on infinite nuclear matter is well documented and
details can be found in Ref. [14] for the RMF theory and
in Refs. [8,15] for the recent extension of RMF formalism
to the field-theory-motivated effective Lagrangian approach,
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the E-RMF. Here, we present only some very essential steps
needed for the present paper. As already mentioned above, we
need the RMF and E-RMF density profiles for our calculations
of the total reaction as well as the differential elastic scattering
cross sections. The energy density functional of the E-RMF
model for finite nuclei is written as [16,17]
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where the index α runs over all occupied states ϕα(r) of the
positive energy spectrum, � ≡ gsφ0(r),W ≡ gvV0(r), R ≡
gρb0(r), and A ≡ eA0(r).

The terms with gγ , λ, βs , and βv take care of the effects
related to the electromagnetic structure of the pion and
the nucleon (see Ref. [17]). Specifically, the constant gγ

concerns the coupling of the photon to the pions and the
nucleons through the exchange of neutral vector mesons. The
experimental value is g2

γ /4π = 2.0. The constant λ is needed
to reproduce the magnetic moments of the nucleons and is
defined by

λ = 1
2λp(1 + τ3) + 1

2λn(1 − τ3), (2)

with λp = 1.793 and λn = −1.913, the anomalous magnetic
moments of the proton and the neutron, respectively. The terms
with βs and βv contribute to the charge radii of the nucleon [17].

The energy density contains tensor couplings and scalar-
vector and vector-vector meson interactions, in addition to
the standard scalar self-interactions κ3 and κ4. The E-RMF
formalism can be interpreted as a covariant formulation of
density functional theory as it contains all the higher order
terms in the Lagrangian, obtained by expanding it in powers
of the meson fields. The terms in the Lagrangian are kept
finite by adjusting the parameters. Further insight into the
concepts of the E-RMF model can be obtained from Ref. [17].
It may be noted that the standard RMF Lagrangian is obtained
from that of the E-RMF by ignoring the vector-vector and
scalar-vector cross interactions, and hence does not need a
separate discussion.

In each of the two formalisms (E-RMF and RMF), the set of
coupled equations are solved numerically by a self-consistent

iteration method. The baryon, scalar, isovector, proton, and
tensor densities are

ρ(r) =
∑
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For the detailed field equations and numerical procedure for
calculating the ground-state properties of finite nuclei, we refer
the reader to Refs. [14,15]. The densities, obtained from the
RMF and E-RMF formalisms, respectively, with NL3 [18]
and G2 [8] parametrizations, are used in the formalism of
the Glauber model for getting the total nuclear reaction and
differential elastic scattering cross sections.

B. Glauber model and total nuclear reaction cross section

The theoretical formalism to calculate the total nuclear
reaction cross section, using the Glauber approach, has been
given by R. J. Glauber [19]. The Glauber model is based on
the independent, individual nucleon-nucleon (NN ) collisions
in the overlap zone of the colliding nuclei, and has been used
extensively to explain the observed total nuclear reaction cross
sections for various systems at high energies. The standard
Glauber form for the total reaction cross section at high
energies is expressed as [19]

σr = 2π

∞∫
0

b[1 − T (b)] db, (9)

where T (b), the transparency function, is the probability that,
at an impact parameter b, the projectile passes through the
target without interacting. The function T (b) is calculated
in the overlap region between the projectile and the target,
where the interactions are assumed to result from a single NN

collision, and is given by

T (b) = exp

⎡
⎣−

∑
i,j

σ ij

∫
d�sρti (s) ρpj (|�b − �s|s)

⎤
⎦ . (10)

Here, the summation indices i and j run over the proton and
neutron, and subscripts p and t refer to projectile and target,
respectively. σ ij is the experimental nucleon-nucleon reaction
cross section which varies with energy. The z-integrated
densities ρ(ω) are defined as

ρ(ω) =
∫ ∞

−∞
ρ(

√
ω2 + z2) dz, (11)
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with ω2 = x2 + y2. The argument of T (b) in Eq. (10) is |�b −
�s|, which stands for the impact parameter between the ith and
j th nucleons.

Initially, the Glauber model was indeed designed for high-
energy approximation. However, it was found to work fairly
well, for both the nucleus-nucleus reaction cross sections
and the differential elastic scattering cross sections, over
a broad energy range [20]; i.e., the model reproduced the
results at incident energies of 25, 30, and 85 MeV/nucleon.
Thus, for including the low-energy effects of increasing the
NN interaction, the above-stated original Glauber model is
modified to take care of the finite range effects [21,22] in
profile function and the Coulomb modified trajectories. Thus,
for the finite range approximation, the transparency function
is given by [21,23]

T (b) = exp

⎡
⎣−

∫
P,T

∑
i,j

[�ij (�b − �s + �t)]ρPi(�t)ρTj (�s)d�s d�t
⎤
⎦,

(12)

the summation indices i and j run over neutron and proton for
both target and projectile. Here the profile function �ij is

�ij (beff) = 1 − iαNN

2πβ2
NN

σNN exp

(
− b2

eff

2β2
NN

)
, (13)

with beff = |�b − �s + �t |, �b being the impact parameter, and �s
and �t are just the dummy variables for integration over the
z-integrated target and projectile densities. The parameters
σNN, αNN , and βNN are usually case dependent (proton-
proton, neutron-neutron, or proton-neutron), but we have used
here the appropriate average values from Ref. [24].

The nuclear densities, obtained from the RMF or E-RMF
models, are fitted to a sum of two Gaussian functions, with
appropriate coefficients ci and ranges ai chosen for the
respective nuclei, as

ρ(r) =
N∑

i=1

ci exp[−air
2]. (14)

Then, the Glauber model is used to calculate the total reaction
cross section for both the stable and unstable nuclei.

C. Differential elastic scattering cross section

The differential elastic scattering cross section, in terms of
the differential Rutherford scattering cross section ( dσ

d�
)r , is

given by
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F (q) and FCoul(q) are the elastic and Coulomb (elastic)
scattering amplitudes, respectively.

The elastic scattering amplitude F (q) is written as
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with the Coulomb elastic scattering amplitude FCoul(q) given
as
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Here η = ZP ZT e2/h̄v is the Sommerfeld parameter, v the
incident velocity, and χs = −2η ln(2Ka), with a being the
screening radius [19]. The differential elastic scattering cross
section does not depend on the screening radius a.

III. RESULTS AND DISCUSSION

A. Ground-state properties of finite nuclei in RMF and
E-RMF models

It is well known that the standard RMF model is a
powerful formalism for calculating the ground-state properties
of finite nuclei. This model is surprisingly successful for
not only the nuclei near the valley of stability, but also the
nuclei far away from the β-stability line [14]. On the other
hand, the recently developed E-RMF formalism reproduces
the properties of finite nuclei as well as with the RMF
model, with the additional success of describing the properties
of nuclear matter, including the properties of astrophysical
objects such as a neutron star [8,9,15]. In standard RMF, with
the NL3 parameter set, the nuclear matter compressibility
K∞ ∼ 271.5 MeV [18], which is slightly more than the
empirical value of K∞ = 210 ± 30 MeV [25]. It is around
215 MeV [8] in the E-RMF formalism, which is closer to the
data.

In the calculation of the total nuclear reaction cross section,
density is the input in the Glauber model. If we estimate
nuclear radii properly, then our predictions of total reaction
cross sections will be accurate. For this reason, first of all we
have evaluated the ground-state binding energies, nuclear radii,
densities, etc., using the RMF and E-RMF formalisms, which
are given in Tables I and II and Figs. 1 and 2. In some of our
earlier works [26], it was demonstrated that the total reaction
cross section does not depend much on the deformation of
reacting nuclei; therefore, in our present calculations, we
proceed with spherical densities, i.e., without taking the
deformation into account. For the choice of parameter set,
although there exist a number of parameter sets for solving
the standard RMF as well as E-RMF Lagrangians, we have
employed here the most successful NL3 set for the former and
G2 for the latter formalism.

1. Binding energies

We present in Tables I and II, the calculated binding
energies, using the RMF and E-RMF formalisms with NL3
and G2 forces, respectively, for the light and heavy nuclei to
be used as projectiles and targets in the following calcula-
tions of the reaction cross sections. The experimental data,
taken from Ref. [27], are also given for comparison. It is
evident from Tables I and II that both the calculated binding
energies from RMF(NL3) and E-RMF(G2) models are similar
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TABLE I. Binding energy (BE) in MeV, rms charge radius (rc)
in fm for light nuclei (used as projectiles) obtained from RMF(NL3)
and E-RMF(G2) formalisms compared with experimental data.

Nucleus BE rc

RMF E-RMF Expt. [27] RMF E-RMF Expt. [Ref.]

4He 28.14 29.39 28.30 2.063 2.076 1.676(8) [28]
5He 28.32 29.87 27.41 2.054 2.045
6He 29.45 31.37 29.27 2.039 2.003 2.068(11) [28]
7He 31.541 33.86 28.83 2.039 1.958
8He 34.55 37.27 31.41 2.011 1.912 1.929(26) [28]
6Li 29.82 31.85 31.99 2.546 2.508 2.51(6) [29]
7Li 34.04 36.47 39.24 2.375 2.345 2.39(3) [29]
8Li 39.44 42.17 41.28 2.291 2.256 2.29(8) [29]
9Li 45.83 48.75 45.34 2.239 2.195 2.22(9) [29]
10Li 48.23 51.10 45.32 2.283 2.234
11Li 51.50 54.23 45.64 2.323 2.256 2.217(35) [30]
10B 59.18 61.42 64.75 2.451 2.492 2.45(12) [31]
15B 84.90 88.20 88.19 2.497 2.479
17B 85.57 90.13 89.52 2.524 2.456
20B 86.58 92.13 2.58 2.510
12C 88.21 87.22 92.16 2.363 2.497 2.44(2) [31]
14C 104.32 105.49 105.28 2.506 2.539 2.56(5) [31]
16C 106.50 108.93 110.75 2.525 2.531
18C 110.40 114.05 115.66 2.545 2.526
20C 115.93 120.73 119.18 2.566 2.522

and coincide very well with the experimental data. A further
inspection of the tables shows that for light nuclei (Table I),
some of the RMF(NL3) results are slightly lower than the
experimental values. On the other hand, the results predicted

by the E-RMF(G2) overestimate the data, and vice versa for the
heavier nuclei. We also know from the properties of the mean
field formalism that it has some limitations for the light mass
region of the periodic table, and hence the small discrepancies
of RMF results with experimental data could be attributed to
that fact. In any case, to get a qualitative estimation of the
binding energy, the RMF as well as E-RMF results are trust
worthy and can be used for further calculations in the chosen
light mass region.

Our analysis of the binding energies for heavy mass nuclei,
which we use here as the targets for nuclear reactions, shows
that, except for 208Pb, our results are a few MeV lower than
the experimental data. Unlike the light mass region, the mean
field approximation is extremely suited to the heavier mass
region of the periodic table. However, although the mean
field approximation is properly applicable for these heavy
nuclei, these nuclei are well deformed, which is ignored here
in our calculations. Hence, due to this simplification, we
compromise a few MeV of binding energy in calculated values
with experimental data, which does not affect the nuclear
reaction cross sections, as reported in Ref. [26].

2. Nuclear radii

The rms charge radius rc is obtained from the point proton
rms radius through the relation [14] rc = √

r2
p + 0.64, where

the factor 0.64 accounts for the finite size effects of protons
with radius 0.8 fm. Tables I and II show the calculated nuclear
charge radii rc using RMF and E-RMF models together with
the experimental data, wherever available. We notice from
these tables that both models (RMF as well as E-RMF) give
similar results for the rms charge radii and both account fairly

TABLE II. Same as Table I, but for heavy nuclei (used as targets).

Nucleus BE rc

RMF E-RMF Expt. [27] RMF E-RMF Expt. [Ref.]

208Pb 1637.62 1631.80 1636.43 5.523 5.499 5.498(10) [31]
210Pb 1644.22 1638.42 5.426 5.515
218Pb 1673.84 1667.87 5.623 5.583
228Pb 1709.10 1704.48 5.693 5.665
238Pb 1738.53 1735.89 5.754 5.733
248Pb 1765.68 1764.75 5.812 5.792
258Pb 1789.11 1790.21 5.868 5.848
260Pb 1792.76 1794.23 5.879 5.858
230Th 1732.77 1725.70 1755.13 5.739 5.711
240Th 1767.75 1763.49 5.800 5.777
250Th 1800.03 1797.75 5.859 5.838
260Th 1828.47 1827.94 5.913 5.891
270Th 1910.40 1906.78 6.007 5.982
235U 1778.65 1764.62 1783.86 5.833 5.813
238U 1793.50 1780.74 1801.69 5.851 5.830 5.8434 [31]
250U 1850.67 1842.36 5.923 5.899
260U 1893.33 1887.37 5.982 5.959
270U 1930.71 1925.40 6.025 6.001
280U 1952.73 1947.30 6.087 6.053
292X122 2037.34 2019.90 6.306 6.284
320X122 2213.01 2195.90 6.477 6.453
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FIG. 1. Ground-state densities for some light nuclei (as projec-
tiles) obtained from the RMF(NL3) and E-RMF(G2) formalisms.

well for the experimentally observed values. Since the charge
radius is obtained from the density profile, and our RMF and
E-RMF results for rc match the experimental data rather well,
we can reliably use these density profiles in the calculation
of nuclear reaction cross sections, which is one of the main
objective of the present study.

3. Nuclear density

The nuclear densities, obtained from Eq. (3), using both
RMF(NL3) and E-RMF(G2) are plotted in Figs. 1 and 2. These
are the most crucial and required quantities for our calculations
of the total nuclear reaction cross sections using the Glauber
model. Figure 1 depicts the densities for some representative
light nuclei, to be used as projectiles in our calculations. We
notice from Fig. 1 that the nuclear densities for RMF(NL3)
and E-RMF(G2) for lighter nuclei are considerably different
near the center of the nucleus. This difference reduces as we
go away from the middle of the nuclei toward the surface. As
expected, the density distribution is elongated for neutron-rich
nuclei, as compared to the stable isotopes. All the pairs of
nuclei (4He, 8He), (6Li, 11Li), (10B, 20B), and (12C, 20C) shown
here present the same features for the light mass region.
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FIG. 2. Same as Fig. 1, but for heavy nuclei (as targets).

Similarly, in Fig. 2, we have shown the density distributions
for pairs of heavy nuclei (208Pb, 258Pb), (235U, 280U), (230Th,
260Th), and the recent, possibly discovered, naturally occurring
superheavy nucleus 292X122 (Z = 122, N = 170) [5] and its
neutron-rich isotope 320X122. Unlike the light mass nuclei,
densities obtained from RMF(NL3) and E-RMF(G2) in these
pairs of heavy nuclei are not much different, even in the central
region of the nucleus. Surprisingly, we find a deep minimum
at the center in the density distribution for the 320X122 nucleus,
which is quite different from other densities obtained for
normal nuclei shown in this figure. In the following, we use
these, as well as some other densities, for the predictions of
total nuclear reaction cross sections.

B. Coefficients of Gaussian functions fitted to mimic the density
distributions, the input for the profile function

The nuclear densities obtained above from the RMF and
E-RMF models for the projectile and target nuclei, which are
the main ingredients of the calculation of total nuclear reaction
cross sections, have been fitted to a sum of two Gaussians in
Eq. (14), and the calculated coefficients c1, c2 and ranges a1, a2

are listed in Tables III and IV. This fitting procedure simplifies
the numerical calculations considerably [32] and makes it
possible to obtain analytic expressions for the transparency
functions defined in Eqs. (10) and (12). In other words, using
these coefficients [in Eq. (14)], we get the equivalent density
for calculating the transparency functions, which are further
used to estimate the total nuclear reaction and differential
elastic scattering cross sections, as discussed in Secs. III C
and III D.

Some phenomenological parameters, related to the NN

cross section, required to evaluate the profile function in
Eq. (12) are σNN, αNN , and βNN , at different incident energies.
In our calculation, these values are taken from Refs. [24,33],
which are tabulated in Table V. Here, σNN stands for the
total reaction cross section of NN collisions, αNN is the
ratio of the real to the imaginary part of the forward NN

scattering amplitude, and βNN is the slope parameter. The
βNN value estimates the fall of the angular distribution of the
NN elastic scattering. It is to be noted that these parameters,
in general, depend on the isospin of the nucleons (pp, nn,
pn), and hence appropriate average values are obtained by
interpolating a given set. The nucleon-nucleon cross section
σNN , averaged over neutron and proton numbers, is calculated
by the expression [24,34]

σ̄NN (E) = NpNtσnn + ZpZtσpp + NpZtσnp + NtZpσnp

ApAt

,

(18)

with Zp,Zt and Np,Nt as the projectile and the target charge
and neutron numbers, respectively. Note that σNN is the driving
agent for the energy dependence of total reaction cross section
σr , though, in view of the averages taken at each incident
energy, the value of the input parameter σNN is not affected
much by the neutron or proton number of the target and
projectile system. This is a well-known feature of the total
reaction cross section σr , and is thus relevant to recall.
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TABLE III. Coefficients c1, a1 and c2, a2 of Gaussian functions, which are fitted to the density distributions generated from RMF(NL3)
and E-RMF(G2) formalisms, for light nuclei (as projectiles).

Nucleus RMF(NL3) E-RMF(G2)

c1 a1 c2 a2 c1 a1 c2 a2

4He −1.05092 0.514949 1.24954 0.497397 −1.17133 0.509247 1.35243 0.490141
6He −1.1978 0.346115 1.41785 0.346236 −1.10191 0.364872 1.29553 0.356881
8He −1.19836 0.283782 1.41656 0.283924 −1.09579 0.325308 1.28739 0.313279
6Li −1.2017 0.338401 1.41367 0.338391 −1.20927 0.396482 1.39874 0.382147
7Li −1.10503 0.362372 1.31877 0.3517 −0.0246155 0.877594 0.2105 0.299145
8Li −1.18856 0.369719 1.4063 0.35237 −0.0483286 0.685948 0.235086 0.287981
9Li −0.029093 0.874689 0.245801 0.2808 −0.0788126 0.590314 0.266483 0.280958
11Li −0.0540616 0.628475 0.231925 0.231428 −0.0988483 0.51542 0.260122 0.237837
10B −0.145385 0.573468 0.379899 0.316861 −1.21283 0.394773 1.40704 0.353843
15B −0.299572 0.425976 0.480853 0.253374 −1.22064 0.3313 1.38249 0.284846
17B −0.224314 0.427336 0.396452 0.219516 −0.454951 0.344816 0.609667 0.236565
20B −0.180161 0.41492 0.339182 0.184949 −0.299283 0.341646 0.444999 0.197008
12C −0.232695 0.638683 0.517266 0.339919 −3.34808 0.379357 3.5471 0.359102
14C −3.77882 0.365346 3.96791 0.344481 −4.2207 0.347703 4.38557 0.330334
16C −1.32397 0.353965 1.50772 0.300361 −1.4157 0.336181 1.57637 0.289213
18C −0.610957 0.360143 0.785873 0.256258 −1.36173 0.312325 1.51661 0.266353
20C −0.522227 0.346399 0.687736 0.232099 −1.36876 0.291422 1.51713 0.247912

TABLE IV. Same as Table III, but for heavy nuclei (as targets).

Nucleus RMF(NL3) E-RMF(G2)

c1 a1 c2 a2 c1 a1 c2 a2

208Pb −2.64313 0.0532685 2.75724 0.0492428 −2.64946 0.0535256 2.766 0.0494824
210Pb −2.62315 0.0526782 2.73639 0.0486948 −2.65783 0.0531674 2.77348 0.0491542
218Pb −2.48912 0.0498046 2.59786 0.0460278 −2.79344 0.0515383 2.9102 0.0476675
228Pb −2.62604 0.0490159 2.73098 0.0453354 −2.66333 0.0494732 2.77043 0.0457665
248Pb −2.89059 0.0483861 2.99443 0.0447702 −2.59034 0.0458371 2.69484 0.0424171
260Pb −2.45222 0.0435363 2.56011 0.040285 −2.50225 0.0437805 2.6093 0.0405262
230Th −2.4835 0.047502 2.5857 0.043894 −2.54208 0.0479732 2.64437 0.0443404
240Th −2.67965 0.047258 2.77776 0.0437145 −2.6181 0.0468272 2.71599 0.0432986
250Th −2.74594 0.0464667 2.84506 0.0430046 −2.65942 0.0454064 2.75263 0.042005
270Th −2.74452 0.0462746 2.83967 0.0428277 −2.54056 0.042608 2.64133 0.0394314
235U −2.54853 0.0471019 2.64847 0.0435424 −2.54993 0.0471009 2.64931 0.0435372
238U −2.61151 0.0470922 2.71035 0.0435456 −2.58245 0.0467943 2.68049 0.0432664
250U −2.75588 0.046275 2.85145 0.0428272 −2.64917 0.0453065 2.74156 0.0419058
260U −2.456 0.0440042 2.56903 0.0407122 −2.694 0.0441555 2.78289 0.040853
270U −2.41462 0.0422599 2.52267 0.0390898 −2.62832 0.0429456 2.7238 0.039742
292X122 −3.30555 0.0435773 3.37668 0.0404026 −3.28593 0.043583 3.36194 0.0404295
320X122 −2.7657 0.0385546 2.85668 0.0357409 −2.69586 0.0383673 2.79456 0.0355931

TABLE V. Averaged nucleon-nucleon cross sections σ̄NN (in fm2) and other parameters used for the calculation
of profile function at different incident energies (in MeV/nucleon).

Energy 30 49 85 100 120 150 200

σ̄NN 19.6 10.4 6.1 5.29 4.72 3.845 3.28
αNN 0.87 0.94 1.0 1.435 1.38 1.245 0.93
βNN 0.0 0.0 0.0 1.02 1.07 1.15 1.24

Energy 325 425 500 625 800 1100 2200
σ̄NN 3.03 3.025 3.62 4.0 4.26 4.32 4.335
αNN 0.305 0.36 0.04 −0.095 −0.07 −0.275 −0.335
βNN 0.62 0.48 0.125 0.16 0.21 0.22 0.26
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TABLE VI. Total nuclear reaction cross sections, matter- and proton-distribution radii, obtained from RMF(NL3) and E-RMF(G2)
formalisms and compared with experimental data [35] for various light projectiles on 12C as target.

Projectile σr (mb) rm (fm) rp (fm)

RMF E-RMF Expt. RMF E-RMF Expt. RMF E-RMF Expt.

20Mg 1128.506 1198.646 1150(12) 2.858 2.883 2.86(3) 3.025 3.039 3.18(9)
20Na 1125.769 1196.463 1094(11) 2.804 2.833 2.69(3) 2.902 2.926 3.14(5)
20Ne 1148.289 1195.106 1144(10) 2.780 2.811 2.84(3) 2.798 2.828 3.10(7)
20F 1124.297 1193.890 1113(11) 2.781 2.812 2.75(3) 2.700 2.737 2.98(4)
20O 1125.730 1195.525 1078(10) 2.805 2.835 2.64(3) 2.599 2.642 2.72(5)
20N 1132.357 1203.275 1121(17) 2.878 2.899 2.77(4) 2.538 2.587 2.39(20)

C. Total nuclear reaction cross sections

1. Total nuclear reaction cross sections with known
experimental data

In our present calculation, we follow the procedure of the
CSC GM computer code [21]. In this method, the projectile
nucleus is considered as a core plus a valence nucleon. For
example, 11Li nucleus is taken as the 10Li + 0p1/2-nucleon
system. The present technique is very useful for loosely bound
(exotic or drip line) nuclei, the projectile systems. Although the
entire calculation is in the center-of-mass coordinate system,
where there is no distinction between the projectile and the
target, we use this terminology in order to distinguish them
from one another. Throughout our calculation, in most cases,
the lighter nucleus is a projectile and the heavier one a target
nucleus.

After calculating the density profiles with RMF(NL3) and
E-RMF(G2) methods, we estimate the coefficients of the
Gaussian function and use them in the CSC GM computer code
[21] for evaluating the total nuclear reaction cross sections
for some light nuclei (as projectiles) on 12C (as the target in
each case), where experimental measurements are available
[35]. This is shown in Fig. 3 and Table VI. From Fig. 3,
for 6,7,8,9,11Li + 12C at 790 MeV/nucleon, it is clear that the
E-RMF(G2) model overestimates slightly the measured total

5 6 7 8 9 10 11 12
600

700

800

900

1000

1100

RMF(NL3)
E-RMF(G2)
Expt.

6,7,8,9,11
Li+

12
C

E = 790MeV/Nucleon

σ r(m
b)

mass number

FIG. 3. Calculated total nuclear reaction cross sections σr as a
function of the projectile mass, compared with the experimental data
[35], for 6,7,8,9,11Li + 12C reactions at 790 MeV/nucleon. The error
bars in data are also shown.

nuclear reaction cross section σr data, whereas the results
obtained from the RMF(NL3) model agree well with the
data. However, the halo nature of 11Li is not reflected from
Fig. 3, although an enhancement in total nuclear reaction cross
section is evident for both the RMF(NL3) and E-RMF(G2)
formalisms.

In Table VI, we have compared our results of various other
light projectiles on 12C as the target, with the recently measured
σr of Bochkarev et al. [35]. We notice that the experimental
data lie in between the RMF(NL3) and E-RMF(G2) predic-
tions. The RMF slightly underestimates the data, whereas the
E-RMF overestimates marginally. For example, in the case
of 20Mg, the RMF underestimates the experimental data by
1.7% and the E-RMF overestimates it by about 4%. In other
words, our calculations with respect to experimental data are
quite convincing and can be extended to an unknown territory
without the possibility of committing much error.

2. Total nuclear reaction cross sections for highly neutron-rich
and superheavy nuclei

To measure the total reaction cross section for an unstable
projectile with a stable target or an unstable target with a
stable projectile or both as unstable nuclei is one of the chal-
lenging problems in experimental nuclear physics. As already
mentioned in the Introduction, such measurements not only
would provide a better understanding of the nuclear structure
of such nuclei, but also are extremely useful for the formation
of drip-line nuclei in many cosmological phenomena such as
the x-ray bursts, GRBs, and supernovae explosions and in
relativistic jets of GRBs or supernovae jets near the nascent
neutron star, and in the r-process nucleosynthesis. To study
such processes, in recent decades, considerable effort has
been made to look for RIB+RIB cross sections at various
laboratories [6]. In this context, it is worth studying such
reaction processes, because understanding the mechanism
of the formation of neutron-rich nuclei and the creation of
superheavy elements is important not only in the cosmological
systems but also in various laboratories of the world [36].

In some of our earlier work [26], it was shown that
the Glauber model works remarkably well for RMF and
E-RMF nuclear densities. The model reproduces experimental
observables quite well for both the stable and unstable nuclei
taken as targets and projectiles. In this paper, we extend
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FIG. 4. Calculated total nuclear reaction cross sections for
E-RMF(G2) formalism, taking He and Li isotopes as projectiles with
different isotopes of Pb, Th, and U as targets.

the work of Ref. [26] to calculate the total nuclear reaction
cross sections, using light mass isotopes as projectiles and
heavy nuclei as targets. For heavier nuclei, we also use the
neutron-rich thermally fissile nuclei (neutron-rich U and Th
isotopes) which, as already stated in Sec. I, are more interesting
from the point of view of energy production, not only in
astrophysical systems but also in solving our future energy
problems [37].

Figures 4–9 present our calculated total nuclear reaction
cross sections for some selective stable-stable, stable-unstable,
and unstable-unstable systems, such as He + Pb, He + U, He
+ Th, Li + Pb, Li + U, Li + Th, B + Pb, and C + U with
different isotopes. Figures 4, 6, and 8 are for E-RMF(G2), and
Figs. 5, 7, and 9 for RMF(NL3) formalism. First, we discuss
the results with the E-RMF(G2) formalism.

Figure 4 shows the results of our calculation for different
He and Li projectile masses with fixed targets as 208Pb, 235U,
and 230Th. In all of these cases, the total nuclear reaction cross
section increases with the increase in mass of the projectile. At
relatively lower incident energies (30–200 MeV/nucleon) of
the projectile nucleus, the total nuclear reaction cross section
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FIG. 5. Same as Fig. 4, but for RMF(NL3) formalism.
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FIG. 6. Same as Fig. 4, but for He, B, and C isotopes as projectiles
with different isotopes of Pb, Th, and U as targets.

is maximum, and it decreases rapidly with the increase of
energy and, in all cases, a minimum in σr occurs at about
400 MeV/nucleon. As the incident energy is further increased,
the total nuclear reaction cross section increases slightly and
takes an almost constant value, which continues till the incident
energy is 1000 MeV/nucleon. Note that in our calculations for
heavier target masses, the medium modification is considered,
which implies the probability of the formation of a heavier
mass nucleus with the increase of mass number of the projectile
as well as the target.

Figure 6 shows the total reaction cross sections for He, B,
and C as projectiles with Th, U, Pb as targets. Unlike Fig. 4,
here the projectile is fixed and the mass of the target changes.
We find that here also the total nuclear reaction cross section
increases with the increase of target mass. For example, σr for
270Th is much more than the σr for 230Th, with the same 4He
as projectile. Similarly, Fig. 8 demonstrates the results of our
calculations for a fixed projectile with variable target masses
in the cases of 6Li + 208,218,228,248Pb, 6Li + 235,250,260,270U,
and 11Li + 208,218,228,248Pb, 11Li + 235,250,260,270U. Irrespective
of a stable or unstable system, the total nuclear reaction
cross section increases with increase of either the target mass
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FIG. 7. Same as Fig. 6, but for RMF(NL3) formalism.
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FIG. 8. Same as Fig. 4, but for Li nuclei as projectiles with
different isotopes of Pb and U as targets.

At or the projectile mass Ap or both. This increase in total
nuclear reaction cross section can be related to the geometrical
area of the nucleus πR2, where R is the sum of the radii
of the target and the projectile nuclei. The nuclear radius
is connected with the mass number of the nucleus via the
relation R = r0A

1/3, where r0 = 1.36 fm, and hence one
expects σr ∝ (A1/3

t + A
1/3
p )2. Bradt and Peters [38] modified

this relation to take into account the deviations from the
experimental systematics and expressed it as σr = πr2

0 (A1/3
t +

A
1/3
p − b0)2, with b0 = 2.247 − 0.915(A−1/3

p − A
−1/3
t ). This

formula is further improved in Ref. [39] and, later on, the
Coulomb correction was also included [40]. The semiempirical
formula for calculating the total nuclear reaction cross section
[11,12] and experimental measurements [41] also show the
size dependence of σr via the masses of target and projectile
nuclei [41].

Summarizing the results of Figs. 4, 6, and 8 for some
representative reactions, we find that the total nuclear reaction
cross section increases with the increase of either the projectile
or target mass or both. Also, the maximum value of σr occurs
at a particular energy per nucleon, irrespective of the mass of
the target or projectile. Interestingly, the same conclusions are
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FIG. 9. Same as Fig. 8, but for RMF(NL3) formalism.
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FIG. 10. Comparison of the experimental differential elastic
scattering cross section with results of E-RMF(G2) and RMF(NL3)
formalisms for 12C + 208Pb reaction at incident energies of (a) 120
and (b) 200 MeV/nucleon. The experimental data, shown with error
bars, are from Ref. [45].

presented by Figs. 5, 7, and 9 for RMF(NL3), showing the
force independence of the above results. From the behavior of
our calculated total nuclear reaction cross section σr , the most
important inference for the formation of superheavy elements
that can be drawn is the following: from the increase in
σr that occurs at a particular incident energy, we can conclude
that the formation of a superheavy element is possible in some
astrophysical accreting objects, such as the relativistic jets
of γ -ray bursts (GRBs) or supernovae jets near the nascent
neutron star [3,42–44].

D. Differential elastic scattering cross sections

Evaluation of the differential elastic scattering cross section
dσ
d�

, defined in Eq. (15), is crucial to the study of scattering
phenomenon. The results of our calculations for C + Pb,
C + U, and Li + Pb systems at various incident energies are
displayed in Figs. 10–14, and the extension of this calculation
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FIG. 11. Differential elastic scattering cross section for 12C +
250U at different energies, using the E-RMF(G2) formalism .
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to the newly claimed to be discovered 292X122 nucleus with
the halo nucleus 11Li taken as the projectile, in Fig. 15 in next
subsection.

Figure 10 compares the calculated results with the experi-
mental data [45] for the 12C + 208Pb system at two incident
energies of 120 and 200 MeV/nucleon. Our calculations
are carried out using both the E-RMF(G2) and RMF(NL3)
formalisms, and they match the data reasonably well near
the zero scattering angle. However, the discrepancy with the
data increases as the scattering angle increases beyond a zero
value. In general, the calculated dσ

d�
for the two formalisms

are similar and show a qualitative agreement with the data.
A further inspection of Figs. 10(a) and 10(b) shows that the
calculated differential elastic scattering cross sections provide
a better agreement with the data at higher incident energy.

10
-3

10
-1

10
0

12
C+

235
U

12
C+

250
U

12
C+

235
U

12
C+

250
U

10
-3

10
-1

10
0

12
C+

235
U

20
C+

235
U

12
C+

235
U

20
C+

235
U

0 2 4 6 8 10 12 14
10

-3

10
-1

10
0

12
C+

238
U

20
C+

250
U

2 4 6 8 10 12 14

12
C+

238
U

20
C+

250
U

G2

E =30 (MeV/Nucleon)

θ
c.m.

(deg)

(d
σ/

dΩ
)/(

dσ
/d

Ω
) r

NL3

(b)

(d)(c)

(e) (f)

(a)

FIG. 13. Differential elastic scattering cross sections, taking C
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FIG. 14. Same as Fig. 13, but taking Li isotopes as projectiles
with different isotopes of Pb nuclei as targets.

In other words, the calculated result is closer to the data for
E = 200 than for E = 120 MeV/nucleon.

Figures 11 and 12 show similar calculations for the
12C + 250U system at the energies 30, 85, 120, 200, 325,
550, 800, and 1000 MeV/nucleon for, respectively, the
E-RMF(G2) and RMF(NL3) densities. We notice in Figs. 11
and 12 that the differential elastic scattering cross sections for
the system 12C + 250U show a large variation with incident
energy. Interestingly, the results obtained by using the two
formalisms, E-RMF(G2) and RMF(NL3), are almost identical,
and hence force-independent, for the entire energy range of
30–1000 MeV/nucleon over the large spectrum of angular
distribution, starting from 0◦ up to 15◦. The typical, Fresnel
type, diffraction effect appears in the small-angle region
(5◦–10◦ for C+U system at 30 MeV/nucleon), which is due to
the interference of Coulomb and nuclear amplitudes. On the
other hand, the oscillatory behavior of the elastic scattering
cross section at large scattering angles, as well as at higher
incident energy per nucleon, could possibly be an artifact
of some numerical instability of our calculations. However,
we have thoroughly checked our calculations for the various
inputs, such as the number of points in the Monte Carlo
integration method, etc., and find that the observed oscillations
are perhaps real.

Figures 13 and 14 give our results for some selected
cases at two incident energies of 30 and 1000 MeV/nucleon.
The systems chosen at 30 MeV/nucleon are (12C + 235U,
12C + 250U), (12C + 235U, 20C + 235U), and (12C + 238U,
20C + 250U); and at 1000 MeV/nucleon are (6Li + 208Pb,
6Li + 260Pb), (6Li + 208Pb, 11Li + 208Pb), and (6Li + 210Pb,
11Li + 260Pb). Apparently, in Fig. 13, the differential elastic
scattering cross section for C isotopes with different masses of
U nuclei at 30 MeV/nucleon of the projectile energy constitute
cases of stable+unstable, unstable+stable, stable+stable, and
unstable+unstable projectile-target systems. The left panel of
the figure is for E-RMF(G2) and right one for RMF(NL3). We
notice in Fig. 13 that, for all cases, the dσ

d�
is similar in magni-

tude for both the stable and unstable systems at small scattering
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FIG. 15. Total nuclear reaction cross sections and differential
elastic scattering cross sections, for 11Li taken as the projectile with
the isotopes 292,320X122 as targets.

angles. However, a significant increase in the differential
elastic scattering cross section appears for heavier isotopes
with the increase of scattering angle θ . This phenomenon
is more conspicuous for high-energy scattering, as shown in
Fig. 14 for different combinations of Li and Pb nuclei.

E. Applications to recently discovered superheavy elements

As already mentioned in the Introduction, recently, the
superheavy nucleus with Z =122 or 124 and mass number
A = 292 has possibly been discovered in natural Th [5]. The
estimated half-life of this isotope is T1/2 � 108 yr, which is in
good agreement with various theoretical predictions [46,47].
Therefore, taking this newly discovered nucleus as a target, it is
interesting to study the total nuclear reaction and differential
elastic scattering cross sections, with a highly neutron-rich
nucleus like 11Li as the projectile.

Figure 15 shows the σr and dσ
d�

for the systems
11Li + 292X122 and 11Li + 320X122, using both the E-RMF(G2)
and RMF(NL3) methods. We notice from this figure that,
just as before, σr increases with mass of the target, and the

magnitude of dσ
d�

decreases with scattering angle (up to
θ = 2◦) and ends in vigorous oscillations (maxima-minima)
[see Figs. 15(c) and 15(d)]. The above result is irrespective of
the formalism used. In fact, the scenario for differential elastic
scattering cross section resembles the phenomenon already ob-
served above for the known heavy elements such as Pb and U in
Figs. 10 and 11.

IV. SUMMARY

We have used the Glauber model for calculating the
total nuclear reaction cross sections with densities obtained
from RMF and E-RMF formalisms. After showing that the
calculations of total nuclear reaction cross sections performed
with the Glauber model, using RMF and E-RMF nuclear
densities as the ingredients, match the measured data nicely,
we have extended its application to the recently predicted
neutron-rich, thermally fissile uranium and thorium isotopes.
We have shown that the total nuclear reaction cross sections
decrease with the increase of incident energy of the projectile.
In most cases, the neutron-rich light mass nuclei are used
as projectiles and heavy nuclei as targets. To see the effect
of the neutron richness of the projectile in the exotic mass
region, we repeated the calculations with various projectile
masses without changing the target nucleus. We found that
the total nuclear reaction cross section increases with increase
of the projectile mass or with increase of neutron number
of the target. Such a result is valid for both the normal and
neutron-rich nuclei. Thus, our framework seems ideal for
the simple analysis of the different ranges of data on total
nuclear reaction cross sections of neutron-rich unstable nuclei.
However, unlike the total nuclear reaction cross sections, the
differential elastic scattering cross sections show marginal
changes with the change of projectile mass, exclusively in
the vicinity of the zero scattering angle.
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