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Concepts of nuclear α-particle condensation
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7Institut de Physique Nucléaire, F-91406 Orsay CEDEX, France
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Certain aspects of the recently proposed antisymmetrized α-particle product state wave function, or THSR
(Tohsaki-Horiuchi-Schuck-Röpke) α-cluster wave function, for the description of the ground state in 8Be, the
Hoyle state in 12C, and analogous states in heavier nuclei are elaborated in detail. For instance, the influence
of antisymmetrization in the Hoyle state on the bosonic character of the α particles is studied carefully. It is
shown to be weak. Bosonic aspects in Hoyle and similar states in other self-conjugate nuclei are, therefore,
predominant. Another issue is the de Broglie wavelength of α particles in the Hoyle state, which is shown to be
much larger than the inter-α distance. It is pointed out that the bosonic features of low-density α gas states have
measurable consequences, one of which, enhanced multi-α decay properties, has likely already been detected.
Consistent with experiment, the width of the proposed analog to the Hoyle state in 16O at the excitation energy
of Ex = 15.1 MeV is estimated to be very small (34 keV), lending credit to the existence of heavier Hoyle-like
states. The intrinsic single-boson density matrix of a self-bound Bose system can, under physically desirable
boundary conditions, be defined unambiguously. One eigenvalue then separates out, being close to the number
of α particles in the system. Differences between Brink and THSR α-cluster wave functions are worked out. No
cluster model of the Brink type can describe the Hoyle state with a single configuration. On the contrary, many
superpositions of the Brink type are necessary, implying delocalization toward an α-product state. It is shown
that single α-particle orbits in condensates of different nuclei are almost the same. It is thus argued that α-particle
(quartet) antisymmetrized product states of the THSR type are a very promising novel and useful concept in
nuclear physics.

DOI: 10.1103/PhysRevC.80.064326 PACS number(s): 21.60.Gx

I. INTRODUCTION

Recently, it has been pointed out that certain states in self-
conjugate nuclei around the α-particle disintegration threshold
can be described as product states of α particles, all in the
lowest 0S state. Considerable theoretical and experimental
activity has developed since this idea was first put forward
in 2001 [1]. In this article, we want to further dwell on the
basic foundations and predictions of this concept since the
usefulness of the latter has recently been questioned [2].

In Refs. [3–5], it was pointed out that in homogeneous
nuclear matter, α-particle condensation is a possible nuclear
phase. Therefore the previously mentioned α-particle product
states in finite nuclei have been proposed to be related to boson
condensation of α particles in infinite matter [3–5]. The infinite
matter study used a four-particle (quartetting) generalization
of the well-known Thouless criterion for the onset of pairing as
a function of density and temperature. The particular finding
in the four-nucleon case was that α-particle condensation can
only occur at very low densities, where the quartets do not
overlap appreciably. This is contrary to the pairing case where,
in weak coupling situations, the Cooper pairs may also strongly

mix. It is interesting to note that the low-density condition
for quartetting was, meanwhile, confirmed in Ref. [6], with a
theoretical study in cold-atom physics.

Concepts developed for infinite nuclear matter are of
value also for interpreting properties in finite nuclei and for
constructing useful approximations. As examples, we refer
to pairing, two and more body correlations, and one-body
occupation numbers. Pairing is believed to occur in neutron
stars, which are considered to be infinite neutron matter
becoming superfluid below a critical temperature. Pairing is
also a useful concept in many finite nuclei, in spite of the fact
that nuclei are not macroscopic objects. Therefore, in reality,
they are only in a fluctuating state, and we have to project,
for example, a BCS state on a definite number of nucleons.
In spite of the finiteness of nuclei, the BCS state remains a
useful approximation for the quantum state. For example, the
strong reduction of measured moments of inertia of such nuclei
compared with classical values are explained as a consequence
of superfluidity [7].

The α-particle condensed states may also be of relevance
in finite nuclei. As already pointed out, in Ref. [1] (see also
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Ref. [8]), we interpret the Hoyle state, that is, the 0+
2 state

at Ex = 7.65 MeV in 12C, as a product state of three
α particles and predict that Hoyle-like states very likely also
exist in low-density states in heavier nα nuclei, close to the nα

disintegration threshold. Examples for 16O and 20Ne have been
presented in Refs. [1,9], employing the so-called THSR wave
function, proposed by Tohsaki, Horiuchi, Schuck, and Röpke.
It is analogous to the (number-projected) BCS wave function,
replacing, however, Cooper pairs by α particles (quartets). In
addition, we showed that pure product states of α particles
in the threshold states are realized to about 70% [10–12]. We
thus define a state of condensed nα particles, if, in a nuclear
state, the latter forms are in good approximation of a bosonic
product state, all bosons occupying the lowest quantum state
of the corresponding bosonic mean-field potential.

In this article, we will further investigate the concepts and
consequences of the THSR wave function. We will carefully
study the effect of antisymmetrization on the bosonic character
of the α particles in the Hoyle state. It will be found that,
compared to the ground state, its influence is very weak, but
not negligible, and, in a sense, is necessary for the α-particle
gas state of low density to be formed and stabilized. We also
focus on measurable properties that are adequately described
in this approximation. Considering special results, we show
the usefulness of this novel type of α-cluster wave function.

The article is organized as follows. In Sec. II, we
elaborate on the difference between “Brink”- and THSR-
type wave functions and demonstrate this first for the most
simple case of 8Be. Section III is dedicated to a study of
the antisymmetrization effects between the α particles in
the Hoyle state, and in Sec. IV, the de Broglie wavelength of
α particles in the Hoyle state is studied. In Sec. V, we discuss
some measurable consequences of the bosonic character of
α particles in compound states, while Sec. VI considers
decay properties of Hoyle-like states, and Sec. VII reveals the
similarity of α wave functions in Hoyle-like states in nuclei
with different numbers of α particles. Finally, in Sec. VIII, we
conclude.

II. DELOCALIZED α-PARTICLE CONDENSATE VERSUS
LOCALIZED BRINK-TYPE WAVE FUNCTIONS

In Ref. [2], it is claimed that the proposed THSR wave
function for the description of loosely bound α-particle states
is an approximation to existing nuclear α-cluster states. The
authors essentially have in mind localized cluster states of
the Brink type [13]. In this section, we will show in detail,
presenting new investigations, that the situation is just the
contrary: States that have well-born-out nα-cluster structures
like, for example, the ground- and low-lying states of 8Be and
the Hoyle state in 12C are much more adequately described by
THSR than by Brink wave functions.

Wave functions for self-conjugate light nuclei that incorpo-
rate α-cluster substructures have been in use in nuclear physics
for about half a century [14]. Two nα nuclei have been at the
forefront of the investigations, 8Be and 12C, with two and three
α particles, respectively. The starting point has always been
practically the same, that is, for the individual α particles,

an intrinsic translationally invariant mean-field wave function
of Gaussian type, representing the free space α-particle wave
function, is taken, whereas the center of mass (cm) motion is
either determined from a full variational principle or limited
parametrized ansätze reflecting certain underlying ideas of
the α-particle motion have been assumed. Let us, therefore,
write for an nα nucleus the typical following α-cluster wave
function:

�nα(r1,1, . . . , rn,4)

= A[χ (R1, R2, . . . , Rn)

×φα1 (r1,1, . . . , r1,4) · · · φαn
(rn,1, . . . , rn,4)], (1)

where A is the antisymmetrizer, Ri is the cm coordinates of
the α particle, and

φαk
(rk,1, . . . , rk,4) ∝ exp

⎡⎣−
∑

1�i<j�4

(rk,i − rk,j )2/(8b2)

⎤⎦ ,

(2)

which is the normalized intrinsic wave function of the
α particle with a (0S)4 shell-model configuration. With b

being a variational parameter, it is well known that Eq. (2)
can describe the free α particle quite well. The α-particle
wave functions in Eq. (1) are fixed to their free-space form.
The wave function χ for the cm motion of the α particles with
Ri = 1/4(r i,1 + r i,2 + r i,3 + r i,4) is, of course, also chosen
translationally invariant; that is, it depends only on the relative
coordinates Rij = Ri − Rj or on the corresponding Jacobi
coordinates. The spin-isospin part in Eq. (1) is not written
out but rather is supposed to be of scalar-isoscalar form. We
will not mention it henceforth. As already pointed out, the
cm wave function is either determined from a full variational
calculation, minimizing the energy, or one adopts a restricted
variational ansatz. A famous example is the so-called Brink
wave function, which places the α particles at certain positions
in space [13]. For example, in the case of 8Be, this is

χBrink
R (R1, R2) ∝ exp[−(R1−R/2−(R2 + R/2))2/b2],

(3)

with an obvious generalization to the case of nα particles.
Usually, in Eq. (3), b has the same value as for the free-space
α particles, and then Eq. (3) implies that the two α particles
are placed a relative distance R apart from one another.
Though this kind of geometrical, crystallike view of the
cluster structure works well for many cases, for instance,
parity-violating 12C + α, 16O + α, and 40Ca + α structures
in 16O, 20Ne and 44Ti, respectively [15–17], and also when
neutrons are involved [18], it has been, on the contrary, known
for several decades that this picture fails for the description of
the famous Hoyle state, that is, the 0+

2 state in 12C.
Since such basic results of cluster physics may not be

common knowledge, we here want to present a study with
Brink-type cluster wave functions and also compare it with
another variational ansatz for χ with the diametrically opposite
point of view of completely delocalized α particles, namely,
the THSR wave function cited earlier [1]. There, the following
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form for χ is adopted:

χTHSR
nα (R1, R2, . . . , Rn) = χ0(R1)χ0(R2) · · · χ0(Rn), (4)

with Ri = Ri − XG, where XG = (R1 + · · · + Rn)/n is the
total cm coordinate and

χ0(R) = exp[−2(R2/B2)], (5)

which is a Gaussian with a large width parameter B of the
nucleus’s dimension. The product of n identical 0S wave
functions reflects the boson condensate character, discussed
in Sec. I. This feature is realized as long as the action of the
antisymmetrizer in Eq. (1) is sufficiently weak. It also is useful
to notice that with Eqs. (4) and (1), we can write, for Eq. (1),

�nα → 〈r1,1, . . . , rn,4|THSR〉 = A[ψα1ψα2 · · · ψαn
], (6)

where

|THSR〉 = |THSR(B)〉 ≡ A|B〉 (7)

〈r1,1, . . . , rn,4|B〉 = ψα1ψα2 · · · ψαn
, (8)

where ψαi
= χ0(R)φαi

and the definitions of Eqs. (7) and (8)
will be useful later. Equations (6)–(8) highlight the analogy
of the THSR wave function with the number-projected BCS
wave function for pairing

〈r1,1, . . . , rn,2|BCS〉 = A[φpair(r1,1, r1,2)

· · · φpair(rn,1, rn,2)], (9)

where φpair(r i,1, r i,2) is the Cooper pair wave function.
This type of condensate wave function has known, in the

meantime, considerable success, notably with an accurate
description of the Hoyle state, proposing it as the first of a
series of excited states in nα nuclei with α-particle product
character. Usually, one employs Jacobi coordinates ξ i , and
then the THSR ansatz for χ is given by

χTHSR
nα = exp

(
−2

n−1∑
i=1

µi

ξ 2
i

b2 + 2β2

)
, (10)

where µi = i/(i + 1). A slight generalization of Eq. (10) is
possible, taking into account nuclear deformation (see the
subsequent discussion).

Before discussing the Hoyle state, we want to study 8Be
in some detail because even this nucleus, which is known to
have intrinsically a two-α dumbbell structure, can very well be
described in the laboratory frame with the delocalized THSR
wave function. Let us repeat Eq. (1) for this particular case:

�2α = A[χ (R12)φα1φα2 ], (11)

with R12 = R1 − R2. Note that Eq. (11) is a fully antisym-
metric and translationally invariant wave function in 8 − 1 = 7
coordinates. Minimizing for a given Hamiltonian with N -N
forces and Coulomb force [14], the ground-state energy with
respect to χ leads straightforwardly to a Schrödinger-type
equation for χ , corresponding to the resonating group method
(RGM) [19,20]:

〈φα1φα2 |Ĥ − E|A[χ (r)φα1φα2 ]〉 = 0. (12)

With the usual definition of RGM, this equation is transformed
into a standard Schrödinger equation for the wave function

−0.2

0.0

0.2

0.4

0.0 5.0 10.0 15.0

Ψ
2α

(r
) [

fm
−3

/2
]

r [fm]

Full (RGM)

Brink (R=3.45)

FIG. 1. (Color online) Radial parts of wave functions �2α(r) for
the full RGM solution (full line) and single Brink component with
R = 3.45 fm (dotted line). The Volkov force no. 1 is taken with
Majorana parameter value M = 0.56.

�2α(r) of the relative motion of the two α particles:∫
d r ′h̃(r, r ′)�2α(r ′) = E�2α(r), (13)

�2α(r) =
∫

d r ′n1/2(r, r ′)χ (r ′), (14)

h̃(r, r ′) =
∫

d r1d r ′
1n

−1/2(r, r1)

×h(r1, r ′
1)n−1/2(r ′

1, r ′), (15)

where

n(r, r ′) = 〈
δ(R12 − r)φ2

α|A[
δ(R12 − r ′)φ2

α

]〉
h(r, r ′) = 〈

δ(R12 − r)φ2
α|Ĥ |A[

δ(R12 − r ′)φ2
α

]〉
. (16)

In Eq. (16), Ĥ is the microscopic Hamiltonian under
consideration, and φα1φα2 is abbreviated by φ2

α .
As mentioned, Eqs. (12) and (13) have been solved with

very high accuracy for the past 50 years, with excellent results
for all low-energy properties of 8Be [14]. The radial part of the
wave function �2α(r) is shown in Fig. 1 by the full line. We
see that there exist two nodes, an effect that stems from the
Pauli principle. We will now discuss two approximate forms
for χ (r), which are based on the two diametrically opposite
views of the nature of 8Be already mentioned: the THSR wave
function and the Brink cluster wave function. Let us start with
the latter. We have, from Eq. (3),

χBrink
R (r) = P̂ J=0 exp

[
− 1

b2
(r − R)2

]
, (17)

where P̂ J=0 is the projection operator on J = 0. In Eq. (17),
R is a parameter that allows us to place the two α particles
a distance R apart, and r is the relative coordinate between
the two α particles, that is, r = R1 − R2. This ansatz seems
reasonable since the microscopic calculation of Ref. [21]
indeed indicates that the two α particles are about 4 fm
apart. Obviously, the parameter R can be varied to find the
optimal position of the α particles. The result of such a
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FIG. 2. (Color online) Binding energy given by the wave function
�2α and the squared overlap between �2α and �2α . For n = 1, a single
Brink wave function with optimized R = 3.45 fm is adopted. See text
for definition of �2α and �2α . The Volkov force no. 1 is taken with
Majorana parameter value M = 0.56.

procedure is shown in Fig. 1, with the dotted line taking the
optimal value R = 3.45 fm (b is kept fixed at its free-space
value, b = 1.36 fm). Qualitatively, such a Brink wave function
follows the full variational solution (full line). However, in the
outer part, for instance, in the exponentially decaying tail,
quite strong differences appear. The squared overlap with the
exact solution is 0.722. Of course, such Brink wave functions
can also serve as a basis, and it is interesting to study the
convergence properties. We therefore write, for the 8Be wave
function appearing in Eq. (12),

�2α = A[χ (r)φα1φα2 ] =
∑

i

fi�
B
2α

(
r, R(i), b

)
(18)

�B
2α

(
r, R(i), b

) = A
[
χBrink

R(i) (r)φα1φα2

]
, (19)

where the R(i) indicates the various positions of the α particles
and fi are the expansion coefficients. The convergence of the
squared overlap with the exact solution is studied where we
take the positions R(1) = 1 fm, R(2) = 2 fm, . . . , R(n) = n

fm. We start with n = 5. In Fig. 2, the convergence rate is
shown as a function of n of the squared overlap with the exact
solution, and same for the energy. The point of n = 1 is with
the optimized single Brink wave function [R(1) = 3.45 fm]. We
see that the convergence is not extremely fast, but for n = 20,

the squared overlap with the full RGM solution amounts to
0.9999. Also, energy is converged to within 10−4. In Fig. 3,
we show the convergence of the wave function r�2α(r). In the
inset, we see that there is still a slight change in the far tail
going from n = 25 to n = 30.

Let us now investigate the THSR ansatz for χ (r). There
it is assumed from the beginning that the α particles are
delocalized, and a single Gaussian e−r2/B2

centered at the
origin with, however, a large width B2 = b2 + 2β2, with
β being a variational parameter, is taken. Very much improved
results over the single-component Brink wave function are
obtained. With β = 3.24 fm, the squared overlap becomes
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FIG. 3. (Color online) Comparison of THSR wave function with
single-component Brink wave function (n = 1). The convergence
rate with the superposition of several (n) Brink wave functions is also
shown (see text for more details).

97.24%. However, practically 100% accuracy, compared with
the exact solution, can be achieved starting with a slightly
improved ansatz, that is, with an axially symmetric deformed
Gaussian, which is then projected on the ground-state spin
J = 0 (projections on J = 2, 4 yield the rotational band of
8Be) [22]:

χTHSR(r) = P̂ J=0 exp

(
− r2

⊥
b2 + 2β2

⊥
− r2

z

b2 + 2β2
z

)
∝ exp(−r2/B2

⊥)

ir
Erf

(
i
(B2

z − B2
⊥)1/2

B⊥Bz

r

)
, (20)

with B2
i = b2 + 2β2

i and r2
⊥ = r2

x + r2
y , and Erf(x) is the error

function. The second line of Eq. (20) is obtained from a simple
calculation.

Such an intrinsically deformed ansatz is, of course, physi-
cally motivated by the observation of the rotational spectrum
of 8Be, indicating a large value of the corresponding moment
of inertia. The minimization of the energy yields β⊥ = βx =
βy = 1.78 fm and βz = 7.85 fm. With these numbers, the
squared overlap between the exact �2α and �THSR

2α is, with
0.9999, extremely precise.1 In Fig. 3, we also show that the
THSR wave function agrees almost completely, even far out in
the tail, with the “exact” solution with 30 Brink components.
At the scale of the figure, exact and THSR wave functions
cannot be distinguished. Let us also mention that beyond
r ∼ 3.5–4.0 fm, χTHSR and �2α become practically identical
in shape, except for a difference of normalization, meaning that
approximately from the maximum on, the α particles are no
longer influenced by antisymmetrization and behave as pure
bosons.

1The 2α wave function given in Ref. [22] as the exact 2α RGM
solution is different from the one given here. We now realize that
to get a better solution, that is, a better energy convergence within
100 eV, we should also include the components of the Brink wave
function with values of R as far as 30 fm, whereas previously, Brink
components only up to R = 12.5 fm have been adopted.
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FIG. 4. (Color online) Probability distributions |r�2α(r)|2 for
the THSR and single-component Brink (denoted as n = 1) wave
functions and for the full RGM solution. At the scale of the figure,
the two curves of THSR and RGM are indistinguishable. They are
normalized as

∫
dr|r�2α(r)|2 = 1.

As we saw earlier, the single-component, two-parameter
THSR ansatz [Eq. (20)], for the relative wave function
of two α particles, seems to grasp the physical situation
extremely well. The most important part of this wave func-
tion is the outer one beyond some 3 fm. There, the two
α particles are in an S wave of essentially Gaussian shape.
The corresponding harmonic oscillator frequency is estimated
to be h̄ω ∼ 2 MeV. Therefore, as long as the two α particles
do not overlap strongly, they swing in a very low frequency
harmonic oscillator mode in a wide and delocalized fashion,
reminiscent of a weakly bound dimer state. Inside the region
r < 2–3 fm, where the two α particles heavily overlap, because
of the strong action of the Pauli principle, the relative wave
function has two nodes and small amplitude, as shown in
Fig. 3. Contrary to the outer part of the wave function
determined dynamically, the behavior of the relative wave
function in this strongly overlapping region is determined
kinematically, solely reflecting the r dependence of the norm
kernel in Eq. (16). This is clearly seen from the fact that
both THSR and Brink wave functions have very nearly
the same behavior in this region. It is also instructive to
show the probability |r�2α(r)|2, which is presented in Fig. 4.
We see that the latter is practically zero for r < 2–3 fm,
reminiscent of the excluded volume picture that is sometimes
adopted when the α particles are treated as pure bosons [23].
Let us repeat: The α particles in 8Be move practically as pure
bosons in a relative 0S state of very low frequency, as long as
they do not get in one another’s way, that is, as long as they
do not overlap. One should stress that this picture holds after
projection on good total momentum and good spin, that is, in
the laboratory frame. It is equally true, as already mentioned,
that in the intrinsic frame, 8Be can be described as a strongly
deformed two-α structure [see ansatz Eq. (20)], reminiscent of
a dumbbell.

For the Hoyle state, it has long been known that the situation
is qualitatively similar, with, however, a much reduced action

FIG. 5. Structure of the 0+
2 state in 12C shown by the overlap

between the standard Brink cluster wave function of the isosceles
configuration and the exact 0+

2 wave function. Figure is adapted from
Ref. [24].

of the Pauli principle (see the subsequent discussion). In the
work by Uegaki and colleagues [15,24], a contour plot of
the overlap between a Brink-type wave function and the full
RGM solution for χ of Eq. (1) is shown. We reproduce this
as Fig. 5. It is seen that the overlap between the standard
cluster wave function and the exact solution is quite poor. In
the best case, the squared overlap reaches only about 50%.
The authors of that article, which dates three decades back, in
view of their finding in Fig. 5, make the following significant
statement to characterize the situation: “The 0+

2 state has a
distinct clustering and has no definite spatial configuration.
In other words, 12C is dissociated in the 0+

2 state into weakly
interacting three α-clusters, which can be considered as a three
boson system.” The situation is also highlighted in a recent
work by Chernykh et al. [25], in which about 55 components
of the Brink-type wave functions are needed to reproduce
the full RGM solution for the Hoyle state accurately, that is,
considerably more than in the case of 8Be.

In what concerns the THSR wave function for the de-
scription of the Hoyle state, the situation is slightly more
complicated by the fact that the loosely bound three-α
configuration is now no longer the ground state, but rather
the 0+

2 state at 7.65 MeV excitation energy. We therefore have
to minimize the energy with the THSR wave function

χTHSR
3α = exp

[
−2

2∑
i=1

µi

(
ξ 2
i⊥

b2 + 2β2
⊥

+ ξ 2
iz

b2 + 2β2
z

)]
,

(21)

where ξ 1,2 are the two Jacobi coordinates and µ1 = 1/2,
µ2 = 2/3, under the condition that the 3α wave function �3α

is orthogonal to the ground state. �3α , to be used for the
minimization of the width parameters, can be schematically
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written as

�THSR
3α ∝ P̂ J=0P̂

(g.s.)
⊥ A

[
χTHSR

3α φ3
α

]
, (22)

where P̂
(g.s.)
⊥ keeps Eq. (22) orthogonal to the ground-

state configuration, that is, P̂
(g.s.)
⊥ = 1 − |0+

1 〉〈0+
1 |. The wave

function thus obtained has 99.3% squared overlap2 with the
full RGM solution of Fukushima and Kamimura [26]. The
corresponding width parameters have the following values:
β⊥ = 5.3 fm and βz = 1.5 fm (see Footnote 2). It should be
pointed out that the THSR wave function [Eq. (21)] is again of
Gaussian type, with a wide extension centered at the origin. It
is completely different from a Brink-type wave function, with
the three α particles placed at definite values in space. A slight
improvement of Eq. (22) can still be achieved in taking the
βi parameters as Hill-Wheeler coordinates and superposing a
couple of wave functions of the type of Eq. (22) with different
width parameters. Practically 100% squared overlap with the
wave function of the full RGM result of Fukushima and
Kamimura [26] is then achieved, as documented in Ref. [27].
It should be pointed out that the superposition of several
Gaussians of the type of Eq. (21) does not at all change
the physical content of the THSR wave function as a wide
extended distribution centered around the origin. As we now
have three α particles, all in relative S states, one can begin to
talk about coherent features, that is, all α particles occupying
the same 0S orbit. Of course, the Pauli principle is acting,
however weakly, and the 0S orbit is still occupied to over 70%
(see Refs. [10,11,23] and discussion in Sec. VII).

We also would like to attract the attention of the reader to the
following important point: In spite of the fact that the THSR
wave function describes 8Be very well, it is, of course, clear
that no α-particle condensate aspect can be present with only
two α particles. This is also borne out by the fact that in 8Be,
the α-particle wave function still features quite strongly in the
Pauli principle, with the two nodes seen in Fig. 1. On the other
hand (see Fig. 14 in Sec. VII), in 12C and 16O, the α-particle
wave functions in the condensate states have almost pure 0S

wave character, and thus the influence of the Pauli principle
is much reduced (see Sec. III) and the bosonic condensate
feature is borne out. This stems from the fact that, for example,
in the Hoyle state, the α particles are, on average, about 70%
(see Fig. 5) farther apart than in 8Be, and also that the Hoyle
state has to be orthogonal to the ground state of 12C, whereas
the α structure in 8Be represents the ground state itself.

Increasing the number of α particles, the full RGM solution
is not possible any longer. However, because of the relative
simplicity of the THSR ansatz, analogs to the Hoyle state
have been found in 16O, 20Ne, always situated close to the nα

disintegration threshold [9,12]. Owing to the high agreement

2The reason why the present value for the squared overlap is
different from 0.97, which was given in Ref. [27], is as follows:
In Ref. [27], for the ground-state configuration used in the projection
operator P̂

(g.s.)
⊥ , we took the wave function that corresponds to the

minimum of the energy surface in Fig. 1 of Ref. [27]. However, in
the present definition of P̂

(g.s.)
⊥ , we use the ground-state solution of

the Hill-Wheeler equation in the two-parameter space of β⊥ and βz.

FIG. 6. (Color online) Pictorial representation of the THSR wave
function for n = 3 (12C). The three α particles are trapped in the 0S

state of a wide harmonic oscillator (B), and the four nucleons of each
α are confined in the 0s state of a narrow oscillator (b). All nucleons
are antisymmetrized.

with the full RGM results in the 8Be and 12C cases, one can
expect that the THSR wave function also gives accurate results
for the heavier systems, grasping well the physical situation
of loosely bound α particles moving in identical 0S orbits.
Naturally, the condensate aspect is realized more the larger the
number of α particles.

Concluding this section, one may simply repeat the well-
known knowledge that the weakly bound nα-particle states
around the nα disintegration threshold are not at all correctly
described by standard α-cluster wave functions with a crystal-
like structure of the α particles; rather, the condensate aspect
is dominant and imposes itself as the correct interpretation.
For example, the Hoyle state can be seen as three almost inert
α particles moving in their own mean-field potential, to good
approximation, given by a wide harmonic oscillator, whereas
the α particles are represented by four nucleons captured in
narrow harmonic potentials. The situation is given as a cartoon
in Fig. 6.

III. INFLUENCE OF ANTISYMMETRIZATION

As already pointed out in the previous sections, a crucial
question is whether, for the Hoyle state, the THSR wave
function [Eq. (1)] together with Eq. (4) can be considered to
good approximation as a product state of α particles condensed
with their cm motion into the 0S orbital. For this, one has to
quantify the influence of the antisymmetrizer A in Eq. (1). To
a certain extent, this question was already answered in earlier
works [11]. For instance, in Ref. [11], the single α-particle
density matrix ρ(R,R′) was constructed and diagonalized for
the Hoyle state. The result was that the α particles occupied the
0S orbit to over 70%. The same result was later obtained with
the so-called orthogonality condition model (OCM), which
is a very well tested method to describe cluster states [28].
Because of the importance of this result in the present context,
we present it again in Fig. 7.

We see that for the ground state, the occupation number
distribution agrees with the SU (3) shell model picture (see
Ref. [10]), whereas for the Hoyle state, the occupation of the
0S cm wave function of the α particle is, as mentioned, over
70%. It is also important to notice that no other state is occupied
with more than about 7%, meaning that the occupation of all
other states is down by at least a factor of 10. This is a typical
scenario for Bose condensed states.
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FIG. 7. (Color online) Occupation of the single-α orbitals of the
Hoyle state of 12C compared with the ground state [10].

A more direct way to measure the influence of antisym-
metrization is to consider the following expectation value of
the antisymmetrizer A:

N (B) = 〈B|A|B〉
〈B|B〉 , (23)

where |B〉 is the THSR wave function [Eq. (6)] without
the antisymmetrizer, that is, |ψα1ψα2ψα3〉 [see Eq. (8)]. The
normalization of the antisymmetrizer A is chosen [29] so that
N (B) becomes unity in the limit where the intercluster overlap
disappears, that is, for the width parameter B → ∞.

In Fig. 8, we show the expectation value N (B) [Eq. (23)]
of A as a function of the width parameter B. We chose, as
optimal values of B for describing the ground and Hoyle
states, B = Bg = 2.5 fm and B = BH = 6.8 fm, for which the
THSR states best approximate the ground state |0+

1 〉 and the
Hoyle state |0+

2 〉, respectively, which are obtained by solving
the Hill-Wheeler equation. In fact, the normalized THSR
state, |THSR(B)〉/√〈THSR(B)|THSR(B)〉, gives the largest
squared overlap 0.93 with the ground state |0+

1 〉 at B = Bg .
Similarly, it gives the largest squared overlap 0.78 with the
Hoyle state |0+

2 〉 at B = BH .
We should mention that Bg �= b since the ground state

contains α-like correlations that lower the energy with respect
to the limit of a pure Slater determinant (B = b = 1.35 fm) by
roughly 5% [1,27]. We see from Fig. 8 that N (BH ) ∼ 0.62
and N (Bg) ∼ 0.007, which indicates that the influence of
antisymmetrization is strongly reduced in the Hoyle state
compared with the influence in the ground state.

It is worth having a closer look at the behavior of N (B). It
is seen that first, this function rises very steeply, whereas for
B > BH , the rise is much slower, reflecting the fact that the
contribution from the one-nucleon exchange term very slowly
fades out [30].

An important point in the present considerations is that
the THSR wave function for B = BH is not automatically
orthogonal to the ground state. This is contrary to the situation
with condensed cold bosonic atoms, for which the density is
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FIG. 8. (Color online) The expectation value of the antisym-
metrizer for the product state |B〉. The values at the optimal B values,
Bg for the ground state and BH for the Hoyle state, are denoted by a
circle and a cross, respectively. See the text for the definition of |B〉,
Bg , and BH .

so low that the overlap of the electron clouds can, on average,
be totally neglected. It is nevertheless interesting to calculate
the following overlap of |THSR〉 with the ground state |0+

1 〉,
obtained by solving the Hill-Wheeler equation, or with |Bg〉,
as a function of B:

O(0+
1 , B) = |〈0+

1 |THSR〉|2
〈THSR|THSR〉

O(Bg,B) = |〈THSR(Bg)|THSR(B)〉|2
〈THSR(Bg)|THSR(Bg)〉〈THSR(B)|THSR(B)〉 .

(24)

From Fig. 9, we find that for both cases, the overlap is less
than 0.12, indicating that orthogonality with the ground state
is nearly realized.
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FIG. 9. (Color online) The squared overlap of the state |B〉 with
the ground state and |Bg〉. The values at the optimal B values, Bg and
BH for the ground and Hoyle states, respectively, are marked by a
circle and a cross, respectively. See the text for the definition of |B〉,
|Bg〉, Bg , and BH .
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FIG. 10. (Color online) The binding energies for |THSR(B)〉 and
|B〉 as a function of B, denoted by E(B) and Eboson(B), respectively.
See the text for the definition of E(B) and Eboson(B). They are
measured from the calculated 3α threshold energy, Eth = 3Eα =
−82.04 MeV, where Eα is the binding energy of the intrinsic
α particle. Volkov force no. 2 [31] with Majorana parameter M =
0.59 and b = 1.35 fm are adopted as used in Refs. [26,27]. The
values at the optimal B values, Bg and BH for the ground and Hoyle
states, respectively, are marked by a circle and a cross, respectively.

In Fig. 10, the energy curves for the THSR wave function
with and without the antisymmetrizer are shown, where

E(B) = 〈THSR|H |THSR〉
〈THSR|THSR〉 = 〈B|HA|B〉

〈B|A|B〉
Eboson(B) = 〈B|H |B〉

〈B|B〉 . (25)

They are measured from the 3α threshold energy, Eth = 3Eα =
−82.04 MeV, where Eα is the binding energy of the intrinsic
α particle [26,27], obtained with the use of Volkov force
no. 2 [31]. The second equality for E(B) in Eq. (25) holds
because of the relation [H,A] = 0. The minimum for E(B) is
given at B = Bg , which corresponds to the ground state. The
minimum energy E(Bg) − Eth = −5.64 MeV, as also shown
in Ref. [27]. On the other hand, Eboson(B) − Eth ∼ −100 MeV
gives unphysically large binding at small B values around
Bg , indicating that antisymmetrization plays an important role
for the ground state. As B increases, however, the energy
drastically gets smaller, and for B = BH , we have Eboson(B) −
Eth = −17.5 MeV. This means that, compared with the ground
state at B ∼ Bg , the effect of antisymmetrization is much
reduced for the Hoyle state. It is, however, still essential to
get the energy back on the spot.

It is very important to point out that in this energy curve
E(B), the second minimum corresponding to the Hoyle state
is not present. This is because the THSR state with B = BH ,
|THSR(BH )〉, still includes the ground-state components of
about 10% what we have seen in Fig. 9. In fact, if we calculate
the binding energy

EP (B) = 〈P̂ (g.s.)
⊥ THSR|H |P̂ (g.s.)

⊥ THSR〉
〈P̂ (g.s.)

⊥ THSR|P̂ (g.s.)
⊥ THSR〉

, (26)

-6

-4

-2

0

2

4

2 4 6 8 10 12 14

[M
eV

]

B [fm]

EP(B)−Eth

E(B)−Eth

FIG. 11. (Color online) The binding energy in the orthogonal
space to the ground state, denoted by EP (B), together with E(B)
in the previous figure. See the text for the definition of EP (B).
They are measured from the calculated 3α threshold energy, Eth =
−82.04 MeV. Volkov force no. 2 [31] with Majorana parameter
M = 0.59 and b = 1.35 fm are adopted as used in Refs. [26,27].
The values at the optimal B values, Bg and BH for the ground
and Hoyle states, respectively, are marked by a circle and a cross,
respectively.

where the explicit orthogonalization to the ground state is taken
into account for the THSR state, with P̂

(g.s.)
⊥ = 1 − |0+

1 〉〈0+
1 |,

like in Eq. (22), there appears the minimum corresponding to
the Hoyle state at B ∼ BH , as shown in Fig. 11. This is also
discussed in Ref. [24], in which Brink-type 3α wave functions
are used. We should also mention that the Hoyle state is much
better approximated by |P̂ (g.s.)

⊥ THSR(B)〉 than by |THSR(B =
BH )〉, with proper normalization factors for both states. The
former state gives the largest squared overlap with the Hoyle
state, 0.91 for B = 6.1 fm, which should be compared with
0.78 for the latter, a value already mentioned earlier. Thus
the small admixture of the ground-state components for the
THSR state is never negligible, and the explicit elimination
by P̂

(g.s.)
⊥ plays an essential role to describe the Hoyle state.

It is thus true that the effect of the antisymmetrization is not
negligible even for the Hoyle state in a sense that the projection
operator P̂

(g.s.)
⊥ includes the compact ground-state compo-

nents, which are strongly subject to the antisymmetrizer.
Nevertheless, it is worth emphasizing that as a result of the
explicit orthogonalization to the ground state, the Hoyle state
cannot have a compact structure but has a dilute density,
for which, in the end, the effect of antisymmetrization is
small.

Therefore let us point out again that the Hoyle state is to
good approximation in a product state of three α particles:
About 70% of the α particles are in the 0S orbit. Only fewer
than 30% of the three α particles are not in the bosonic
product state, a fact owing to antisymmetrization. According
to Ref. [32], it is expected that in heavier self-conjugate nuclei,
the α particles are still farther apart because the stronger
Coulomb repulsion lowers the Coulomb barrier. Thus even
less influence of antisymmetrization is expected in heavier
Hoyle-like states.
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IV. DE BROGLIE WAVELENGTH OF α-PARTICLES IN
THE HOYLE STATE

In this section, we show, based on results of detailed
microscopic calculations, that the de Broglie wavelength λ is
larger by almost an order of magnitude than the inter-α-particle
distance of about 3–4 fm.

The de Broglie wavelength of the α particles moving in
the Hoyle state can be estimated from the resonance energy
of 8Be being roughly 100 keV. Otherwise, one can estimate
the kinetic energy of the α particles from a bosonic mean-field
picture using the Gross-Pitaevskii equation [32]. Figure 3 in
Ref. [32] shows the mean-field potential of α particles in the
Hoyle state, with an indication of the position of the single
α-particle energy (180 keV). The kinetic energy of the single
α particle is calculated to be 380 keV. From this, the de Broglie
wavelength λ = h/(2MαE)1/2 is estimated to be of a lower
limit of approximately 20 fm. A more reliable estimate of
the de Broglie wavelength is obtained using the expectation
value of k2 for the wave number k of the α particle in the
Hoyle state, evaluated from the momentum distribution of the
α particle, ρ(k), in Fig. 12, obtained by a 3α OCM calculation
[10]. The result is λ = 2π/

√
〈k2〉 ∼ 20 fm, consistent with the

previous value. These estimates all indicate that the de Broglie
wavelength is much longer than the inter-α-particle distance,
favoring a mean-field approach.

All these facts make the Bose aspects of the α particles,
in the sense defined in Sec. I, plausible, and they may reveal
specific features of coherence, as implied by the notion of a
bosonic product state. In the case of nuclear pairing, where the
number of bosonic constituents, namely, the Cooper pairs, is
finite and not much larger than the number of α particles
in light, self-conjugate nuclei, the collective properties of
the 0+ ground states and the coherence of these states have
been revealed experimentally very early, the most conspicuous
example being the strong reduction of the moment of inertia
of superfluid deformed nuclei from its classical value and the
strong enhancement of the two-neutron transfer to the ground
states [7,33]. The even-odd staggering in the nuclear masses
reveals pairing, but not necessarily coherence properties of the
pairing state. All these effects of superfluidity are difficult to

FIG. 12. Momentum distribution of the α particle in the Hoyle
state [10].

put into evidence for α-particle condensates for the simple
reason that they are resonances around the α disintegration
threshold with a finite lifetime. However, instead of pair
transfer, one can observe α decay. Similar to two-neutron
transfer, because of phase coherence, once a first α particle
leaves the nuclear system, the probability that a second, third,
and so on will be emitted should be enhanced. This is precisely
what we want to report in the following.

V. MEASURABLE CONSEQUENCES OF LOOSELY BOUND
α-PARTICLE STATES

It is of great importance and interest to discuss eventual
measurable consequences for the signature of boson conden-
sates in nuclei. So far, practically all measured quantities of
the Hoyle state in 12C have been reproduced with the
THSR wave function with rather good accuracy, without any
adjustable parameter [27]. For instance, it can be affirmed that
the Hoyle state has quite dilute density, about only 1/3–1/4
of the density of the ground state of 12C. The density of the
Hoyle state is about the same, or slightly less than, the density
of 8Be. To illustrate this dramatic effect, it is sufficient to state
that the density at the origin is only half of the density in
the ground state of 12C [26]. This fact alone suggests that in
the Hoyle state and other similar states in heavier nα nuclei
mentioned earlier, there is enough space that nucleons cluster
into three α particles. The latter mostly interact via the 8Be
resonance.

We will now give new interpretations of older experiments
involving multiple α-particle decay out of compound states,
which reveal coherence effects of an nα-particle gas. The
idea is that in excited states of heavier N = Z compound
nuclei above a certain excitation energy, a low-density state of
α particles can be formed, in a mixed phase of fermions
and bosons [34]. Such states can also be formed on top
of an inert core like, for example, 16O or 40Ca. The decay
process is expected, in light of the present considerations, to
show special features, as exemplified later. In particular, the
multiple α decay observed does not correspond to results of
the Hauser-Feshbach theory of compound nuclear decay.

Previous studies of 8Be emission from excited compound
nuclei [35–37] with particle-γ coincidences have shown
strong effects in the γ spectra, if statistical α-α emission
was compared with 8Be emission. In these experiments,
the multiple emission of α particles is registered with the
ISIS-�E-E particle detection array, in coincidence with the
γ decay of the residual nuclei registered with the γ detector
array GASP at the Laboratorii Nationale di Legnaro (Italy).
As an example, we cite the reaction 28Si + 24Mg → 52Fe at
130 MeV [36], forming a compound nucleus at the excitation
energy Ex = 76 MeV. For the α-α correlations in these
experiments, an enhancement is observed when they are
emitted in the same direction. In view of the opening angle
(27◦) of one individual telescope of the ISIS-�E-E system
(42 telescopes), we were able to detect the spontaneous decay
of the unbound states just at the decay thresholds, namely, of
the 8Be and 12C∗(0+

2 ) states, into two and three α particles,
respectively. The decay energies give relative energies of less
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FIG. 13. (Color online) Coincident γ spectra gated with �E-E signals with the emission of three random αs in different detectors, in
comparison with the spectrum obtained by the 12C∗(0+

2 ) gate, as indicated in Ref. [36]. The reaction is 28Si + 24Mg at 130 MeV. Note the
additional 36Ar line in the lower spectrum, which indicates an additional emission of one α. Figure is adapted from Ref. [36].

than 100 keV, and opening angles result, which fit into the
solid angle of a single telescope. The corresponding coincident
(particle-gated) γ decays are compared with the spectra
obtained from statistical α-particle emission into different
telescopes, but with the same α multiplicity.

This particularly striking effect is illustrated in Fig. 13 in
the case of the previously mentioned reaction 28Si + 24Mg →
52Fe → 40Ca + 3α. We compare the 12C∗ emission (lower
spectrum shown in Fig. 13) with that triggered by the statistical
decay with three random α particles (here the γ spectra are
dominated by transitions in 40Ca and 39K). Quite conspicuous
additional γ rays of 36Ar appear in the spectrum gated with
12C∗ emission, implying that a fourth α particle is emitted,
which is not predicted in the Hauser-Feshbach approach for
statistical compound decay.

Further explanation of the observed effect within the
concept of a gas of almost ideal bosons in 52Fe (in this
case, with a 40Ca core) has been proposed in Ref. [38]. If
such a compound state is formed in the cited reaction, its
characteristic feature is a large radial extension with a very
large diffuseness of the density distribution. With the large
diffuseness of the potential, the calculation for the emission
of the 12C∗ resonance gives a dramatic lowering of the
emission barrier; as compared to the statistical multi-α-particle
emission, it amounts to more than 10 MeV. Thus the residual
nucleus (40Ca) is populated at much higher excitation energy,
and further α decay can occur.

The coherent properties of the threshold states consisting
of α particles interacting via their resonances [34] are due to
properties of the 8Be ground state or the 12C∗(0+

2 ) state. As
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reported in Sec. IV, the α particles have a large de Broglie
wavelength of relative motion of λ = h/(2MαE)1/2 ∼ 20 fm
or more. In the decay of the compound nucleus, the decay steps
are usually statistically independent, and thus the α particles
leave the nucleus one by one. However, for the coherent state,
the α particles already exist (large spectroscopic factors), and
their wave functions overlap coherently; the decay may be a
simultaneous nα decay, keeping the phase relations of their
relative motion. In this way, the Coulomb barrier also gets
lowered, a fact that further enhances the decay probability.
This leads to the observed unbound resonances of 8Be and
12C∗(0+

2 ). This result can be interpreted as the observation of
bosonic coherence in the compound nucleus.

Such enhanced decays have also been observed in studies
of 8Be emission [35,37,39] with the corresponding gated
γ spectra. When compared with the statistical decays into two
α particles, additional γ transitions are observed. At the time of
these experiments, the discussion of α-particle coherence was
not considered, and attempts to explain the observed effects
within the extended Hauser-Feshbach formalism failed [37].

To summarize, we can state that future dedicated ex-
periments with �E-E telescopes, in coincidence with an
efficient γ detection array, as described, may be well suited
to establishing the existence of THSR-type states in excited
N = Z nuclei.

VI. DECAY PROPERTIES

One may ask the question whether Hoyle-like states in
nuclei heavier than 12C can exist. An argument can be based
on the fact that the α-particle condensate states occur near
the α-particle disintegration threshold, which rapidly grows in
energy with mass, and thus the level density in which such a
condensate state is embedded rises enormously. For example,
the α disintegration threshold in 12C is at Ex = 7.27 MeV,
and in 16O, it is already at Ex = 14.4 MeV. Under ordinary
circumstances, this could mean that the α-particle THSR
state in 16O, which we suppose to be the well-known 0+
state at Ex = 15.1 MeV [12], has a very short lifetime, and
in Ref. [2], a Fermi gas estimate is made in this respect.
However, on one hand, it is a fact that the supposed 16O
“Hoyle” state at Ex = 15.1 MeV has experimentally, for such
a high excitation energy, a startling small width of 160 keV,
and on the other hand, it is easily understandable that such
an exotic configuration as four α particles moving almost
independently within the common Coulomb barrier has great
difficulty for decay into states lower in energy that all have
very different configurations. How else could one explain such
a small width of a state this high up in energy? It is precisely
one of the strong indications of Hoyle-like states that they
should be unusually long-lived. It is furthermore well known
that the Hoyle state cannot be explained even with the most
advanced shell-model calculations. Its energy comes at 2–3
times its experimental value [40]. This is a clear indication
that shell-model configurations only couple extremely weakly
to α gas states. One can argue that many of the states in 16O
below Ex = 15.1 MeV are of shell-model type. There are also
α-12C configurations, but since 12C also has a shell-model

TABLE I. Partial α widths in the 0+
6 state of 16O decaying into

possible channels and the total width. The reduced widths defined in
Eq. (28) are also shown. Variable a is the channel radius.

12C(0+
1 ) + α 12C(2+

1 ) + α 12C(0+
2 ) + α Total

(a = 8.0 fm) (a = 7.4 fm) (a = 8.0 fm)

�L (keV) 26 8 2 × 10−7 34
θ 2
L(a) 0.006 0.004 0.15

configuration, it is again difficult for the four α condensate
states to decay into.

Let us make a more quantitative estimate of the decay width
of the Ex = 15.1 MeV state. On the basis of the R-matrix
theory [41], the decay width �L can be given by the following
formulas:

�L = 2PL(a)γ 2
L(a),

PL(a) = ka

F 2
L(ka) + G2

L(ka)
,

γ 2
L(a) = θ2

L(a)γ 2
W(a),

γ 2
W(a) = 3h̄2

2µa2
, (27)

where k, a, and µ are the wave number of the relative motion,
the channel radius, and the reduced mass, respectively, and
FL, GL, and PL(a) are the regular and irregular Coulomb
wave functions and the corresponding penetration factor,
respectively. The reduced width of θ2

L(a) is related to the wave
function �(0+

6 ) of the α condensate in 16O obtained as the
sixth 0+ state in Ref. [12], as follows:

θ2
L(a) = a3

3
Y2

L(a)

YL(a) =
〈[

δ(r ′ − a)

r ′2 YL(r̂ ′)�L(12C)

]
0

∣∣∣∣�(0+
6 )

〉
, (28)

where �L(12C) is the wave function of 12C, given by the 3α

OCM calculation [10]. In Table I, we show the partial α-
decay widths of the 0+

6 state �L decaying into the α + 12C(0+
1 ),

α + 12C(2+
1 ), and α + 12C(0+

2 ) channels; total α-decay width,
which is obtained as a sum of the partial widths; and reduced
widths θ2

L(a), defined in Eq. (28). Experimental values are
all taken as given by the decay energies. Thus the excitation
energy of the calculated 0+

6 state is assumed to be 15.1 MeV,
the one with the observed 0+

6 state.
The obtained very small total α-decay width of 34 keV,

in reasonable agreement with the corresponding experimental
value of 160 keV, indicates that this state is unusually long-
lived. The reason for this fact can be explained in terms of
the present analysis as follows: Since this state has a very
exotic structure composed of gaslike four-α particles, the
overlap between this state and α + 12C(0+

1 ) or α + 12C(2+
1 )

wave functions with a certain channel radius becomes very
small, as this is, indeed, indicated by small θ2

L(a) values, 0.006
and 0.004, respectively, and therefore by small γ 2

L(a) values.
These largely suppress the decay widths expressed by Eq. (27),
in spite of large values of penetration factors caused by large
decay energies of 7.9 and 3.5 MeV into the two channels
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α + 12C (0+
1 ) and α + 12C (2+

1 ), respectively. On the other
hand, the decay into α + 12C (0+

2 ) is also suppressed because of
very small penetration caused by very small decay energy of
0.28 MeV into this channel, even though the corresponding
reduced width takes a relatively large value θ2

L(a) = 0.15,
which is natural since the 0+

2 state of 12C has a gaslike
three-α-particle structure. It is very likely that the preceding
mechanism holds generally for the α-gas states in heavier nα

systems, and therefore such states can also be expected to exist
in heavier systems as relatively long-lived resonances.

VII. SIMILARITY OF α-PARTICLE WAVE FUNCTIONS IN
HOYLE-LIKE STATES

In Fig. 14, we show, side by side, radial parts of the single-α
S orbits (for a definition, see Refs. [10,12,42]) of the Hoyle
state (12C) and the 0+

6 state in 16O. We see an almost identical
shape. Of course, the extension is slightly different because
of the smallness of the system, that is, we are not dealing
with a macroscopic condensate, as discussed previously. The
nodeless character of the wave function is very pronounced,
and only some oscillations with small amplitude are present
in 12C, reflecting the weak influence of the Pauli principle
between the α particles (see the discussion in Sec. II). On the
contrary, because of their much reduced radii, the “α-like”
clusters strongly overlap in the ground states of 12C and 16O,
producing strong amplitude oscillations, which take care of
antisymmetrization between clusters [10,12]. This example
demonstrates the bosonic product nature of the Hoyle state
and the 0+

6 state in 16O.

VIII. DISCUSSION, SUMMARY, AND CONCLUSIONS

In this work, we considerably deepened several aspects
of the THSR description of low-density α-particle states in
self-conjugate nuclei. We show that the THSR wave function
that has α-particle condensate structure in analogy with the
number-projected BCS wave function for Cooper pairs grasps
the physics of loosely bound α-particle states as the 8Be ground
state and the Hoyle state in 12C, much better than the usual
cluster wave functions of the Brink type, in which a crystal

structure is involved, the α particles with free space extension
being placed at certain geometrical positions with respect to
one another in the nucleus. Indeed, we have shown for the
example of 8Be that the superposition of about 30 Brink-
type wave functions is needed to describe the 8Be ground
state with the same accuracy as the single-component THSR
wave function, which practically coincides with the exact
solution of the RGM wave function. Similar results are
obtained concerning the Hoyle state, in which about 55
components of the Brink type are needed [25].

One entire section is dedicated to the study of effects
from antisymmetrization between the α particles in the THSR
(Hoyle) state. We studied the expectation value N (B) of the
antisymmetrizer as a function of the width parameter B in
the THSR wave function, which determines the mean distance
between the α particles, and found that N (B) rises very fast as
a function of B. For the Hoyle state, with B = BH , N (BH ) is
about 0.62, whereas for the ground state, that is, B = Bg , we
find that N (Bg) is about 0.007. So this value increases from
the ground state to the Hoyle state by a factor of about 100,
indicating the strongly reduced action of antisymmetrization
in the Hoyle state. Similar conclusions are found for energies
and orthonormality relations (see Figs. 8–11).

We also discussed the possible experimental consequences
of α-particle coherence. This question is more difficult to
answer than for nuclear pairing because those states appear
only at low density (ρ = ρ0/3 ∼ ρ0/4) and thus correspond
to excited states of unusual long lifetimes on nuclear scales
(∼10−17 s for, e.g., the Hoyle state). Transfer experiments of
α particles or measurements of moments of inertia, which so
clearly demonstrate superfluid features of nuclei in the case of
pairing, are therefore very difficult to conceive in the case of
α particles. However, instead of transfer, one may investigate
decay. For example, in an excited state of 52Fe, if there exists
coherence of a certain number of α particles on top of an
inert core, the simultaneous decay of two or more α particles
will be enhanced with respect to a purely statistical decay.
Exactly this feature has been observed and related to α-particle
condensation in the reaction 28Si + 24Mg at Elab = 130 MeV.
However, other experiments may be conceived in the future.
For example, with a heavy ion reaction, 28Si may be (Coulomb)
excited to the Ikeda threshold of seven-α breakup, that is,
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FIG. 14. Radial distributions of the single-α S orbits (a) of the 0+
2 state in 12C (Hoyle state) and (b) of the 0+

6 state in 16O.
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Ex = 38.46 MeV [43], and then seven-α particles may expand
as a coherent state verifiable with performant multiparticle
detectors [44]. Measuring energies and angles of the α particles
may allow us to establish an invariant mass spectrum that
identifies THSR states, even if they are relatively broad and
hidden among other states, seen via γ s or particle evaporation.

Since the α-particle condensate states appear around the nα

decay threshold, the higher these states are in the continuum,
the heavier the nuclei become. For example, in 12C, the Ikeda
threshold for α decay [43] is at Ex = 7.27 MeV; in 16O, it is at
Ex = 14.4 MeV; in 24Mg, it is at Ex = 28.48 MeV; and so on.
One may object that, because of their high excitation energies,
those analogs to the Hoyle state will decay very quickly.
However, we argued that these α-gas states have very unusual
structure and thus couple only very weakly to states at lower
energy. The example of the Hoyle state shows that all states
of shell-model structure are practically decoupled. This makes
up for the large majority of states. For the supposed analog
to the Hoyle state, namely, the 0+

6 state at Ex = 15.1 MeV in
16O, a quantitative estimate of the decay was made, explaining
the very small width of 160 keV.

Continuing with this reasoning, it is not at all excluded that
α-gas states in even heavier self-conjugate nuclei will have an
unusually long lifetime, given their excitation energy high up
in the continuum.

Furthermore, the condensate character of the α-gas states
has also been pointed out in showing (see Fig. 14) that the
condensate wave function of one α particle changes, apart from
a trivial size effect, very little in going, for example, from the
Hoyle state in 12C to the corresponding state at Ex = 15.1 MeV
in 16O; that is, a condensate wave function is a 0S state.

One of our strong arguments that the α particles in the
Hoyle state, and possibly in the 0+

6 of 16O, form an α-particle
gas, captured inside the Coulomb barrier, is deduced from
the fact that we constructed a single α-density matrix whose
eigenvalues show that the α product states are realized to
around 60%–70%, all bosons being in the lowest quantum
state [10–12]. The occupancies of all higher quantum levels
are down by at least a factor of 10. However, the authors
of Ref. [2] mentioned that the way to define the density
matrix in a self-bound Bose system with a finite number of
particles is not unique and that different definitions might
give different occupancies. We followed in this respect the
line of thought of Pethick and Pitaevskii in Refs. [45,46],
where they say that if in a homogeneous system, there is
Bose condensation, then there is no reason that, if the same
system is put into an external potential or if the system is
self-bound in a mean-field potential, the system may not also
be in a nonfragmented condensate state, as long as the intrinsic
system is not excited. We showed that our definition of the
boson density matrix satisfies this physically very reasonable
boundary condition in using Jacobi coordinates for the internal
system [42]. We furthermore showed that for the 0S harmonic
oscillator wave function, the internal one-body density matrix
is uniquely determined under another reasonable condition
[47]. The uniqueness for more general wave functions is also
demonstrated [48,49].

In light of this finding, we would like to discuss again
the content of the THSR α-particle condensate wave function

[Eq. (6)]. It is very important to remark, as is explained in
Ref. [1], that this antisymmetrized α-particle product wave
function contains two limits exactly. On one hand, for B = b,
we have a pure harmonic oscillator wave function because
the antisymmetrizer generates out of the product of simple
Gaussians all higher nodal wave functions of the harmonic
oscillator [50]. On the other hand, for B � b, the THSR
wave function tends to a pure product state of α particles,
that is, a mean-field wave function, since in this case, the
antisymmetrizer can be neglected. Indeed, B triggers the
extension of the nucleus, that is, its average density. For α

particles kept at their free-space size (small b), the α particles
are then, for large B values, far apart from one another and
do not feel any action from the Pauli principle (see a detailed
discussion of the action of the antisymmetrizer as a function
of density in Ref. [10]). The question is then whether, for
example, for the Hoyle state, the preceding wave function
is closer to a shell model like a Slater determinant or to an
α-particle product state. Precisely this question is answered by
the previously discussed eigenvalues of the density matrix. In
this respect, it is important to point out that in the calculation
of the aforementioned density matrix, always, the total cm
motion has been split off in the wave function of Eq. (1),
and that for the remaining relative cm coordinates, the Jacobi
ones have been used, as is clearly explained in Refs. [10,11].
In Refs. [10,11], it has been shown, as explained, that the α

particles in the Hoyle state occupy over 70% of the 0S orbit.
Therefore the Hoyle state is in good approximation a product
of three-α particles, that is, a condensate. This finding is also
corroborated by our study on antisymmetrization effects in the
Hoyle state in Sec. III. As already mentioned, it has been found
that the effects of antisymmetrization are weak.

In summary, we can say that our study clearly shows that
the loosely bound α-particle states of very low density, close to
the decay threshold in self-conjugate nuclei, are characterized
by a shallow self-consistent mean field of wide extension, in
which the cm motion of the α particles occupies about 70%
of the lowest 0S level. In spite of the very different number
of particles and other important differences, the situation has,
therefore, some analogy with the case of cold atoms. Avoiding
vague and qualitative arguments, we hope to have been
sufficiently detailed and convincing, based on new insights
from precise numerical results, to confirm the existence of
low-density bosonic α-particle gas states in nuclei and to
affirm the usefulness of this novel concept in nuclear physics
described with the THSR wave function.
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