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Collective structure of the N = 40 isotones
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The structure of even-even N = 40 isotones is studied from drip line to drip line through the systematic
investigation of their quadrupole modes of excitation. Calculations are performed within the Hartree-Fock-
Bogoliubov approach using the Gogny D1S effective interaction. Where relevant, these calculations are extended
beyond mean field within a generator-coordinate-based method. An overall good agreement with available
experimental data is reported, showing that collectivity increases from the neutron to the proton drip line. Whereas
60Ca and 68Ni display a calculated spherical shape in their ground states, all other isotones show a prolate-deformed
ground-state band and a quasi-γ band. Coexistence features are predicted in the neutron-deficient N = 40 isotones
above 74Se.
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I. INTRODUCTION

In the last decades experimental studies of the structure of
exotic nuclei have changed the accepted idea of robust shell
closures built from our knowledge established on stable nuclei.
The vanishing of the N = 20 shell closure in the vicinity of
32Mg is one of the well-established examples of such strong
evolution of nuclear structure [1]. New shell closures may also
arise away from the stability line. In that context, the question
of N = 40 as a magic number in exotic nuclei was previously
raised [2]. In a simplistic shell-model description, N = 40 is
a subshell closure since neutrons fill up the fp shell, with
the 1g9/2 orbital remaining empty. It has been argued that
enhanced diffuseness of the nuclear potential in very neutron-
rich nuclei can lessen the spin-orbit interaction giving a magic
feature to N = 40, as observed in atomic physics [3]. However,
up to now, evidence for such an effect has never been reported
in nuclear physics.

Along the Ni isotopes, presenting a magic number of
protons, a relatively large excitation energy of the first 2+
excited state is observed at N = 40. Bernas and co-workers
pointed out the “quasi magic” behavior of the nucleus 68Ni [2].
Indeed, the first excited state in 68Ni is a 0+ state about 300 keV
below the 2+

1 level lying at 2.03 MeV. The occurrence of a
0+ state as the first excited state in even-even nuclei can be
interpreted as evidence for shell closure, as in 16O and 40Ca. It
can also provide evidence for shape coexistence as in 44S [4],
72Kr [5], or 188Pb [6]. Apparently, supporting the magical
feature of N = 40 is the low-reduced transition probability
B(E2; 2+

1 → 0+
1 ) reported for 68Ni [7]. However, a shell-

model-based interpretation of the structure of this nucleus
revealed that the size of the N = 40 gap did not preclude
pairing correlations to develop [7]. Similar conclusions were
also reached in shell-model Monte Carlo and quasiparticle
random-phase-approximation calculations [8]. Further, toward
the neutron drip line, spectroscopic information extend up to
66
26Fe. Recently, deep-inelastic collisions [9] and two-proton
knockout reactions [10] were used to perform in-beam γ

spectroscopy of this nucleus. From these recent studies and

earlier β-decay experiments in the vicinity of N = 40 [11,12],
deformation was claimed to occur in this mass region and
the strong influence of the νg9/2 orbit on the structure of these
nuclei was pointed out. More recently, Tarasov and co-workers
suggested a new island of inversion in the region of 62

22Ti from
systematics of production cross sections [13].

On the neutron deficient side, the nuclei in the mass region
of interest are known to exhibit complex shape features far
from closed-shell nuclei characteristics as, for example, in the
light Kr and Se isotopes [14,15]. Tetrahedral deformation can
also be favored in this region [16].

The present article aims at characterizing the structure of
N = 40 isotones from drip line to drip line by studying their
low-lying quadrupole spectroscopic properties. With this aim
in mind, the generator coordinate method within the Gaussian
overlap approximation was applied to perform configuration
mixing of Hartree-Fock-Bogoliubov (HFB) states. This ap-
proach, here labeled five-dimensional collective Hamiltonian
(5DCH), treats explicitly all quadrupole degrees of freedom
(i.e., two for vibration and three for rotation) [17–19]. Our
5DCH model has already demonstrated its reliability for
the description of nuclear properties over the nuclear chart
[19–23] using the D1S Gogny effective interaction [24,25].
An abundant literature is currently devoted to the inclusion
of a tensor term in phenomenological effective interactions.
When it is fitted in a consistent way with the other interaction
components, small effects are predicted at the mean-field
level [26]. Beyond mean field, modifications of calculated
spectroscopy due to the tensor interaction cannot be ruled
out. However, the absence of an explicit tensor term in the
D1S Gogny interaction is not expected to affect notably the
present description of quadrupole collective low-lying states
and electric-reduced transition probabilities.

The article is organized as follows. In Sec. II, we discuss
the evolution of the spherical neutron and proton shell gaps
around the Fermi levels as well as the static axial and
triaxial deformation properties predicted for N = 40 isotones
at a pure mean-field level. Reported results were obtained
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from constrained HFB calculations [18]. In Sec. III the
low-lying spectroscopy of the studied isotones calculated
within the 5DCH approach [17,19] is presented and compared
to available experimental data. In particular, Sec. III A and
Sec. III B discuss the systematic occurrence of dynamical
deformations for the ground-state and excited bands, respec-
tively. Section III C reports on shape coexistence features in
the heaviest N = 40 isotones. A discussion devoted to the
spectroscopic properties of the nuclei 68Ni and 60Ca is reported
in Sec. III D. Summary and conclusions are given in Sec. IV.

II. MEAN-FIELD DESCRIPTION

In this study calculations are performed within triaxial
symmetries. The results will be introduced step by step, be-
ginning with the peculiar case of imposed spherical symmetry
to discuss the evolution of the gap for the N = 40 even-even
isotones. Next, results for constrained HFB calculations, where
axial symmetry is imposed, will be presented to investigate the
nature of the N = 40 subshell (i.e., the intrinsic deformation
of the ground state). Then the influence of triaxial degree of
freedom will be briefly discussed.

In this article we use the dimensionless axial and triaxial
deformation β and γ parameters [20] that are expressed in
terms of the mean values q20 and q22 of the quadrupole mass
operators Q̂20 and Q̂22, respectively,

β =
√

π

5

√
q2

20 + 3q2
22

〈r2〉A and γ = arctan

√
3q22

q20
,

where 〈r2〉A is the mean-square radius of a mass-A nucleus
[17]. From a technical point of view, HFB equations are solved
in a triaxial harmonic oscillator (HO) basis including 11 major
shells. We checked that this basis size provides well-converged
results for all N = 40 isotones at all deformations of present
interest. Technical details on the HO basis parameters are
provided in the Appendix.

At the mean-field level, the N = 40 even-even nuclei
that are stable against a two-particle emission range from
Z = 18 (58Ar) to Z = 42 (82Mo). Here we approximate the
neutron (proton) drip-line nucleus as the last one for which
the two-neutron (two-proton) separation energy is positive, as
discussed in more detail in Ref. [27].

The spherical neutron HFB single-particle energies (SPE’s)
of N = 40 isotones, extracted in the canonical basis, are
displayed in Fig. 1. It is worth mentioning that, for both
proton and neutron SPE’s, the present results obtained with
the Gogny D1S effective interaction do not differ much from
those obtained with well-adopted Skyrme interactions (see
e.g., Refs. [28–30]). The N = 40 spherical shell gap between
the fp shell and the g9/2 orbit is found to be rather constant,
around 3.9 MeV from 58

18Ar to 82
42Mo. This value, smaller than

that found for the N = 20 and N = 28 shell gaps (4.5 MeV)
reported in Ref. [21], is the first indication that neutron pairing
correlations develop in N = 40 isotones, at least at sphericity.
While filling up the proton fp shell along the N = 40 isotonic
chain, the ν1f5/2 orbit drops in energy more steeply than do the
ν2p orbits. Therefore, the 1f5/2 orbit, predicted to lie above
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FIG. 1. Spherical neutron HFB single-particle energies for even-
even N = 40 nuclei.

the 2p1/2 one for Z = 20–24, crosses this latter one at Z = 26
and lies between the two ν2p spin-orbit partners in nuclei with
Z > 28.

The relative energy spacings between proton SPE’s (not
shown here) do not evolve much in the range of studied
nuclei, irrespective of the occupation numbers of the proton
orbits. The d3/2–f7/2 gap, the so-called Z = 20 gap, amounts
to almost 8 MeV. The energy gap above the f7/2 orbit
(Z = 28) is of 5.5 MeV and the other fp-shell orbits, f5/2,
p3/2, and p1/2, lie within around 3 MeV. The energy spacing
between fp and gd shells (Z = 40) is approximately 4 MeV.
Data from the pick-up and stripping reactions needed for
a comparison with calculations are very scarce for N = 40
isotones, precluding the extraction of reliable experimental
SPE’s. If any, future comparisons need to be performed with
caution since beyond-mean-field correlations are expected to
compress single-particle spectra.

The evolution of total energy as a function of the axial
deformation parameter β is displayed in Fig. 2 for all even-even
N = 40 isotones. The curves are the result of constrained HFB
calculations. Most of the isotones present a spherical minimum
except 72Ge and 74Se; both show a rather flat potential energy
curve for β values ranging from −0.3 to 0.1, the minimum of
which is found for an oblate deformation parameter β � −0.2.
A clear feature is the existence of a prolate shell effect (around
β = 0.5), present in each isotone that produces a secondary
minimum for Cr, Fe, Ni, Kr, Sr, Zr, and Mo. Even if less
pronounced, shoulders are also present at oblate deformation
(β � −0.5) in most of the potential energy curves presented
in Fig. 2. The general features of the potential energy curves
are related to the existence of proton and/or neutron shell
effects in the single-particle spectra as functions of the axial
deformation shown in Fig. 3 for 76

36Kr. As for the SPE’s, the
deformed single-particle spectra in Fig. 3 are quite similar to
those obtained with Skyrme interactions [29].

Pairing energy is very sensitive to shell effects. This
quantity is displayed in Fig. 4 as a function of β, both
for protons and neutrons. As a general rule, a decrease
(increase) of the level density around the Fermi level is always
accompanied by an decrease (increase) of pairing energy. As
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FIG. 2. Potential energy curves for the N = 40 isotones as
functions of the axial deformation parameter β. The curves, labeled
with chemical symbols, are offset by some arbitrary absolute energy
for ease of comparison.

seen from Fig. 4, the neutron pairing energy curves are found
to be rather similar from Z = 18 to Z = 42. This reflects the
similarity in the sequence of individual neutron levels with
axial deformation from one isotone to the other. For each
isotone, the spherical N = 40 shell gap is found to be of a
similar magnitude for β values in the vicinity of β = 0 (see
Fig. 3). In the vicinity of β = 0.5, the neutron level density
around the Fermi level is systematically low, accounting for
the minima observed in the neutron pairing energies shown
in Fig. 4. A slight decrease in the neutron level density is
found at oblate deformations (around β = −0.2 and −0.5).
From Fig. 3, one sees that, to correctly define the Fermi level
in N = 40 isotones, the fp, g9/2, and d5/2 shells have to be
considered. Each of the aforementioned shell effects has its
counterpart (i.e., a minimum) in the neutron pairing energy
curves displayed in Fig. 4.

Contrary to the neutron case, the proton pairing energy
curves vary drastically along the N = 40 chain, reflecting
strong proton (deformed or not) shell effects encountered from
Z = 18 to Z = 42. Depending on the nucleus, and hence
on the shell structure around the Fermi level, the proton
pairing energy presents deep minima (that can reach zero)
for various β values. For example, the large Z = 20 and
Z = 28 spherical gaps (seen in Fig. 3) preclude proton pairing
correlations from taking place in the corresponding isotones
at β = 0. However, for none of the other isotones does proton
pairing energy vanish around β = 0. Pairing energy vanishes
at extreme oblate deformation (β = −0.5) for 66

26Fe due to a
large deformed-proton shell gap. In 72

32Ge, proton pairing is
null at very large prolate deformation (β = 0.9), as it is for
60
20Ca. It is interesting to notice that, from Z = 30 to Z = 34,
proton and neutron pairing energies present “out of phase”
variations against deformation in such a way that their sum is
rather constant. These features stand at the origin of the flat
potential energy curves reported in Fig. 2 for the corresponding
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FIG. 3. Sequence of proton (top) and neutron (bottom) single-
particle levels as functions of the axial deformation parameter β in
76
36Kr. Dashed (solid) lines represent positive (negative) parity orbits.
Each orbit is characterized by: (i) its spherical quantum numbers,
reported at β = 0, and (ii) its K quantum number (projection of the
angular momentum on the z symmetry axis) as follows: square for
K = 1/2, circle for K = 3/2, triangle for K = 5/2, star for K = 7/2,
and diamond for K = 9/2.

isotones. On the contrary, proton and neutron pairing energies
for nuclei with Z � 36 present minima in the same prolate
region (β � 0.5), thus favoring the secondary minimum built
up in potential energy curves of Fig. 2.

To go further in the analysis of the topology of potential
energy and shell effect, the triaxial potential energy surface
(PES) of each studied isotone was calculated. Four types of
triaxial PES’s are found. Figure 5 displays a typical example
for each of the four groups: (i) 58

18Ar, 60
20Ca, and 62

22Ti present a
rigid triaxial surface centered around sphericity; (ii) 64

24Cr, 66
26Fe,

68
28Ni, and 70

30Zn present similar PES’s with a minimum in the
spherical region and an extension toward the prolate region;
(iii) 72

32Ge and 74
34Se form another group for which minimum in

the triaxial plane is broader than for lighter isotones resulting
in a rather flat PES where an oblate minimum is found
(γ = 60◦); and (iv) The four heaviest N = 40 isotones studied
here present PES’s for which two clear minima are observed,
one near the spherical point and the other at large prolate
deformation, as shown in Fig. 5 for 78

38Sr. For each group, one
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FIG. 5. (Color online) Triaxial potential energy surfaces (in MeV)
for 62

22Ti, 64
24Cr, 74

34Se, and 78
38Sr.

clearly recognizes the various axial minima discussed from
Fig. 2. For all isotones, the PES’s do not show triaxial minima
that modified the conclusions obtained from the discussion of
axial results.

To summarize all these mean-field results, at the spherical
point the N = 40 shell gap is constant and amounts to about
3.9 MeV, a value not strong enough to hinder neutron pairing
correlations. On the one hand, the spherical configuration
is favored at the mean-field level for all but two N = 40
isotones (72

32Ge and 74
34Se). On the other hand, both proton and

neutron shell effects produce “perturbations” in the studied
potential energy curves leading, for heavier isotones, to a deep
secondary minimum at prolate deformation. These features
indicate the need of a beyond-mean-field treatment consisting
of deformed configuration mixing to achieve a more definite
description of the isotones under study.

III. QUADRUPOLE COLLECTIVE SPECTROSCOPY

In this section the low-lying spectroscopy of N = 40
isotones is discussed to assess their collectivity. To perform
this analysis the 5DCH approach [17,19] that accounts for
quadrupole correlations was adopted. Within this approach,
the calculated states have good angular momentum J and
parity π = +. For later convenience it is mentioned that the
wave functions of the collective states decompose into K

components, where K is the projection of angular momentum
onto the z axis in the intrinsic system.

The reader should note that the present approach deals
only with quadrupole correlations. The occurrence of negative
parity states, and especially 3− states, will not be addressed.
It is to be mentioned that such states have been observed
in numerous N = 40 isotones, at an excitation energy in
the 2.5–3 MeV range, similar to that for the positive parity
levels of present interest [31]. Whenever possible, comparison
with experimental data is presented. Data are taken from the
Brookhaven database [32], except when explicitly mentioned.

Reported results concern all N = 40 isotones except 58
18Ar,

60
20Ca, and 68

28Ni. Because of proton magic numbers, the present
5DCH treatment may not be well suited for the two last
isotones. Concerning 58

18Ar, the unoccupied levels (in the
Hartree-Fock sense) are unbound at the spherical point (see
Fig. 1). A similar observation is also made whatever the
values of β are, except for large oblate ones. As the credit
due to our beyond-mean-field treatment for this nucleus will
be disputable, 58

18Ar is excluded from the following discussion.
Finally, all spectroscopic results presented in the following are
summarized in Table I.

A. Ground-state band

Available experimental data concerning the excitation
energy of the 2+

1 states in N = 40 isotones are reported in
Fig. 6(a). For each isotone, this state lies at a rather low
excitation energy (below 1 MeV, except in 68Ni), the first
indication for a somewhat collective character. Associated
with these excitation energies, Fig. 6(b) displays the avail-
able experimental reduced transition probabilities [B(E2)’s]

064313-4



COLLECTIVE STRUCTURE OF THE N = 40 ISOTONES PHYSICAL REVIEW C 80, 064313 (2009)

TABLE I. Predicted excitation energies E(J π ) in MeV; spectroscopic quadrupole moments Q(J π ) in e fm2; reduced transition
probabilities B(E2; Ji → Jf ) in e2 fm4; and percentages of the K = 0 component for the 2+

2 and 2+
3 states calculated within the present

5DCH approach for the studied N = 40 isotones.

Isotone 62
22Ti 64

24Cr 66
26Fe 70

30Zn 72
32Ge 74

34Se 76
36Kr 78

38Sr 80
40Zr 82

42Mo

E(2+
1 ) 1.145 0.822 0.851 0.928 0.747 0.668 0.520 0.332 0.343 0.488

E(4+
1 ) 2.165 1.794 1.892 2.036 1.740 1.483 1.133 0.824 0.847 1.077

E(6+
1 ) 3.331 3.024 3.200 3.362 2.940 2.449 1.933 1.528 1.561 1.825

E(2+
2 ) 2.313 2.448 2.306 1.965 1.498 1.274 1.077 1.050 0.940 0.954

E(3+
1 ) 2.813 3.098 3.193 2.923 2.329 2.039 1.753 1.565 1.370 1.430

E(4+
2 ) 3.224 3.511 3.554 3.248 2.650 2.201 1.888 1.758 1.606 1.671

E(5+
1 ) 3.751 4.171 4.442 4.252 3.545 2.986 2.555 2.296 2.079 2.168

E(6+
2 ) 4.355 4.705 4.973 4.684 3.992 3.349 2.837 2.597 2.417 2.516

E(0+
2 ) 1.805 2.042 1.987 2.050 1.800 1.258 0.861 0.759 0.829 0.882

Q(2+
1 ) −28 −34 −34 −24 −13 −17 −54 −86 −85 −53

Q(4+
1 ) −42 −48 −49 −42 −33 −54 −92 −116 −115 −95

Q(6+
1 ) −45 −54 −57 −57 −52 −75 −110 −130 −129 −116

Q(2+
2 ) 23 28 22 15 2a −5a 23 58 60 24

Q(2+
3 ) −15a −39 −72 −40

K = 0 (2+
2 ) 12 10 16 19 28 35 25 13 10 22

K = 0 (2+
3 ) 64 73 84 75

B(E2; 2+
1 → 0+

1 ) 199 303 346 441 629 813 1145 1824 1982 1557
B(E2; 2+

2 → 0+
1 ) 7 12 11 4 1 1 14 51 44 6

B(E2; 2+
2 → 2+

1 ) 253 212 308 655 1043 1450 1450 830 1139 2221
B(E2; 0+

2 → 2+
1 ) 2869 2459 2694 3493

B(E2; 2+
3 → 0+

2 ) 875 908 1479 1807

aThe sign for this quadrupole moment should be considered with caution because of the strong mixing between different K components
in the wave function of the state.

measured for the 2+
1 → 0+

1 transition. The important increase
of the B(E2)’s with Z clearly reflects the growth in collectivity
toward the proton drip line. The results of present 5DCH
calculations for the aforementioned observables are also
reported in Fig. 6 for comparison. A very good agreement
between experimental data and calculations is found for both
excitation energies and reduced transition probabilities. In
N = 40 isotones, correlations are calculated to be maximum in
the N = Z nucleus 80

40Zr. This last conclusion is in agreement
with that from shell-model Monte Carlo calculations along the
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FIG. 6. (a) Excitation energies of the 2+
1 state of N = 40 isotones

and (b) reduced transition probabilities B(E2; 2+
1 → 0+

1 ). 5DCH
results are compared to existing experimental data [10,32].

N = 40 chain [33]. Collectivity is found to slightly decrease
in 82

42Mo, as seen from the increase (decrease) in the 2+
1 state

excitation energy (transition rate) for this nucleus.
One way to gain a deeper insight into the structure of

N = 40 isotones is by inspecting the yrast-state properties
not only restricted to the 2+

1 states. Taking advantage of the
existence of some experimental data for the excitation energy
of the 4+

1 states, we analyze the R42 = E(4+
1 )/E(2+

1 ) ratio.
This latter term is displayed in Fig. 7. The experimental trend
to increase from the vibrator value (R42 = 2) toward the γ -soft
value (R42 = 2.5) with increasing Z is clear. Both 78

38Sr and
80
40Zr present an experimental R42 value slightly larger than 2.5,
indicating a pronounced collectivity and hence deformation.
The systematics of the calculated R42 ratio is also reported in
Fig. 7. It should first be emphasized that this figure does not do
justice to the agreement between theoretical and experimental
excitation energies of the 4+

1 states, which is of a quality
similar to that for the 2+

1 states. Most of the theoretical R42

values are close to 2.2. Clearly the calculated R42 ratio for 62
22Ti

(R42 = 2) differs from the ones in 78
38Sr and 80

40Zr (R42 = 2.5). In
combination with the PES’s presented in Fig. 5, one concludes
that 62

22Ti is a rather spherical nucleus. In agreement with the
experimental data, N = 40 isotones are found to be transitional
in nature. They are clearly not expected to behave as rotational
nuclei for which R42 = 10/3, a conclusion that matches the
one based on projected shell-model calculations for 66Fe [34].

At this stage of our discussion on the ground-state band
properties, it is interesting to include predictions about spec-
troscopic quadrupole moments, even though experimental data
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vibrational, γ -soft, and axial rotor values for this ratio.

are available only for the 2+
1 state for the Zn, Ge, Se, Kr, and

Sr isotones. Figure 8 displays the experimental data compared
with the theoretical ones for the 2+

1 , 4+
1 , and 6+

1 states. The
agreement between the data and calculations is remarkable.
The 5DCH calculations foretell a prolate yrast band. Thus,
contrary to what can be expected from a pure mean-field
treatment (see Fig. 2 and the related discussion), N = 40
isotones are calculated to be dynamically deformed along
the ground-state band within the present 5DCH approach.
Deformation and correlations are found to strongly increase
while approaching the proton drip line. From Fig. 8 one also
sees that the spectroscopic quadrupole moment of the states
belonging to the ground-state band increases with increasing
spin values. It should be noted that two experimental values are
plotted for 74

34Se. They both result from the same χ2 analysis of
the data reported in Ref. [35]. The present calculations strongly
support the value of lower magnitude. From the previous
discussion, N = 40 isotones were shown to be dynamically
deformed in their ground state and to display a prolate yrast
band, identified up to the 6+

1 state. In agreement with the
studied R42 ratios for these isotones, the ground-state band
is not a true rotational band and the N = 40 isotones are,
therefore, labeled as transitional nuclei. Further study of their
low-lying spectroscopy, as reported in the following, should
bring deeper insight into their characterization.
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B. Quasi-γ band

Available experimental data for N = 40 isotones reveal a
systematic occurrence of low-lying 2+

2 states associated with
typical sequences of (3+

1 , 4+
2 ) and (5+

1 , 6+
2 ) states, forming

vibrational quasi-γ bands. These experimental data, as well
as the 5DCH results, are presented in Fig. 9. The agreement
between the data and calculations is satisfactory (discrepancy
is of 500 keV in the worst case). 5DCH calculations predict
the persistence of the quasi-γ band on both neutron-rich
and neutron-deficient sides. Further analysis of the 2+

2 wave
functions confirms their prominent K = 2 vibrational nature,
as inferred from the small amount of K = 0 components
reported in Table I.

As seen from Fig. 9, beginning with Z = 22 one observes
a slight increase in the excitation energy of the states up to
Z = 26. Then, from Z = 30 to Z = 42, the excitation energy
of the states of the bands gradually decreases from about
2 MeV down to 1 MeV for the bandheads. Consistently with
the results presented in Sec. III A, this behavior indicates, one
more time, the increase of collectivity in N = 40 isotones
while approaching the proton drip line.

To get further insight into the structure of the quasi-γ
band it is instructive to study how the states belonging to
that band decay to the 0+

1 and 2+
1 ground-state band levels.

This provides information on the mixing between both bands.
On the experimental side, such data are scarce and mainly
restricted to the decay of the 2+

2 bandhead state we will focus
on in the following. This state is mainly observed to decay to
the 2+

1 level with relatively large measured B(E2) values:
1182+1748

−1182, 1103(196) and 886(258)e2 fm4 in 70Zn, 72Ge,
and 74Se, respectively. In 76Kr, the B(E2) value associated
with the 2+

2 → 2+
1 is significantly lower [B(E2) = 20(20)

e2 fm4] than for other N = 40 isotones [14]. In most of the
N = 40 isotones, except again in 76Kr, the reduced transition
probability associated with the 2+

2 → 0+
1 decay is considerably

smaller than the previous one toward the 2+
1 state: 41+41

−21,
2.3(4), 15(4), and 67+5

−4e
2 fm4 in 70Zn, 72Ge, 74Se, and 76Kr,

respectively.
These experimental data are to be compared with the results

of the present 5DCH calculations, reported in Table I. From
a theory/experiment comparison, one sees that the 2+

2 → 2+
1
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decay rate is rather well accounted for by the present approach
(discrepancies smaller than a factor of 2) except in 76Kr, as
already discussed in Ref. [14]. On the contrary, the present
5DCH approach strongly underestimates (by about a factor of
10 or more) the 2+

2 → 0+
1 decay rates. This indicates that the

mixing between the ground-state band and the quasi-γ band (or
similarly the relative amount of K = 0 and K = 2 components
in the 2+

2 wave functions) is likely to be slightly underestimated
within the present 5DCH approach. The Gaussian overlap
approximation and/or the Inglis-Belyaev approximation (used
for calculating collective masses) are very likely responsible
for these discrepancies.

Finally, as studied for the ground-state band in Sec. III A,
the spectroscopic quadrupole moments of the 2+

2 states were
calculated to infer a tendency for the deformation of the
quasi-γ band. As seen from Table I, all relevant spectroscopic
quadrupole moments for the state of interest are positive and
slightly lower in magnitude (a factor of 1.5–2) than those for
the first 2+ states displayed in Fig. 8. This latter observation
suggests that the quasi-γ band in N = 40 isotones might be
viewed as a moderately deformed structure as compared to
that for the ground-state band.

C. Coexistence features

The richness and the complex structure of N = 40 isotones
are also demonstrated by the presence of a low-energy 0+

2
state experimentally observed in 68

28Ni, 70
30Zn, 72

32Ge, 74
34Se, and

76
36Kr. The special case of 68

28Ni will be discussed in Sec. III D.
For other isotones, the low-lying 0+

2 state is observed below
1 MeV (see Fig. 10). Such low-lying 0+

2 states might be
the signature of shape coexistence. However, early theoret-
ical works [36–39] showed the need for coupling between
collective and noncollective degrees of freedom (quasiparticle
excitations) to successfully describe these 0+

2 states in Zn, Ge,
and Se isotones. Such coupling modes are not included in the
present approach. The situation is quite different in 76

36Kr, for
which the occurrence of the low-lying 0+

2 state has been shown
to arise from shape coexistence [14]. The predicted excitation
energies of the 0+

2 states are also reported in Fig. 10 for all
studied N = 40 isotones. As expected, the present approach
thoroughly fails in reproducing the existing 0+

2 experimental
data for Z below Z = 36. For this reason, the following

Z
22 24 26 28 30 32 34 36 38 40 42

E
 (

M
eV

)

0.5

1

1.5

2

Expt

5DCH

FIG. 10. Predicted excitation energies of the 0+
2 states in N = 40

isotones, compared to available experimental data.

discussion is restricted to relevant nuclei with Z � 36. As
already seen in Fig. 2, two deep minima are found in the
potential energy curves of N = 40 isotones with Z � 36. As
a consequence, shape coexistence might be favored in these
isotones. The predicted occurrence of a 0+

2 state, lying slightly
below 1 MeV, in all heavier N = 40 isotones indeed points
toward this conclusion.

To specify the collectivity of the band built on the 0+
2

state, the ratio of the calculated reduced transition probabilities
R = B(E2; 2+

3 → 0+
2 )/B(E2; 2+

1 → 0+
1 ) was calculated. In

the following, this ratio will be used as an indicator for
shape coexistence. The values for Kr, Sr, and Zr isotones
equal 0.76, 0.50, and 0.75, respectively, and are among the
smallest calculated over the nuclear chart [23]. In contrast,
the collectivity in 82

42Mo is larger in the excited band than
in the ground-state band. It clearly shows that collectivity
significantly differs in magnitude between both the ground-
state and the K = 0 excited bands in the present deformed
nuclei, a measure of which also stems from comparing the
Q(2+

1 ) and Q(2+
3 ) values in Table I. Shape coexistence between

the prolate ground-state band and the prolate K = 0 excited
band is thus predicted to occur in all neutron-deficient N = 40
isotones above 74Se.

In present isotones it is worth mentioning that the quasi-γ
bandhead lies above the K = 0 excited bandhead. Therefore,
the unique E2 decay available to the 0+

2 state is that toward the
2+

1 level. The corresponding reduced transition probabilities
are reported in Table I for isotones with Z > 34.

D. Spherical nuclei: 68
28Ni and 60

20Ca

Finally, based on our results, we comment on the case of the
proton magic nuclei 60

20Ca and 68
28Ni, so far left out in previous

discussions, starting with 68
28Ni for which experimental data ex-

ist. 68
28Ni is the only N = 40 isotone presenting an experimental

R42 value below 2, associated with a relatively large excitation
energy of the 2+

1 state measured slightly above 2 MeV. These
are typical features of magic nuclei. Our results on other nuclei,
at the mean-field level and beyond mean field, clearly show that
N = 40 is never a magic number for the following reasons:
(i) The neutron pairing energy does not vanish at β = 0;
(ii) Most of the N = 40 isotones are dynamically deformed
in their ground state; and (iii) Shape coexistence is predicted
for some of these isotones. Thus, the low-lying spectroscopic
properties of 68

28Ni are interpreted as arising from its magic
number of protons combined with a spherical, but not magic,
neutron shell effect. Other authors reached the same conclusion
using different theoretical approaches [8].

Similar properties can be expected for 60
20Ca. Indeed in

Fig. 6(a) an increase in the excitation energy of the 2+
1 state

is suggested while going from Z = 24 down toward Z = 20.
More importantly, the potential energy surface for 60

20Ca (see
discussion related to Fig. 5) clearly indicates a spherical shape
for this nucleus. This is also supported by the results presented
in Fig. 4: (i) as for 68

28Ni, the proton pairing energy vanishes
at β = 0 in 60

20Ca; and (ii) Contrary to the prediction for
68
28Ni (and in favor for a spherical shape), the neutron pairing
energy is minimum at β = 0 for 60

20Ca. Thus, from the present
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results, a spherical shape is expected to be favored in 60
20Ca.

The present conclusion agrees with that obtained within self-
consistent Hartree-Fock plus random-phase-approximation
calculations using Skyrme interactions [28]. Both interpre-
tations are, however, at variance with the one offered in
Ref. [13].

IV. CONCLUSION

The focus of the present article is the study of quadrupole
collective properties of the N = 40 even-even isotones, inves-
tigated using both mean-field (HFB) and beyond-mean-field
(5DCH) methods implemented with the D1S Gogny force. In
the HFB approach, N = 40 never reaches the characteristics
of a magic shell closure, even though most of the studied
nuclei are calculated as spherical. The N = 40 subshell gap,
here calculated to be about 3.9 MeV wide, is not large enough
to prevent pairing correlations from developing. In the 5DCH
approach that includes all quadrupole degrees of freedom,
N = 40 isotones get dynamically deformed. However, their
calculated yrast spectroscopy never matches that of rotors, in
agreement with the experimental data. Most of the N = 40
nuclei are soft against quadrupole deformation. This softness
results in quasi-γ -vibrational bands with head levels calculated
in the 1.5–2 MeV excitation energy range. These predictions
are also in good agreement with available data. Yrare 0+ levels
were identified from our beyond-mean-field calculations, with
energies that do not match experimental data for Z � 34.
This result brings confirmation of the complex structure of
0+

2 excitations in these nuclei and implies that the present
theory be extended to include quasiparticle degrees of freedom.
The calculated energies of the first yrare 0+ state significantly
drop to below 1 MeV for Z > 34 and shape-coexistence is
predicted in these neutron-deficient isotones. In the particular
case of 76Kr experimental data support our conclusion.
Dedicated measurements on 78Sr and 80Zr are welcome to
further assess the reliability of present predictions far from
stability.

Finally, 60
20Ca and 68

28Ni are singled out since both have
a magic number of protons. Our interpretation is that these
proton shell closures play a key role in driving 60

20Ca and 68
28Ni

toward a spherical shape.
Since N = 40 isotones are calculated as soft against

quadrupole deformations and display positive and negative
parity states at similar excitation energies, the question arises
as to whether quadrupole and octupole modes strongly couple
each other. To shed light on this issue, which is of broad
relevance for nuclear spectroscopy, it will be wise to extend
the present mean-field and beyond-mean-field models to a
higher number of collective coordinates. Such a prospect is
very challenging, but tractable with the advent of powerful
computers.

APPENDIX: TRIAXIAL BASIS PARAMETERS

In the present HFB calculations the HO states constituting
the basis are chosen following a deformed truncation scheme

linked to the (β,γ ) parameters

(
nx + 1

2

)
h̄�x + (

ny + 1
2

)
h̄�y + (

nz + 1
2

)
h̄�z

� (N0 + 2)h̄�0, (A1)

where nx , ny , and nz are the numbers of quanta in the three
spacial directions x, y, and z, respectively, and N0 is the basis
size, that is, N0 + 1 is the number of major shells (11 in
the present work). Here, �i represents the energy truncation
parameter in the i direction. The parameter �0 is defined as
�3

0 = �x�y�z.
Thus, inserting the ratios P = h̄�x

h̄�y
and Q = h̄�x

h̄�z
into

Eq. (A1) one obtains the basis truncation

(
nx + 1

2

)
+

(
ny + 1

2

)
1

P
+

(
nz + 1

2

)
1

Q

� (N0 + 2)

(
1

PQ

)1/3

. (A2)

In the first step, the truncation parameters P and Q, which
are related to the deformations (β, γ ), are initialized to P0

and Q0, respectively, through formulas based on a liquid drop
parametrization of nuclear shape

P0 = exp(−α
√

3 sin γ ),
(A3)

Q0 = exp

[
α

(
3

2
cos γ −

√
3

2
sin γ

)]
,

where α = β/(2β + 1).
Given (N0, P0, and Q0), one defines, using Eq. (A2), the

maximal integer values reached by the numbers of quanta,
namely Nx , Ny , and Nz. For Nx , one finds Nx = E( N0+2

(P0Q0)1/3 −
P0+Q0
2P0Q0

), where E(x) means the integer value of x.
In the second step, without altering the integer set (Nx , Ny ,

and Nz), a fine-tuning of P and Q values, starting from P0

and Q0, is performed to maximize the number of HO-basis
states fulfilling Eq. (A2). This procedure leads to an increase
of about ten units in the number of states initially considered
in the basis.

For a given truncation of the basis (N0, P , and Q), the
parameter ω0, defined as ω3

0 = ωxωyωz, is optimized through
minimization of the HFB energy. Here ωi is the HO frequency
in each of the three spatial directions and the deformation
parameters p = h̄ωx

h̄ωy
and q = h̄ωx

h̄ωz
are given explicitly by

p = exp(−α
√

3 sin γ ),
(A4)

q = exp

[
α

(
3

2
cos γ −

√
3

2
sin γ

)]
.

This procedure avoids the use of gigantic HO-basis size
for large deformations. In our calculations, each set of
parameters are systematically optimized and/or calculated for
each nucleus and each grid point on the (β, γ ) plane.
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