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Pairing (particle-particle) giant resonances are analyzed within a shell-model formalism in the complex energy
plane with the aim of understanding why they have not been observed so far. A comparison is made with the
equivalent particle-hole mode by applying the formalism to the analysis of the well-understood particle-hole
giant resonance. It is found that because of the proper treatment of the continuum intrinsic to the formalism,
giant pairing resonances lie much higher than previously predicted and that some of them may be too wide to be
observed, whereas others are meaningful excitations. For these, new experimental searches are proposed.
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I. INTRODUCTION

Particle-hole (p-h) and particle-particle (p-p) modes are
similar to each other, although their manifestations are
apparently unrelated. In fact, p-h excitations induce surface
vibrations, whereas p-p induce pairing vibrations. In general,
the properties of the p-h modes are manifested in the three-
dimensional physical space, whereas the properties related to
the p-p modes are manifested in the so-called gauge space [1].
One may thus expect that the most collective of the p-h vibra-
tional modes (i.e., the giant resonance) would also be found in
the p-p channel as a giant pairing resonance (GPR) that would
be strongly excited by two-particle transfer reactions [2]. And,
indeed, using the same random-phase-approximation (RPA)
formalism that describes well the p-h giant resonances, it
was found that pairing giant resonances would be found at
about 10 MeV of excitation energy in even-even nuclei [3,4].
In this standard formalism, the representation used to write
the RPA equations consists of bound single-particle states, for
instance, harmonic-oscillator or the so-called Sturm-Louville
states used in Ref. [4]. There is an important drawback with
this kind of representation because it does not take into account
the instability of the single-particle states. In other words,
processes occurring in the continuum are time dependent,
although this dependence can be circumvented if the system
lives a long time. This happens with the p-h giant resonance,
where bound representations explain very well properties
related to the giant resonance, as will be discussed in the
following. The pairing giant resonances, which were predicted
to be strongly populated by two-particle transfer reactions in
calculations performed within bound representations [4], have
not been observed so far. Yet the pairing giant resonances
are still the object of much interest, both as excitations to
be observed by using radioactive beams, which would avoid
Q-value mismatchings at the high energies where the giant
resonance would lie [5], and as a result of the clustering
and associated strong coupling of Cooper pairs in the nuclear
surface [6].

In this article, we will evaluate GPRs using as represen-
tation the eigenstates of a Wood-Saxon potential obtained
as outgoing solutions of the Schrödinger equation. This is
the Berggren representation [7]. It includes the bound states
plus states in the complex energy plane that correspond to
the Gamow resonances and scattering states. The Berggren
representation is described in Sec. II. In Sec. III, p-h and p-p
giant resonances are evaluated. Possible experimental probes
that may detect the GPRs are suggested in Sec. IV, and a
summary and conclusions are provided in the last section.

II. BERGGREN REPRESENTATION

We will describe the giant resonances by using the Berggren
representation. Although this is a subject that has been very
much discussed in the literature recently [8,9], we will give
a brief description of the main points and exhibit the most
important equations to facilitate the presentation.

The study of processes taking part in the continuum part of
the spectrum may require, by the very nature of the problem,
a time-dependent formalism. However, if there is a barrier
that traps the system during a time long enough, the system
will remain localized within the region of the barrier and
the dynamics of the process can be studied within stationary
formalisms. The physical meaning of terms like resonances
living a “long time” or a barrier being “high enough” was
discussed in detail in Ref. [10]. The main point is that one
solves the time-independent Schrödinger equation imposing to
the wave function outgoing boundary conditions. The energies
thus obtained are real if the states are bound or antibound and
complex if they are resonances. We will not deal here with
antibound states.

Berggren found that these complex eigenvectors can be
used to express the Dirac δ function as follows [11]:

δ(r − r ′) =
∑

n

wn(r)wn(r ′) +
∫

L+
dEu(r, E)u(r ′, E), (1)
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where the sum runs over all the bound states plus the complex
states (resonances), which lie between the real energy axis and
the integration contour L+. The wave functions of the bound
state or resonance n are wn(r), and u(r, E) is the scattering
function at energy E. Notice that in this equation the scalar
product between two functions is not a function times the
complex conjugate of the other but just the product of the two.
This is the Berggren metric, and the corresponding vectors
span the Berggren space. In the Berggren space, energies
and probabilities can become complex. We thus find that by
forcing the time-dependent process of particles interacting
in the continuum to be stationary, one has to pay the price
of having complex energies and complex probabilities. Of
all these complex states, the ones that represent physically
meaningful resonances are those that are localized and
the corresponding complex probabilities are almost real. This
corresponds to resonances that live a long time and the states
can be considered quasibound. For a discussion on the limits
of this approximation, see Ref. [8].

By discretizing the integral of Eq. (1), one obtains the set of
orthonormal vectors |ϕj 〉 forming the Berggren representation
[7]. Because this discretization provides an approximate value
of the integral, the Berggren vectors fulfill the relation I ≈∑

j |ϕj 〉〈ϕj |. These vectors include the set of bound states,
Gamow resonances, and discretized scattering states. With
ϕj (�r) = 〈ϕj |�r〉, in the applications that follow, we will not
show the radial wave function ϕj (r) but rather the standard
function φj (r) given by

φj (r) = rϕj (r). (2)

With the standard shell-model Hamiltonian written as

H = H0 + V, (3)

where H0 is the central field that we will choose as a Woods-
Saxon potential and V the residual interaction as described in
Eq. (7), the single-particle states are given by

H0|ϕj 〉 = εj |ϕj 〉. (4)

Using the Berggren representation, one readily gets the two-
particle shell-model equations in the complex energy plane
(CXSM) [12]; that is,

(ωα − εi − εj )X(ij ; α) =
∑
k�l

〈k̃l̃; α|V |ij ; α〉X(kl; α), (5)

where V is the residual interaction, α labels two-particle states,
and i, j, k, and l label single-particle states. Therefore, ωα is
the correlated two-particle energy and εi is the single-particle
energy corresponding to the state i. The two-particle wave
function is given by

|α〉 =
∑
i�j

X(ij ; α)
(c+

i c+
j )λα√

1 + δij

|0〉, (6)

where λα is the angular momentum of the two-particle state.
The tilde in the interaction matrix element denotes mirror

states so that in the corresponding radial integral there is not
any complex conjugate, as required by the Berggren metric.
Notice that this implies that the form of the CXSM equations

coincides with the one corresponding to an harmonic-oscillator
representation, where all functions can be chosen to be real.

We will use a separable interaction of the form

〈k̃l̃; α|V |ij ; α〉 = −Gαf (kl, α)f (ij, α), (7)

where the constant Gα is the strength of the force, the function
f is f (ab, α) = (−)la 〈ja||Yα||jb〉

∫
ϕa(r)U (r)ϕb(r)r2dr/(1 +

δab)1/2, and the potential U is the derivative of the mean field
used to determine the single-particle states that, in our case,
will be a Woods-Saxon potential. The energies are obtained
by solving the dispersion relation

− 1

Gα

=
∑
i�j

f 2(ij, α)

ωα − (εi + εj )
, (8)

and the two-particle wave-function amplitudes are given by

X(ij ; α) = Nα

f (ij, α)

ωα − (εi + εj )
, (9)

where Nα is the normalization constant determined by the
condition

∑
i�j X(ij ; α)2 = 1.

One important quantity in the study to be performed
below is the singlet (S = 0) component of the two-particle
wave function because for collective pairing states, it shows
clustering features [3]. With standard notation, this function
can be written as

�αJM (r̄1r̄2) = [χ1/2(1)χ1/2(2)]0
0

∑
a�b

X(ab, αJM)ĵa ĵb

× [C(ab, r̄1r̄2) − (−)ja+jb−J C(ba, r̄1r̄2)],

(10)

where

C(ab, r̄1r̄2) = φa(r1)φb(r2)(−)lb+1/2−ja+J

×
{

la ja 1/2
jb lb J

} [
Yla (r̂1)Ylb (r̂2)

]M

J
(11)

and φa(r) is the radial wave function corresponding to the
single-particle state a [Eq. (2)]. Notice that the dimension of
the function � is fm−2.

We would like to emphasize that we will evaluate all
resonances that can be built within our Berggren single-particle
representation and give physical meaning to the ones with wave
functions showing localization properties and small imaginary
parts within the nuclear volume.

III. GIANT RESONANCES

The shell model hereby presented will be used in the Tamm-
Dancoff approximation (TDA) for p-p states. For p-h states,
RPA correlations are important, so the RPA formalism will
be used to determine p-h states. Therefore, in this section, we
will use the Berggren representation to study giant resonances
within the TDA for the p-p case and the RPA for the p-h
case. We will start with the p-h excitations because here the
bulk properties of the giant resonance are well explained by
bound representations, and therefore, its analysis can help us
to understand the influence of the continuum on the resonance.
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A. The particle-hole giant resonance in the nucleus 208Pb

The first application of the Berggren representation, but
excluding the scattering states on the complex contour, was
performed just in the study of p-h giant resonances in 208Pb
[13]. Because only bound states and resonances were included
in the representation, the corresponding p-h equations were
called resonant RPA (RRPA). It was thus found that the RRPA
explains very well the bulk properties of the giant resonances,
as bound representations had done before. The reason for
this agreement between the RRPA and bound representations
is that the main components of the giant resonance wave
function have the spins of the particle and the hole aligned
with the resonance angular momentum. This enhances the
collectivity of the resonance because the angular momentum
recoupling coefficients acquire in this case their maximum
values. Moreover, the largest transition matrix elements are
those for which the overlap between the particle and hole
radial wave functions is largest. This occurs if the number of
nodes in those wave functions is the same. Because the hole
is in a low spin, the alignment requires that the particle moves
in a high-spin orbit. Therefore, the corresponding centrifugal
barrier traps the system inside the nuclear volume hindering
the decay of the resonance. In other words, the p-h giant
resonance is built on single-particle resonances that are very
narrow. These are quasibound single-particle states that are
very well described by potentials that bind the particle (e.g.,
the harmonic-oscillator potential).

This success of bound representations is limited to the
explanation of the bulk properties of the giant resonance, such
as energies and sum rules. These are properties closely related
to the matrix elements of the interaction or transition operators
previously mentioned. But when the proper continuum plays
a role, such as in the evaluation of the partial decay widths
of the decaying resonance, then bound representations are
not well suited. This was shown in Ref. [14], where the
continuum RPA equations were solved in the complex energy
plane, including also the continuum scattering waves. It was
thus shown that for narrow resonances, the total escape width
(which is minus twice the imaginary part of the energy) is
the sum of the partial escape widths. This condition was
fulfilled by the giant resonances, indicating that a proper
criterion to decide whether a resonance is meaningful is
that the corresponding radial function is localized and that
the corresponding imaginary part is small. We will use this
criterion here not only to probe its validity by comparing
with known excitations but also to learn how far a physical
resonance is localized and how real is its wave function.
Afterward we will apply this criterion in the study of GPRs to
decide whether the evaluated states have physical relevance.

We will perform the calculations following the RRPA
procedure of Ref. [13] where a separable force was used.
However, our Berggren representation contains not only bound
states and resonances but also scattering states in the complex
energy plane, and therefore, we will call the formalism
complex RPA (CXRPA). The results thus obtained should
coincide with those given in Ref. [14] because, as mentioned, in
this reference the scattering states were also included, although
within a continuum RPA calculation.

As in CXSM, the form of the CXRPA equations is the
standard one. That is, the dispersion relation has the form

1

κα

=
∑
p-h

2(εp − εh)f 2(p-h, α)

ω2
α − (εp − εh)2

, (12)

where p (h) labels particle (hole) states, α labels the
correlated p-h state, and κα is the strength of the multipole-
multipole force. The function f is the component of the
separable force [cf. Eq. (7)], and the amplitude of
the particle-hole wave function is 〈α|(c+

i b+
j )λαµα

|0〉 =
Nα(nj − ni)f (ij, α)/[ωα − (εi − εj )], where b+

jm =
(−1)j−mcj−m is the hole-creation operator. Notice that
the system is spherically symmetric, and therefore, the
dependence on µα in these equations is formal only. One
usually adopts the value µα = 0. The occupation numbers is
ni = 1 (ni = 0) if i is a hole (particle) state. The particle-hole
energy εp-h = εp − εh is a positive quantity for bound states,
where all energies are real. In our case, the energies can be
complex, but still the real part of εp-h is positive. With this
notation, one can write the QXRPA wave function in the
standard form, that is, |α〈=∑

p-h[X(p-h; α)(c+
p b+

h )λαµα
|0〉 −

(−1)λαY (p-h; α)(c+
h b+

p )λαµα
|0〉], where X(p-h; α) =

〈α|(c+
p b+

h )λαµα
|0〉 = Nαf (p-h, α)/(ωα − εp-h) (forward am-

plitude) and Y (p-h; α) = 〈α|(c+
h b+

p )λαµα
|0〉 = −Nαf (p-h, α)/

(ωα + εp-h) (backward amplitude). The normalization
constant Nα is obtained through the RPA condition∑

p-h[X2(p-h, α) − Y 2(p-h, α)] = 1, as usual.
Also in the particle-hole analysis to be performed, the

S = 0 component of the wave functions will be examined
to probe the clustering features of the states. This compo-
nent can be evaluated as for the two-particle case and the
corresponding expression is similar to the one obtained there
[Eq. (10)].

We will evaluate the p-h resonances by repeating the
RPA calculation of Ref. [14], where the giant resonances
corresponding to angular momenta λ � 3 were analyzed. The
Hamiltonian will be as described; that is, the mean field will be
a Woods-Saxon potential, and the residual interaction will be
the separable force [Eq. (7)]. Of all these resonances, we will
only show the dipole one because the conclusions from this
case are also valid for the quadrupole (λ = 2) and octupole
(λ = 3) cases. Our main purpose in this study is to explore
the clustering properties of the giant resonance. With this
in mind, we notice that the wave function depends on six
independent coordinates. Thus, in spherical coordinates, the
wave function is �(�rp, �rh), where the coordinate of the particle
is �rp = (rp, θp, ϕp) and the same is true for the hole radius �rh.
Because of spherical symmetry (because the mean field as
well as the residual interaction are spherically symmetric), the
dependence on ϕ is irrelevant. That is, the wave function itself
depends on the angles ϕp and ϕh, but the physical quantities
(e.g., probabilities) do not. Moreover, to examine the clustering
features on the nuclear surface, it is enough to show the
singlet component of �(�rp, �rh) [Eq. (10)] as a function of
the angle between �rp and �rh. We therefore take rp = rh = R,
where R is the nuclear radius, which in 208Pb we choose
as R = 7.2 fm. In addition, we take �rp to coincide with the
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FIG. 1. Particle-hole wave function �(θ ) corresponding to the
giant dipole resonance in 208Pb. θ is the angle between the particle
and the hole radii. The particle radii �rp coincides with the z axis. Both
radii are taken at rp = rh = 7.2 fm. The full (dashed) line represents
the real (imaginary) part of the wave function.

z axis (i.e., θp = 0). With this choice of coordinates, the wave
function �(θ ) depends only on the angle θ between �rp and �rh,
which is θ = θh. As we will see, �(�rp, �rh) is clustered (i.e., it
is peaked at θ = 0). Therefore to show the localization as well
as the extent to which the wave function is real, we choose
θ = 0, rp = rh = r , and plot �(r) as a function of r . This is
the choice used in Ref. [8] to determine those features (i.e.,
whether a given resonance was meaningful).

In Fig. 1, we show the wave function �(θ ) corresponding
to the giant dipole resonance in 208Pb that lies at the complex
energy E = (13.651,−0.107) MeV. One sees, as expected,
that the giant dipole resonance is indeed peaked at θ = 0 and
that it is practically a real function. This will serve as an
example of a state lying deep into the continuum that is a
physically meaningful resonance.

In Fig. 2, we show �(r). Here the imaginary part of the
wave function is also negligible, except very much inside the

0 2 4 6 8 10 12 14
r [fm]

-2×10
-3

0

2×10
-3

4×10
-3

6×10
-3

Ψ
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) 
[f

m
-2

]

208
Pb(1

-
), E=(13.651,-0.107) MeV

FIG. 2. Particle-hole wave function �(r) corresponding to the
giant dipole resonance in 208Pb. The distance r = rp = rh is taken at
the angle θ = 0 (see text). The full (dashed) line represents the real
(imaginary) part of the wave function.

nucleus where it acquires a small value. But one sees that the
wave function is indeed localized inside the nuclear volume,
as required for a complex state to be meaningful. Also, this
case will be taken as an example in the next section to decide
whether it would be worthwhile to search experimentally for
the calculated GPRs.

Another important feature is to note that the escape width
of the dipole giant resonance is 214 keV. This is only a fraction
of the total width � of the observed resonance, which is about
2 MeV. Most of the width � is provided by the spreading
width, that is, by more complicated configurations than the
p-h ones included in the RPA calculation performed here.
These complicated configurations are mostly of a two-particle,
two-hole character [15,16].

B. The particle-particle pairing giant resonances outside the
nucleus 208Pb

We are now in a position to evaluate the T = 1 two-particle
GPRs outside the 208Pb core. As pointed out, the RPA
correlations are negligible in these two-particle excitations,
and therefore, one generally uses the TDA formalism to study
them, as we do in the following.

These are excitations lying high in the nuclear spectrum,
which would be highly excited by two-particle transfer probes.
To analyze these excitations, we will also use the coordinates
chosen in the p-h case earlier. With �ri , i = 1, 2, the particle i

has the position �ri = (ri, θi, ϕi). The clustering of the pairing
giant resonance wave function �(�r1, �r2) will be analyzed by
locating the particle �r1 along the z axis and defining θ = θ2

with r1 = r2 = R = 7.2 fm. The localization and the complex
character of �(�r1, �r2) will be probed by using, as earlier,
r1 = r2 = r and θ = 0, thus procuring that �(�r1, �r2) depends
only on r .

As shown in Ref. [4], the two-particle form factor entering
the corresponding two-particle transfer cross section is pro-
portional to the two-particle wave function �(θ = 0) at the
nuclear surface (i.e., the wave function that we use to show
clustering at its peak). That is the reason why the GPR is
strongly excited in two-particle transfer reactions. That is, this
resonance shows the highest clusterization of all two-particle
states and, as will be seen in the following, the highest peak.

We will only analyze monopole pairing vibrations, which
are the most collective of all pairing states. In 208Pb, with
Z = 82, N = 126, and the T = 1 monopole isobaric anal-
ogous state to 210Pb(gs) are the states 210Bi(0+; GPR) and
210Po(0+; GPR).

We will analyze these three pairing states separately
according to the value of Tz. The Woods-Saxon mean field
will be as in the p-h case. The corresponding single-particle
states, which we will mention often, are given in Table II of
Ref. [13]. The two-body force will be the standard monopole
pairing interaction of Ref. [4].

We will evaluate the state 210Po(0+; GPR) by adjusting
the pairing strength G of the separable force to obtain the
experimental 210Po(gs) energy. In 210Bi, there is not any
proton-neutron 0+ state that is experimentally known. We
will therefore assume various values for G and investigate
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the clustering and localization features of the states trying to
find the GPR. We will thus see that this resonance may actually
be a bound state and that its emergence will depend strongly
on its vicinity to the continuum threshold.

C. Tz = −1: the nucleus 210Po

The ground state of 210Po is the proton-proton vibrational
state. This state was exhaustively analyzed in Ref. [4].
However, in this reference, a bound single-particle basis was
used, and therefore, the states thus calculated do not coincide
with those evaluated in our Berggren basis. Yet, 210Po(gs)
is a bound state, and therefore, the differences between our
calculation and that of Ref. [4] for this state are minor. This
is satisfactory because of the checking of our computer codes
implied by the good agreement between the two calculations.
Therefore, this calculation is important, but our aim is to assess
whether the GPR indeed exists and in this case whether it
can be observed. To achieve this, we fitted the energy of
210Po(gs) to obtain the value of the strength G. With this
value of G, we then obtained the whole two-particle spectrum.
Among the states thus found, we obtained one that is strongly
clustered at an energy of ω = (14.907,−0.009) MeV [ω is
energy measured from 210Po(gs)]. This very narrow state is
shown in Fig. 3. The collectivity of this GPR can be assessed
by comparing with the corresponding clustering in 210Po(gs),
which is shown in Fig. 4. One sees that indeed at θ = 0,
the wave function of the high-lying state is about 1.8 times
the one corresponding to the ground state, and in the cross
section, it is the square of this number that enters. But the
striking feature in Fig. 3 is that the wave function is practically
real. To analyze this point further and, at the same time, to
verify whether the state is localized, we show in Fig. 5 the
radial dependence of the GPR wave function. We thus see that
the GPR in this nucleus is not only practically real but also
that it is as localized as any bound state would be. One can
illustrate this point even more by comparing with the p-h case
of the previous section. One thus sees that our GPR is at least

0 30 60 90 120 150 180
θ [degrees]

-1×10
-3

0

1×10
-3

2×10
-3

3×10
-3

Ψ
(θ

) [
fm

-2
]

210
Po(GPR), ω=(14.907,-0.009) MeV

FIG. 3. 210Po GPR wave function. The angle θ between the two
particles and the positions of the particles are as indicated in the text.
The full (dashed) line represents the real (imaginary) part of the wave
function.
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FIG. 4. As in Fig. 3 but for the ground state of 210Po.

as physical as the dipole giant resonance in 208Pb shown in
Fig. 2. The escape width is 18 keV, which again by comparing
with the p-h giant resonance, indicates that the total width may
be only some hundreds of keV.

The reason why this GPR is so narrow is partly because
of the Coulomb barrier, but also because it is largely built on
high-spin configurations (i.e., on very narrow single-particle
states). Thus, the three most important of these states are
1g9/2 lying at an energy of (4.03,−0.00) MeV, 0j15/2 at
(5.96,−0.00) MeV, and 0i11/2 at (5.43,−0.00) MeV [notice
that these energies are measured from 208Pb(gs)]. These are
high-lying states, which explains why the GPR also lies very
high in the spectrum, actually more than 3 MeV higher than the
11.6 MeV predicted in Ref. [4]. Despite this, it seems that it is
worthwhile to urge experimentalist groups to search in 210Po
for one of the most elusive collective states in nuclei. One
suitable process to perform this search is two-particle transfer
reactions. As an example of this type of reactions, we show
in Fig. 6 the angular distribution corresponding to the reaction
208Pb(3He,n)210Po(GPR) at a projectile energy of 100 MeV.

0 2 4 6 8 10 12 14
r [fm]

0

1×10
-2

2×10
-2

3×10
-2

Ψ
(r

) 
[f

m
-2

]

 210
Po(GPR)

FIG. 5. 210Po GPR wave function. The distance r is as indicated
in the text. The full (dashed) line represents the real (imaginary) part
of the wave function.
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FIG. 6. Angular distribution corresponding to the cross section
of the two-particle transfer reaction 208Pb(3He,n)210Po(GPR) at a
projectile energy of 100 MeV. The optical parameters are from
Ref. [17].

This figure can also be useful as a guide, because in two-
particle transfer reactions with light projectiles, the differential
cross sections corresponding to different states with a given
angular momentum are approximately proportional to each
other. For the 0+ states studied here, the angular distribution
is as shown in Fig. 6. That is, it has a typical, very pronounced
oscillating behavior. For states with other angular momenta,
the pattern of the angular distribution is smoother. This
can be seen in Fig. 3 of Ref. [18], where other details of
two-particle transfer reaction cross sections are also discussed.
The important point for us is that the angular distribution for
the reaction leading to 210Po(gs) is the same as the one in
Fig. 6, but smaller at 1.82 ≈ 3, as mentioned.

D. Tz = 0: the nucleus 210Bi

In this nucleus, the low-lying states correspond to configu-
rations in which protons move in the N = 5 shell and neutrons
in the N = 6 shell. Therefore, most low-lying proton-neutron
(pn) states are of negative parity. The first 0+ pn state would
consist of N = 6 configuration for both neutrons and protons
(i.e., it would be the GPR where the low-lying neutron states
are bound and the protons move in states lying in the continuum
part of the spectrum).

There is not any pn 0+ experimental state to be used in the
determination of the strength G. In fact, if this state existed, it
would be the GPR, which we will assume to lie at a reasonable
energy to investigate whether it may have any physical
significance. We will therefore assume that the gap induced by
the pairing interaction is about −1.5 MeV, as it is in 210Pb(gs).
Because the lowest GPR configuration is (π1g9/2ν1g9/2)0+
and ε(π1g9/2) = (4.03, 0.00) MeV, ε(ν1g9/2) = −3.93 MeV,
the GPR should lie between (0.03, 0.00) MeV (corresponding
to vanishing pairing interaction) and −1.5 MeV. In this energy
range, we will consider three cases, as discussed in the
following.

In Fig. 7, we show the clusterization of the wave
function for the case in which the energy of the GPR is
E = −1.5 MeV. This is a bound state, and therefore, the word
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FIG. 7. 210Bi GPR wave function corresponding to the case
E = −1.5 MeV. The angle θ is as indicated in the text. Notice that
this is a bound state, and therefore, the wave function is real.

“resonance” to denote this GPR is just a formality. Because
the binding energy of 210Bi is E = −8.59 MeV, the excitation
energy of the GPR is ω = 7.09 MeV. One sees in the figure that
the clusterization in this state is similar to the corresponding
one in Ref. [4]. All the discussion performed there on the
(3He,p) reaction, which predicted a large cross section, is
valid here also. However, this state was not observed. Perhaps
the reason for this is that the state lies at a higher energy,
as it happened for the GPR in 210Po analyzed earlier. We
therefore performed another calculation assuming the GPR
to be only weakly bound at an energy E = −0.05 MeV (i.e.,
ω = 8.54 MeV). As shown in Fig. 8, the clusterization is
in this case weak, and thus, the two-particle form factor is
small. This is a state that would be only weakly excited by
pn transfer reactions. This clusterization is hardly seen in
the third case analyzed by us, as shown in Fig. 9, for which
E = (0.05,−0.00) MeV. The clusterization has now vanished,
and no pn transfer reaction would reach this state. Therefore,
one can doubt whether the pn GPR really exists in 210Bi,
although it may be a bound state lying below 7 MeV.
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FIG. 8. 210Bi GPR wave function corresponding to the case
E = −0.05 MeV. The angle θ is as indicated in the text.
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FIG. 9. 210Bi GPR wave function corresponding to the case
E = (0.05, −0.00) MeV. The angle θ is as indicated in the text. The
full (dashed) line represents the real (imaginary) part of the wave
function.

E. Tz = 1: the nucleus 210Pb

The third component of T = 1 isobaric analogous states
that we analyze is 210Pb(gs), which is perhaps the most well-
known pairing vibration (see Ref. [4] and references therein).
But the state in which we are interested is the GPR, which has
been predicted before, most recently in Ref. [5]. By using the
same single-particle states as earlier, we evaluated the GPR by
fitting G to reproduce the energy of the state 210Pb(gs). We thus
obtained the GPR at an energy E = (7.558,−0.631) MeV.
Because the binding energy of 210Pb(gs) is −9.222 MeV, the
excitation energy of the GPR is ω = (16.780,−0.631) MeV.
This is much higher than previous estimations of this energy.
Thus, in Refs. [4]and [5], it was predicted that the excitation
energy ω would be in the range 11–12 MeV. Because in
these calculations bound representations were used, it is not
surprising that ω is found to be much lower than in our
calculation. But even more important is that the decaying
character of this wide resonance was ignored. In our case,
we can probe this point by looking at the GPR wave function.
As shown in Fig. 10, the GPR is indeed immersed in the
continuum because the imaginary part of the wave function is
not small and its escape width is 1.262 MeV. By comparing
again with the p-h dipole giant resonance, one can estimate
that the total width of the 210Pb(GPR) is more than 10 MeV.
Therefore, this resonance is of no physical significance and it
is most likely a part of the continuum background.

IV. PROBES TO DETECT THE GIANT PAIRING
RESONANCES

In this section, we will explore experimental possibilities to
detect the GPR that we have studied earlier. Given the pairing
collective character of these states, the most obvious of the
probes to be used would be two-particle transfer reactions.
The theoretical analysis of the two-particle transfer reactions
leading to these states has been performed in Ref. [4]. Of all the
GPR studied in Ref. [4] (and in this article as well), the only one
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FIG. 10. 210Pb GPR wave function. The angle θ is as indicated in
the text. The full (dashed) line represents the real (imaginary) part of
the wave function.

that has been investigated experimentally, through the reaction
208Pb(t,p)210Pb, was the one that we found to be too wide to be
observed [i.e., 210Pb(GPR)]. That experiment [19] did not show
any trace of the GPR. This is to be expected because the GPR is
here too wide to be physically meaningful. This feature was not
realized in Ref. [4] because in the corresponding calculations,
the continuum was ignored. However, we expect that the GPR
in 210Bi and especially in 210Po may be found. We would
therefore suggest that the corresponding neutron-proton [e.g.,
(α,d)] and proton-proton [e.g., (8Be,6He)] reactions, which as
far as we know have not been performed so far, may be proper
tools to reach the GPRs.

Another independent way of probing the GPR is by exploit-
ing the T = 1 isobaric character of the states 210Po(GPR),
210Bi(GPR), and 210Pb(gs). One thus expects that, for ex-
ample, the reaction 210Pb(gs)(p,n) would populate the state
210Bi(GPR). This type of reaction, as well as (3He,t), has
been used extensively to probe Gamow-Teller strengths, for
example, in Ref. [20]. However, we have not found any
publication where such reactions are performed by using
210Pb(gs) as a target. Again, in this case, we would encourage
experimental groups to analyze this possibility, which would
provide invaluable information about pairing collectivity in the
continuum as well as on the continuum itself.

The corresponding reaction leading to the double-analog
state 210Po(GPR), such as (8Be,8He), has not been performed
either. But this interesting state was investigated long ago [21].
In this experiment, the double-analog state was detected as
an enhancement in the excitation function for the reaction
p + 209Bi → 208Pb + 2p. However, this experiment was
not followed up by other investigations, and the state thus
observed is rarely mentioned nowadays. We do hope that the
results presented in this article would encourage experimental
groups to gauge the possibility of performing a proper (2p,2n)
reaction experiment.

V. SUMMARY AND CONCLUSIONS

In this article, we have analyzed monopole T = 1 GPRs
outside the 208Pb core. Our motivation for this study was
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to explore why these resonances, which have been studied
thoroughly in the past (e.g., in Refs. [4] and [5]) and predicted
to be highly excited by two-particle transfer probes, have
not been observed so far. We noticed that those studies were
performed within bound representations, which do not take
into account the unstable character of continuum excitations.
That is, those calculations did not consider the decaying
nature of the resonances. We repeated the same calculations
but using the Berggren representation, which allows one to
evaluate shell-model excitations in the complex energy plane.
The imaginary parts of the energies thus evaluated are minus
twice the escape widths of the resonances. We found that the
two-neutron GPR in 210Pb is very wide and is not a physically
relevant state but a part of the continuum background. The
proton-neutron GPR in 210Bi is found to be a meaningful state
only if it is not a resonance but a bound state lying below
7 MeV of excitation. As this energy approaches the continuum
threshold, then the collectivity of the state gradually
disappears. Above the threshold not only does the collectivity
vanish altogether but also the resulting resonance is very wide,

as the one in 210Pb had shown to be. Finally, the proton-proton
GPR in 210Po, lying at (14.907,−0.009) MeV, higher in
the spectrum than previously predicted, turns out to be a
meaningful state. The reason for this is that it is mainly built
on high-lying, high-spin, and therefore, very narrow, single-
particle proton states. It is also very collective, and therefore,
it seems proper to urge experimental groups to search for this
most elusive collective mode in 210Po. In this sense we have
also proposed several experiments, ranging from two-particle
transfer reactions to (p, n) and (2p, 2n) experiments, which
would allow us to observe states analog to 210Pb(gs). These
experiments just deal with the resonances that we found to
be physically meaningful, such as 210Bi(GPR) and especially
210Po(GPR).
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