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Couplings between dipole and quadrupole vibrations in tin isotopes
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We study the couplings between collective vibrations such as the isovector giant dipole and isoscalar giant
quadrupole resonances in tin isotopes in the framework of the time-dependent Hartree-Fock theory with a Skyrme
energy density functional. These couplings are a source of anharmonicity in the multiphonon spectrum. In
particular, the residual interaction is known to couple the isovector giant dipole resonance with the isoscalar giant
quadrupole resonance built on top of it, inducing a nonlinear evolution of the quadrupole moment after a dipole
boost. This coupling also affects the dipole motion in a nucleus with a static or dynamical deformation induced
by a quadrupole constraint or boost, respectively. Three methods associated with these different manifestations
of the coupling are proposed to extract the corresponding matrix elements of the residual interaction. Numerical
applications of the different methods to 132Sn are in good agreement with each other. Finally, several tin isotopes
are considered to investigate the role of isospin and mass number on this coupling. A simple 1/A dependence of
the residual matrix elements is found with no noticeable contribution from the isospin. This result is interpreted
within the Goldhaber-Teller model.
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I. INTRODUCTION

A particular interest in strongly interacting systems is
their ability to present disorder or chaos and, in the same
excitation energy range, well-organized motion. Atomic nuclei
are known to show both behaviors [1]. In particular, they
exhibit a large variety of collective vibrations, also called
giant resonances (GRs), with excitation energy usually above
the particle emission threshold [2]. The GRs are associ-
ated with anomalously large cross sections in some nuclear
reactions.

Baldwin and Klaiber observed the isovector giant dipole
resonance (GDR) in photofission of uranium nuclei [3],
interpreted as a vibration of neutrons against protons [4].
This GDR was investigated with several probes [2] and was
also observed on top of highly excited states (e.g., in hot
nuclei [5]). The survival of ordered motion in hot nuclei
(i.e., in a chaotic environment) is one of the most striking
phenomena in nuclear physics. Other kinds of GR have been
discovered, such as the isoscalar giant quadrupole resonance
(GQR) associated with an oscillation of the shape between a
prolate and an oblate deformation [6], and the isoscalar giant
monopole resonance (GMR) corresponding to a breathing
mode [7–9].

The GRs are usually associated with the first phonon
of a small-amplitude harmonic motion. However, the proof
of their vibrational nature came with the observation of
their two- and three-phonon states [10–12]. Multiphonon
studies also provided a good test of the harmonic picture.
In particular, anharmonicity was found in an abnormally large
excitation probability of these states, indicating that different
phonon states couple because of the residual interaction
[13,14]. Microscopic investigations, such as the random phase

approximation (RPA), together with boson mapping tech-
niques [15] and the nonlinear response to an external field
in the time-dependent Hartree-Fock (TDHF) theory [16,17],
showed, indeed, that strong couplings between GMR, GQR,
and GDR occur. In particular, a GMR or a GQR [respectively
(resp.) a GMR] can be excited on top of a GDR (resp. a
GQR), leading to couplings between one- and two-phonon
states. As a consequence, GRs cannot be described in a purely
harmonic picture. Anharmonicities were also found to affect
pygmy dipole resonances, though depending on the choice of
the nuclear functional [18].

The goal of the present work is to get a deeper insight into
the couplings between various GRs, which represents a first
step toward understanding complexity and disorder in nuclei
at high excitation energies. As an example, we focus on the
coupling between isovector dipole and isoscalar quadrupole
vibrations. A clear link between the linear dipole motion on a
deformed state and the quadratic response of the quadrupole
moment to an external dipole excitation (investigated in
Ref. [16]) is made. The TDHF theory is used to compute
the residual interaction coupling the one-phonon state of the
GDR to the two-phonon state with a GQR built on top of the
GDR. Applications to spherical tin isotopes are performed to
investigate the role of the isospin degree of freedom and of the
total number of nucleons on the coupling.

We present a schematic model describing couplings be-
tween GR and their effect on one-body observables in
Sec. II. The TDHF formalism and its application to nuclear
vibrations are discussed in Sec. III. Numerical details on
the three-dimensional TDHF code are also given. A detailed
investigation of the couplings in 132Sn is presented in Sec. IV,
together with a more systematic analysis in tin isotopes.
Finally, we conclude in Sec. V.
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II. A SCHEMATIC MODEL FOR GR COUPLING

Let us illustrate the effect of couplings between vibra-
tional modes within a simple schematic model introduced in
Ref. [16]. We consider the Hamiltonian

Ĥ = Ĥ0 + V̂ , (1)

where Ĥ0 corresponds to the harmonic (HF+RPA) part and the
residual interaction V̂ couples collective modes. Eigenstates
of Ĥ0 are one- and two-phonon states |ν〉 and |νµ〉 with
eigenenergies Eν = E0 + h̄ων and Eνµ = E0 + h̄ων + h̄ωµ,
respectively, where ωµ,ν denote the collective frequencies and
E0 is the ground-state energy. In the following, h̄ is omitted in
the notation. Only the coupling between the two states |ν〉 and
|νµ〉 is considered here. The associated matrix element of the
residual interaction is noted vµ = 〈ν|V̂ |νµ〉. Such couplings
between one- and two-phonon states have been proven to
be the most important one in nuclei [15]. Using first-order
perturbation theory, the eigenvalues of Ĥ are those of Ĥ0 with
eigenstates

|ν〉 ≈ |ν〉 − εµ|νµ〉, (2)

and

|νµ〉 ≈ |νµ〉 + εµ|ν〉, (3)

where εµ = vµ

ωµ
.

The couplings are expected to affect the evolutions of
expectation values of one-body observables such as the mul-
tipole moments Qν(t) ≡ 〈Q̂ν〉(t). We investigate below three
different manifestations of the couplings on these evolutions.
They will be used in the next section to compute vµ from TDHF
calculations in the case of coupling between giant dipole and
quadrupole resonances.

A. Quadratic response

The effect of couplings in the quadratic response has been
introduced in Ref. [16]. Highlights on the main steps are given
here. At initial time, the ground state |0〉 of the system is
excited by a boost with the one-body operator Q̂ν :

|�(0)〉 = exp(−ikνQ̂ν)|0〉. (4)

Developing the exponential up to second order in the boost in-
tensity kν and considering an evolution under the Hamiltonian
defined in Eq. (1), the state at time t reads at first order in εµ:

|�(t)〉 ≈ exp(−iE0t)

[(
1 − k2

νq
2
ν

2

)
|0〉

− ikνqνe
−iων t (|ν〉 − εµe−iωµt |νµ〉)

]
, (5)

where qν = 〈ν|Q̂ν |0〉 is the transition amplitude that we
assume to be real.

The expectation value of the one-body observable used in
the boost exhibits oscillations. Indeed, in case of no static
deformation in the ground state, we have

Qν(t) = −2kνq
2
ν sin(ωνt) + O

(
k3
ν

)
. (6)

In particular, its amplitude increases linearly with the boost
intensity in the small amplitude regime. In addition to this
linear response, the coupling induces an oscillation of the other
collective mode Qµ:

Qµ(t) ≈ 2k2
νq

2
ν qµ

vµ

ωµ

[cos(ωµt) − 1], (7)

where we have assumed qµ = 〈µ|Q̂µ|0〉 = 〈µν|Q̂µ|ν〉. This
oscillation is then quadratic in kν and provides a first method
to compute the residual interaction vµ, assuming the fact
that a nonlinear theory, such as TDHF, is used to follow the
expectation values of the one-body observables. We finally
note that Qν(t) and Qµ(t) have different frequencies and start
in phase quadrature.

B. Linear response in an external static field

It is interesting to note that the coupling may also manifest
itself in the linear response to the boost [Eq. (4)] if an external
static field is added to the Hamiltonian [Eq. (1)]:

Ĥ (λ) = Ĥ (0) + λQ̂µ. (8)

We choose λ small enough to induce a linear static deformation
defined as

Q0
µ(λ) = 〈0(λ)|Q̂µ|0(λ)〉 ≈ λ

(
∂Q0

µ

∂λ

)
λ=0

, (9)

where the ground state |0(λ)〉 of Ĥ (λ) contains a contribution
of the one-phonon state |µ〉:

|0(λ)〉 ≈ |0〉 + λ

2qµ

(
∂Q0

µ

∂λ

)
λ=0

|µ〉. (10)

The external potential modifies linearly the eigenenergies of
the Hamiltonian and the frequency of the linear response to a
boost [Eq. (4)] on |0(λ)〉 follows

(
∂ων

∂λ

)
λ=0

= vµ

qµ

(
∂Q0

µ

∂λ

)
λ=0

, (11)

providing another direct way to extract the matrix element vµ

of the residual interaction. We emphasize the fact that, here,
the nonlinear response is not invoked and a RPA code allowing
static deformation in the ground state would be sufficient to
compute such couplings.

C. Response to two simultaneous excitations

We showed two manifestations of the coupling (i) in the
quadratic response and (ii) in the linear response under a static
constraint. Let us now introduce a third one where the response
Qν(t) is studied after a simultaneous double boost of Q̂µ and
Q̂ν :

|�(0)〉 = e−ikµQ̂µe−ikνQ̂ν |0〉. (12)
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The Q̂µ term modifies the response of Eq. (6) with an
additional term:

�Qν(t) = 〈Q̂ν〉(t) − 〈Q̂ν〉kµ=0(t)

= 4kνkµq2
ν qµ

vµ

ωµ

[1 − cos(ωµt)] cos(ωνt). (13)

It is convenient to write this evolution with the form

x(t) = Qν(t)

Qν

= sin ωνt − β cos ωνt + β

2
cos(ωµ + ων)t

+ β

2
cos(ωµ − ων)t, (14)

where Qν = −2kνq
2
ν and β = 2kµqµvµ/ωµ. In fact, we can

show that x(t) is a solution of the differential equation

ẍ

ω2
ν

+
(

1 − 2β
ωµ

ων

sin ωµt

)
x + β

ω2
µ

ω3
ν

ẋ cos ωµt = 0, (15)

if one keeps only the first-order terms in β. The two first
terms of the left-hand side are equivalent to a Mathieu’s
equation. It is not surprising because the latter has been shown
to qualitatively reproduce the pre-equilibrium dipole motion
coupled to collective shape vibrations of the system in N/Z

asymmetric fusions [19,20].
We see in Eq. (14) that the effect of the coupling produces

vibrations at frequencies |ων ± ωµ|. By analogy to the standard
response function related to the strength distribution [21] we
introduce the coupling response function

Rc
ν(ω) = −1

πkνkµ

∫ ∞

0
dt cos(ωt)�Qν(t), (16)

defined for ω � 0. The latter can be used to investigate the
coupling because it is linearly proportional to vµ:

Rc
ν(ω) ≈ q2

ν qµvµ

ωµ

[−2δ(ων − ω) + δ(ων + ωµ − ω)

+ δ(|ων − ωµ| − ω)]. (17)

Equation (17) provides then a third way to extract vµ.
Let us finally note that the contribution to the coupling

response function at ων and those at |ων ± ωµ| have opposite
signs in Eq. (17) and that the integral of the coupling response
function is zero. It is interesting to note that this property
is still valid at all order in kν and kµ. To show it, let us
recall that in our schematic model, Q̂ν |0〉 = qν |ν〉 and Q̂2

ν |0〉 =
q2

ν |0〉, which implies e−ikνQ̂ν |0〉 = cν |0〉 − isν |ν〉, where cν =
cos(kνqν) and sν = sin(kνqν). The response Qν(t) following
the double boost of Eq. (12) then becomes

Qν(t) = −2cνsνqν sin(ωνt)

+ 4cνcµsνsµqν

vµ

ωµ

[1 − cos(ωµt)] cos(ωνt). (18)

We see that Eq. (14) is still valid if one replaces Qν by
Q

′
ν = −2cνsνqν and β by β ′ = 2cµsµvµ/ωµ. Then, the ω

dependance of Eq. (17) is unchanged. As a consequence, the
cancellation of the integral of the coupling response function
defined in Eq. (16) is not limited to the small-amplitude regime.

III. THE TIME-DEPENDENT HARTREE-FOCK
APPROACH

A. Applications to nuclear vibrations

Coherent motion of fermions such as collective vibrations
in nuclei can be modeled by time-dependent mean-field
approaches like the time-dependent TDHF theory proposed
by Dirac [22]. Indeed, in its linearized version, TDHF is
equivalent to the RPA, which is the basic tool to understand
the collective vibrations in terms of independent phonons.

As we saw in the previous section, giant resonance
properties can be investigated by studying the response of the
system to an external (collective) one-body field. In particular,
time evolution of one-body (collective) observables, which
can be computed using mean-field approximations, contain
the necessary information to investigate the couplings between
collective modes. Indeed, TDHF takes into account the effects
of the residual interaction if the considered phenomenon can
be observed in the time evolution of a one-body observable.
In particular, the nonlinear response in TDHF contains the
couplings between one- and two-phonon states coming from
the three-particle one-hole and one-particle three-hole residual
interaction [16]. In that sense, it goes beyond the RPA, which
is a harmonic picture and contains only one-particle one-hole
residual interaction.

In its unrestricted form (i.e., with no constraint on spatial
symmetry), TDHF authorizes all possible spatial forms of
the nucleon wave functions, which is crucial because of
both the shell effects and the wave dynamics. In addition,
Landau spreading and evaporation damping are well accounted
for [23]. However, it does not incorporate the dissipation
from two-body mechanisms [24–26]. Inclusion of pairing
correlations is possible within the time-dependent Hartree-
Fock-Bogolyubov theory [27], but realistic applications in
three dimensions are not yet achieved. Extension to theories
going beyond the one-body limit such as extended TDHF [26],
second RPA [28,29], time-dependent density matrix theory
[30–32], or stochastic one-body transport theory [33] should
be considered for realistic description of giant resonance
properties [34].

Application of TDHF to nuclear dynamics has been
possible thanks to the Skyrme-type effective interaction
[35,36]. Early realistic TDHF codes have been applied to
study collective vibrations in nuclei with simplified Skyrme
interactions [37]. Recent increase of computational power
allowed realistic TDHF description of giant resonances in
three dimensions with full Skyrme energy density functional
(EDF) [16,38–41]. In particular, TDHF has been used to
investigate nonlinear effects in nuclear vibrations [16,42].

B. Formalism

The TDHF equation can be written as a Liouville-Von
Neumann equation:

i
∂

∂t
ρ = [h[ρ], ρ], (19)
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where ρ is the one-body density matrix of an independent
particles state with elements

ρ(rsq, r′s ′q ′) =
A∑

i=1

ϕi(rsq)ϕ∗
i (r′s ′q ′), (20)

where A is the number of nucleons. The sum runs over all
occupied single-particle wave functions ϕi and r, s, and q

denote the nucleon position, spin, and isospin, respectively.
The Hartree-Fock single-particle Hamiltonian h[ρ] is related
to the EDF, denoted by E[ρ], through

h[ρ](rsq, r′s ′q ′) = δE[ρ]

δρ(r′s ′q ′, rsq)
. (21)

C. Numerical details

In this work, the TDHF equation (19) is solved iteratively
in time on a spatial grid with a plane of symmetry using the
TDHF3D code built by P. Bonche and coworkers [43] with the
SLy4 parametrization of the Skyrme EDF [44]. The latter has
been constrained on the pure neutron matter equation of state to
improve the description of exotic nuclei. For instance, together
with a density-dependent zero-range pairing interaction, it
allows a somewhat good reproduction of the isotopic shifts
between proton and neutron mean-square radii in lead isotopes.
It also improves the description of the isotopic evolution of
the binding energies [44]. Defining the neutron drip line as
the isotope for which the chemical potential vanishes, it is
estimated to be around 176Sn in the tin isotopic chain [45],
though it might depend on the choice of the pairing interaction
and on the inclusion of beyond mean-field correlations.

Good convergences of the quadrupole and dipole moment
evolution is ensured with a lattice spacing �r = 0.6 fm and
a time step �t = 5 × 10−25 s. The size of the half-box where
the single particle wave functions are evolved is 80 × 80 × 40
in mesh size unit �r , unless otherwise specified.

IV. RESULTS

Let us now investigate the coupling between isovector
dipole and isoscalar quadrupole vibrations in tin isotopes in
the framework of the theoretical model presented in Sec. II,
where |ν〉 ≡ |D〉 and |µ〉 ≡ |Q〉 denote a GDR and a GQR
phonon, respectively. The isovector dipole moment is defined
as

Q̂D = NZ

A
(Ẑn − Ẑp), (22)

where Ẑn (resp. Ẑp) measures the neutron (resp. proton)
average position on the z axis. The isoscalar quadrupole
moment reads

Q̂Q =
√

5

16π

A∑
i=1

(
2ẑ2

i − x̂2
i − ŷ2

i

)
. (23)

Their expectation value evolutions are computed using the
TDHF3D code after different initial conditions as described
below.

FIG. 1. Time evolution of the dipole (a) and quadrupole
(b) moments in 132Sn after a dipole boost with an intensity kD =
0.01 fm−1.

A. Nonlinear quadrupole motion induced by a dipole boost

We first investigate the quadratic response presented in
Sec. II A in the 132Sn nucleus. Figure 1(a) shows the early time
evolution of the dipole moment after a dipole boost according
to Eq. (4) in the small-amplitude regime. The dipole moment
follows a − sin function as indicated by Eq. (6). Extracting
the frequency from the first minimum of D(t) leads to a
GDR energy of ωD ≈ 15.2 MeV. This value is slightly lower
than the maximum of the experimental GDR peak energy
Emax = 16.1(7) MeV [46]. The same analysis in 120Sn, in
which almost all the dipole strength is located around the

GDR energy, gives a value of ω
(120Sn)
D ≈ 15.3 MeV, which is in

good agreement with experimental data where a peak energy
of E

exp.

GDR = 15.4 MeV has been obtained [47]. Note that the
extraction method of ων from the first extremum of Qν(t) is, in
first approximation, comparable to the ratio of the second over
the first energy weighted moments of the strength function
m2/m1 [16].

We see in Fig. 1(b) that an oscillation of the quadrupole
moment is induced by the dipole boost. According to the
theoretical model presented in Sec. II, this is a manifestation
of the residual interaction of Eq. (1) coupling the dipole and
quadrupole vibrations. In particular, QQ(t) starts in phase
quadrature with QD(t) and oscillates with a smaller frequency.
These observations are in qualitative agreement with the
quadratic response in Eq. (7).

To get a deeper insight into this coupling, we have computed
the TDHF response for several dipole boost velocities kD .
The first extrema of the dipole and quadrupole moments are
reported in Fig. 2(a) and Fig. 2(b), respectively. Whereas the
dipole amplitude is indeed linear in kD as expected from
Eq. (6), indicating that these calculations are performed in
the small-amplitude regime, the induced quadrupole motion is
quadratic in kD , in agreement with Eq. (7).

To obtain a quantitative estimate of the coupling, we first
extract the transition amplitude from a linear extrapolation of
Qmin

D at kD → 0 in Fig. 2(a). According to Eq. (6), we get
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FIG. 2. (Circles) First minimum and maximum of the dipole (a)
and quadrupole (b) moment evolution, respectively, in 132Sn as a
function of the dipole boost intensity kD . (Dashed lines) Linear and
quadratic extrapolations at kD → 0 of the dipole (a) and quadrupole
(b) amplitudes, respectively.

qD ≈ 6.98 fm. The same analysis with a quadrupole boost in
the linear regime gives a transition amplitude qQ ≈ 61.4 fm2

and a GQR energy of ωQ ≈ 13.0 MeV. Note that the same

analysis in 120Sn gives a GQR energy of ω
(120Sn)
Q ≈ 13.3 MeV,

in excellent agreement with the experimental value E
exp.

GQR =
13.24 ± 0.13 MeV [48]. These quantities, together with a
quadratic extrapolation of the quadrupole maximum at kD →
0 in Fig. 2(b), give, according to Eq. (7), a matrix element of
the residual interaction v

(1)
Q ≈ −0.61 MeV.

B. Dipole motion in a nucleus with a static
quadrupole constraint

The formalism developed in Sec. II B, where the linear
response is investigated in an external potential, cannot be
directly applied to study the coupling between the dipole and
quadrupole modes. The reason is that the external potential
−λQ̂Q with the definition of Eq. (23) is not bound from
below and its use in constrained HF calculations would lead
to unphysical results. It is then necessary to consider another
external potential such as

λ(Q̂Q + κλQ̂M ), (24)

where

Q̂M = 1√
4π

A∑
i=1

r̂2
i (25)

is the monopole moment and κλ = √
5/2 if λ � 0 and −√

5 if
λ < 0. The expression [Eq. (24)] then reads

3

√
5

16π
λ

A∑
i=1

{
ẑ2
i if λ � 0,

−x̂2
i − ŷ2

i if λ < 0.
(26)

FIG. 3. (a) Static quadrupole moment from HF calculation
(circles) under a quadrupole+monopole constraint (see text) as a
function of the Lagrange parameter λ in 132Sn. (b) TDHF energy
of the GDR (circles) from the first minimum of the dipole moment
after a dipole boost along the deformation axis with an intensity
kD = 0.01 fm−1. (Dashed lines) Linear extrapolations at λ → 0± of
the quadrupole moment (a) and GDR energy (b).

Such an external field allows one to explore all quadrupole
deformations from oblate (λ > 0) to prolate (λ < 0) shapes
as shown in Fig. 3(a) where the ground state quadrupole
deformation Q0

Q of the constrained HF solution is plotted
as a function of the Lagrange parameter λ. The quadrupole
deformation is clearly linear in this perturbative regime and its

slope at the origin is
∂Q0

Q

∂λ
|λ=0 ≈ −1260.4 fm4 MeV−1.

As discussed in Sec. II B, such a static deformation is
expected to change the dipole frequency as compared to that
of the GDR excited on the spherical ground state. In fact, the
frequency of a dipole oscillation along the main quadrupole
axis decreases (resp. increases) with a prolate (resp. oblate)
deformation. This is indeed what we observe in Fig. 3(b) where
the energy of the GDR is plotted as a function of λ. Note that,
according to Eq. (11), this is consistent with the negative sign
of the ratio vQ/qQ obtained in Sec. IV A.

We also observe in Fig. 3(b) that the evolution of this energy
is linear both for λ > 0 and λ < 0, but the slopes are different
in these two regimes. This is attributed to the presence of
the monopole moment in the constraint [Eq. (24)]. Indeed,
the monopole vibration is also coupled to the dipole mode
by a matrix element vM of the residual interaction [15,16].
According to Eq. (11), the dipole energy is expected to be
modified as

ωD(λ) ≈ ωD(0) + λ
vQ

qQ

(
∂Q0

Q

∂λ

)
λ=0

+ λκλ

vM

qM

(
∂Q0

M

∂λ

)
λ=0

.

(27)

A compression of the nucleus increases the dipole frequency,
which implies vM/qM < 0. Because λκλ � 0 for all λ, the
monopole and quadrupole moments have an opposite effect
on ωD for λ < 0 and act in the same direction for λ > 0. This
is indeed what we observe in Fig. 3(b) where the effect of
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the constraint almost cancels on the prolate side, whereas it
strongly increases the GDR energy in the oblate one.

Finally, starting from Eq. (27), it is possible to isolate the
coupling matrix element between the dipole and quadrupole
modes:

vQ =
(

∂Q0
Q

∂λ

)−1

λ=0

qQ

3

[(
∂ωD

∂λ

)
λ→0−

+ 2

(
∂ωD

∂λ

)
λ→0+

]
.

(28)

Using the data extracted from Fig. 3 and the value of qQ

obtained in Sec. IV A, we get v
(2)
Q ≈ −0.56 MeV. This result

is in reasonable agreement with the one obtained with the
quadratic response.

C. Response to a dipole+quadrupole boost

A third manifestation of the coupling between dipole
and quadrupole motions occurs when both a dipole and a
quadrupole boost are performed at initial time. We showed in
Sec. II C that, in such a case, the dipole motion is affected by
the quadrupole vibration. Such effect is not present in the linear
response theory because the modifications are proportional to
kDkQ. As can be seen in Eq. (6), there is no other quadratic
term because the next-order terms affecting the dipole motion
are in k3

D and k3
Q.

The basic tool to study the effect of the coupling on the
dipole motion is the coupling response function defined in
Eq. (16). In principle, its calculation implies to follow the
dipole moment over an infinite time. However, we use a
filtering procedure to avoid numerical artifacts coming from
the interaction of the nucleus with reflected nucleon wave
functions because of the hard box boundary conditions [49].
We perform the calculations over 3000 iterations in time
(450 fm/c). The dipole moment is multiplied by a filtering
function exp[− 1

2 ( t
τ

)2] with τ = 100 fm/c [39]. This procedure
induces an additional width of τ−1 ≈ 2 MeV. According
to Eq. (17), this additional width is sufficiently small for
the present discussion because the modes in the coupling
response function are located at ωD − ωQ ≈ 2.2, ωD ≈ 15.2,
and ωD + ωQ ≈ 28.2 MeV. However, the low-energy part
of the spectrum (i.e., in the region of the ωD − ωQ peak)
is dependent on the choice of the filtering function within
these numerical conditions. We checked with other filtering
functions, for example, a cosine instead of a Gaussian function,
to confirm that the higher part of the spectrum (above
≈10 MeV) is not affected. In addition, the filtering function
does not change the fact that the total integral of the coupling
response function vanishes (see Sec. II C). The latter was found
to be a solid numerical property of this function. Finally, we
checked the convergence of the results presented in this section
by comparing with calculations performed in a bigger box of
120 × 120 × 60 in mesh size unit �r .

Figure 4 shows the coupling response function for the dipole
motion following a quadrupole+dipole boost. We checked
that, in the small-amplitude limit, the coupling response
function is indeed independent of kQ and kD . As expected
from Eq. (17), two peaks are present in this energy range at

FIG. 4. Coupling response function of the dipole moment after a
dipole+quadrupole boost with intensities kD = 0.01 fm−1 and kQ =
0.001 fm−2, respectively.

ωD and ωD + ωQ with opposite signs. Moreover, the integral
of the positive peak at ωD is directly related to the coupling as

vQ = − ωQ

2q2
DqQ

∫
Rc

D>0
dω Rc

D(ω). (29)

With the coefficients calculated in Sec. IV A, we obtain a
coupling v(3) ≈ −0.68 MeV of the same order of magnitude
than with the two previous methods.

Let us finally note that in the case of more complicated
vibrations (e.g., the oscillations exhibit several frequencies),
the coupling response function can be used for a more detailed
investigation of the coupling. Indeed, it allows an analysis of
the coupling effect at each energy, whereas the two previous
methods give only access to a weighted sum of the matrix
elements of the residual interaction associated to each excited
mode [16].

D. Evolution of the coupling with isospin and mass

We now repeat the study of the linear quadrupole motion
induced by a dipole boost, described in Sec. IV A, to the tin
isotopic chain. The choice of this method to investigate more
systematically the coupling between dipole and quadrupole
vibrations is motivated by its rather low computational time as
compared to the two other methods. Our goal is to understand
the evolution of vQ as a function of the isospin. To avoid
any ambiguity coming from possible static deformation in the
ground states, we focus on some of the tin isotopes that are
spherical at the HF level: 100Sn, 106Sn, 114Sn, 120Sn, 132Sn, and
140Sn. These isotopes allow for an investigation of the coupling
from the proton-rich to the neutron-rich side.

Let us first investigate the linear response to a quadrupole
boost [Eq. (4)] to compute the energies ωQ and transition
amplitudes qQ from the first minimum of the quadrupole
moment [see Eq. (6)]. These quantities are plotted in Fig. 5
as a function of the number of nucleons. The GQR energy is
known to be proportional to A−1/3 [2]. This is compatible with
the TDHF results that are fitted by ωQ ≈ 65.5A−1/3 MeV. The
evolution of the transition amplitude with A can be obtained
from the energy weighted sum rule (EWSR) for quadrupole
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FIG. 5. Evolution of (a) the GQR energy and (b) the transition
amplitude as a function of the number of nucleons in tin isotopes
from the TDHF linear response (circles). The top line (a) represents a
A−1/3 fit of the TDHF results, whereas the bottom line (b) is obtained
from considerations on the GQR energy weighted sum rule (see text).

vibrations, which reads [21]

S1
Q =

∑
α

(Eα − E0)|〈α|Q̂Q|0〉|2 = h̄2

m

5

4π
A〈r̂2〉

≈ 14.3A5/3 MeV fm4, (30)

where {|α〉} is an eigenbasis of Ĥ . In the last line of Eq. (30)
we used the approximation of a constant density and a sharp
surface, which gives 〈r̂L〉 = 3

L+3RL with R ≈ 1.2A1/3 fm.
If all the strength is located at the GQR energy, which is a
somewhat good approximation for heavy nuclei [2], then the
EWSR reduces to

S1
Q = ωQq2

Q ≈ 65.5A−1/3q2
Q. (31)

Equations (30) and (31) then lead to

qQ ≈ 0.466A fm2. (32)

This linear dependence is plotted in Fig. 5(b) and reproduces
well the TDHF results.

Let us now consider a dipole boost on these nuclei with a
boost velocity kD = 0.01 fm−1. This value is small enough to
generate a linear response of the dipole moment and a quadratic
response of the induced quadrupole vibration in all considered
isotopes. The GDR energy ωD is shown as a function of the
number of nucleons in Fig. 6(a). It is compatible with the A−1/3

dependence expected in heavy nuclei [2]. A fit of the TDHF
results gives

ωD ≈ 76A−1/3 MeV. (33)

Similarly to the quadrupole case, the dependence of the
transition probability q2

D can be obtained from the dipole
EWSR:

S1
D = h̄2

2m
(1 + κ)

NZ

A
, (34)

FIG. 6. Evolution of (a) the GDR energy and (b) the transition
probability as a function of the number of nucleons in tin isotopes
from TDHF linear response (circles). The top line (a) represents a
A−1/3 fit of the TDHF results. The bottom lines (b) are obtained
from considerations on the GDR energy weighted sum rule (see text)
with an enhancement factor of the Thomas-Reiche-Kuhn sum rule
κ = 0.25 (dashed line) and κ = 0.183 (solid line).

where κ is the enhancement factor of the Thomas-Reiche-
Kuhn (TKR) sum rule. Assuming all the strength in the GDR
(i.e., q2

D = S1
D/ωD), we get from Eqs. (33) and (34)

q2
D ≈ h̄2

2m
(1 + κ)

NZ

76A2/3
. (35)

In nuclear matter, the enhancement factor of the TKR sum
rule is κ = 0.25 with the SLy4 parametrization [44]. This
value clearly overestimates the transition probabilities [see
dashed line in Fig. 6(b)], though the qualitative trend is in good
agreement with the TDHF results. It is possible to compute κ

in finite nuclei using [50]

κ = m

4h̄2

A

NZ
[t1(2 + x1) + t2(2 + x2)]

∫
dr3ρn(r)ρp(r),

(36)

where ti and xi are the usual Skyrme parameters. In the
considered tin isotopes, κ is almost constant within the range
0.181–0.186 with no particular isospin or mass dependence.
This leads to a better agreement with the transition probabili-
ties obtained with TDHF [see solid line in Fig. 6(b)], though
a slight overestimation remains. The latter could be attributed
to the fragmentation of the isovector dipole response. In this
case, the dipole response reads

QD(t) = −2kD

∑
i

q2
Di

sin[(ωD + δωi)t]. (37)

In our calculations, the GDR properties (ωD and qD) are
extracted from the first minimum of the dipole response, which
obeys to

Qmin
D

−2kD

=
∑

i

q2
Di

cos

(
π

2

δωi

ωD

)
≡ q2

D �
∑

i

q2
Di

. (38)
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FIG. 7. Evolution of the coupling with mass number. The matrix
element of the residual interaction is plotted as a function of 1/A.
The line shows a linear fit of the TDHF results.

The last inequality implies that the TKR sum rule allows one
only to compute the upper limit of q2

D in our model.
Finally, we investigate the coupling between the quadrupole

and dipole vibrations from the quadratic response. We have
shown in Sec. II A that, in the presence of a nonzero matrix
element vQ of the residual interaction coupling the state |D〉
to the state |DQ〉, a dipole boost is expected to generate an
oscillation of the quadrupole moment. Before studying the
evolution of vQ along the tin isotopic chain, it is mandatory
to get a deeper insight into the mechanism responsible for this
induced quadrupole excitation.

In a macroscopic approach, the isovector GDR is inter-
preted by a combination of the Steinwedel-Jensen model
in which the total density is kept unchanged [51] and the
Goldhaber-Teller model where proton and neutron fluids
are incompressible [4]. It is obvious that the Steinwedel-
Jensen model does not affect the quadrupole moment because
any modification of the density of one isospin specie is
exactly compensated by the other in every point of space.
In the Goldhaber-Teller model, however, a displacement of
the proton and neutron spheres in the opposite direction is
considered. It produces a dipole moment QD = NZ

A
X where

X is the distance between their centers. This displacement also
induces a prolate shape with a quadrupole moment quadratic in
X. Indeed, assuming a displacement of a proton (resp. neutron)
homogeneous sphere of density Zρ0/A (resp. Nρ0/A) by
Xp = −XN/A (resp. Xn = XZ/A) produces a quadrupole
moment:

QQ ∝ ZX2
p + NX2

n = NZ

A
X2. (39)

Using Eqs. (6) and (35), one gets QQ ∝ NZ/A1/3.

Finally, together with Eqs. (7), (32), and (35), the evolution
of the coupling simply reads vQ ∝ 1/A. This is, indeed, in
agreement with the TDHF results shown in Fig. 7. It is
interesting to note that, in this simple approach, the coupling
does not depend on the isospin of the nuclei, but only on
their total number of nucleons. In fact, the decrease of the
absolute strength of the coupling with the number of nucleons
is attributed to the fact that these couplings are mediated by the
surface [16]. One then expects less anharmonicities in heavy
nuclei.

V. CONCLUSIONS

We have shown that the residual interaction is responsible
for anharmonicities in nuclear vibrations using three differ-
ent analyses of time evolutions of multipole moments. We
investigated the coupling between one- and two-phonon states
using a three-dimensional TDHF code with a full Skyrme
energy density functional. In particular, the excitation of a
GDR couples to a GQR built on top of it, inducing a quadratic
response of the quadrupole moment. The same coupling is re-
sponsible for the change of the GDR energy in static deformed
states. The latter could be investigated using deformed RPA
codes. As a consequence, the dipole frequency is modulated in
case of dynamical deformation (e.g., induced by a quadrupole
boost). This last property, associated with a Fourier analysis,
might be used to investigate couplings when more than one
mode is excited with the same quantum numbers. We finally
investigated these couplings with the quadratic response in
several spherical tin isotopes. As a result, no dependence with
isospin was found whereas an overall decrease of the coupling
is obtained with increasing mass, showing that the couplings
are mediated by the surface. These observations are interpreted
within the Goldhaber-Teller macroscopic model. These results
indicate that no anharmonicity enhancement is expected in
the standard giant resonances even for very exotic nuclei.
However, couplings with exotic modes such as the pygmy
dipole resonance should be investigated with the present
method. The role of pairing and static deformation should
be considered as well.
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