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Global nuclear structure effects of the tensor interaction
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A direct fit of the isoscalar spin-orbit (SO) and both isoscalar and isovector tensor coupling constants to the
f5/2-f7/2 SO splittings in 40Ca, 56Ni, and 48Ca nuclei requires a drastic reduction of the isoscalar SO strength
and strong attractive tensor coupling constants. The aim of this work is to address further consequences of these
strong attractive tensor and weak SO fields on binding energies, nuclear deformability, and high-spin states. In
particular, the contribution to the nuclear binding energy from the tensor field shows a generic magic structure
with tensorial magic numbers N (Z) = 14, 32, 56, or 90, corresponding to the maximum spin asymmetries in
1d5/2, 1f7/2 ⊕ 2p3/2, 1g9/2 ⊕ 2d5/2, and 1h11/2 ⊕ 2f7/2 single-particle configurations, respectively, and that these
numbers are smeared out by pairing correlations and deformation effects. The consequences of strong attractive
tensor fields and weak SO interaction for nuclear stability at the drip lines are also examined, particularly those
close to the tensorial doubly magic nuclei. The possibility of an entirely new tensor-force-driven deformation
effect is discussed.

DOI: 10.1103/PhysRevC.80.064307 PACS number(s): 21.30.Fe, 21.10.Pc, 21.60.Cs, 21.60.Jz

I. INTRODUCTION

The primary goal of energy-density-functional (EDF)
methods is to describe the ground-state energies of fermion
systems (i.e., masses of nuclei in nuclear physics applications).
The existence of a universal functional describing exactly the
masses of odd, odd-odd, and even-even nuclei is warranted
by the Hohenberg-Kohn [1] and Kohn-Sham [2] theorems.
These theorems, however, provide no universal rules for the
construction of such a functional. The complexity of the func-
tional and our lack of knowledge with respect to the in-medium
strong interaction that governs the structure of finite nuclei
make the situation even more difficult. It does not permit the
determination for any ab initio constraints of the nuclear EDF
except for dilute neutron systems [3]. It forces the use of
effective functionals with coupling constants fitted directly
to the data. Hence, a proper selection of empirical data to
be used in the process of constraining parameters of the
functional becomes, irrespective of the form of the functional,
the key issue for overall good performance of the nuclear
density-functional theory (DFT) [4].

The typical strategy used to construct the nuclear EDF is to
start with either the finite-range Gogny [5] or the zero-range
Skyrme [6] effective interaction and to construct a nonlocal
or local functional, respectively, by averaging the interaction
within the Hartree-Fock (HF) method. The data sets used to
adjust the free parameters of the theory are dominated by
bulk nuclear matter data and by nuclear binding energies of
selected doubly magic nuclei; much less attention is paid to
the single-particle energies (SPEs).

The major reason is the effective mass scaling of the
single-particle (SP)-level density, g, in the vicinity of the
Fermi energy εF . In homogeneous nuclear matter the SP-level
density scales according to the following simple rule: g(εF ) →
m
m∗ g(εF ). In finite nuclei the situation is slightly more intricate,
mostly because of the r-dependence of m∗(r). Several authors

[7–9] analyzed SP-level density scaling and argued that the
physical density of SP levels around the Fermi energy can be
restored only after the inclusion of particle-vibration coupling
[i.e., by going beyond the mean field (MF)]. This viewpoint is
difficult to reconcile with the effective EDF theories. Indeed,
these theories should warrant a proper value of the effective
mass through the fit to the empirical data and should readjust
other coupling constants to this value of m∗. This approach
should lead to fairly m∗-independent predictions, provided
that the (spherical) SPEs are calculated from the differences
between the binding energies in even-even doubly magic
cores and the lowest SP states in odd-A single-particle/hole
neighbors. Within the EDF approach, the mean-field or, more
precisely, Kohn-Sham SP energies computed in an even-even
doubly magic core serve only as auxiliary quantities.

A new strategy for fitting the spin-orbit (SO) and tensor
parts of the nuclear EDF was recently suggested by our group
[10]. Instead of performing large-scale fits to binding energies,
a simple and intuitive three-step procedure was proposed that
can be used to fit the isoscalar strength of the SO interaction
as well as the isoscalar and isovector strengths of the tensor
interaction. The entire idea is based on the observation that
the f7/2-f5/2 SO splittings in spin-saturated isoscalar 40Ca,
spin-unsaturated isoscalar 56Ni, and spin-unsaturated isovector
48Ca form distinct patterns that can be neither understood nor
reproduced based solely on the conventional SO interaction.
Following the general philosophy of the nuclear DFT, we
compute the f7/2-f5/2 SO splittings from the differences
between the binding energies of these doubly magic cores
and their odd-A neighbors. However, the same functional
is used to calculate both the ground-state energies, which
is well justified, and the low-lying SP excitations in the odd-A
neighbors. The reasonability of the latter assumption remains
to be studied.

The procedure reveals the need for a sizable reduction (from
∼20% up to ∼35% depending on the parametrization and,
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in particular, on the value of m∗) of the SO strength and,
at the same time, for much stronger tensor fields compared
to the commonly used values. The new parametrization
systematically improves the performance of the functional
with respect to SP properties like the SO splittings or the
magic gaps but it deteriorates the binding energies [10]. The
aim of the present work is to address further the consequences
of a strong attractive tensor and weak SO fields on binding
energies, time-even and time-odd polarization effects, and
nuclear deformability. The paper is organized as follows.
Sec. II briefly presents the theoretical background of our
model. In Sec. III, it is shown that the contribution to the
binding energy due to the tensor interaction forms a generic
pattern closely resembling that of the shell correction with
the tensorial magic numbers shifted up compared to the
standard magic numbers toward N (Z) = 14, 32, 56, or 90. The
tensorial magic numbers reflect the maximum spin-asymmetry
in 1d5/2, 1f7/2 ⊕ 2p3/2, 1g9/2 ⊕ 2d5/2, and 1h11/2 ⊕ 2f7/2

configurations, respectively, in the extreme SP scenario for
a spherical shape. The tensorial magic structure is smeared out
by configuration mixing caused by pairing and deformation
effects. In Sec. IV it is demonstrated that one can construct
an EDF capable of reproducing reasonably well both the
SO splittings and the binding energies of the doubly magic
spherical nuclei. In Sec. V the influence of strong tensor fields
on time-even and time-odd polarization effects in the f7/2-f5/2

SO splittings is dicussed. In Sec. VI, deformation properties
of the new functionals and a possible novel mechanism related
to the onset of nuclear deformation in the presence of strong
attractive tensor fields are discussed. The paper is concluded
in Sec. VII. This analysis complements preliminary results
communicated in two earlier conference publications [11,12].

II. THEORY: FROM TWO-BODY SPIN-ORBIT AND
TENSOR INTERACTIONS TO ENERGY-DENSITY

FUNCTIONALS AND MEAN FIELDS

In our study we explore the local EDF H(r). It is the sum
of the kinetic energy and the isoscalar (t = 0) and isovector
(t = 1) potential energy terms:

H(r) = h̄2

2m
τ0 +

∑
t=0,1

[Ht (r)even + Ht (r)odd], (1)

which are conventionally decomposed into parts built of
bilinear forms of either only time-even or only time-odd
densities, currents, and their derivatives:

Heven
t = C

ρ
t [ρ0]ρ2

t + C
�ρ
t ρt�ρt

+ Cτ
t ρt τt + CJ

t J
2
t + C∇J

t ρt∇ · Jt , (2)

Hodd
t = Cs

t [ρ0]s2
t + C�s

t st · �st

+ CT
t st · Tt + C

j
t j2

t + C
∇j
t st · (∇ × jt ). (3)

For the time-even (ρt , τt , and Jt ) and time-odd (st , Tt , and
jt ) local densities, we follow the convention introduced in
Ref. [13] (see also Refs. [14] and [15] and references cited
therein).

The present study focuses on the spin-orbit and tensor parts
of the EDF:

HT = CJ
0 J

2
0 + CJ

1 J
2
1, (4)

HSO = C∇J
0 ρ0∇ · J0 + C∇J

1 ρ1∇ · J1. (5)

These two parts of the EDF are strongly tied together
through their mutual and unique contributions to the one-body
spin-orbit potential. This relation can be best visualized by
decomposing the spin-current tensor density Jµν into scalar
J (0), vector Jµ, and symmetric-tensor densities J (2)

µν ,

Jµν = 1

3
J (0)δµν + 1

2
εµνηJη + J (2)

µν , (6)

J
2 ≡

∑
µν

J
2
µν = 1

3
(J (0))2 + 1

2
J2 +

∑
µν

(
J (2)

µν

)2
, (7)

and going to the spherical-symmetry (SS) limit where the
scalar J (0) and the symmetric-tensor densities J (2)

µν vanish
identically. In this limit the spin-current tensor density,

Jµν −−−−→SS limit 1

2
εµνηJη and J

2 −−−−→SS limit 1

2
J2, (8)

reduces, therefore, to the spin-orbit vector density with a single
radial component, Jt = r

r
Jt (r). The variation of the tensor and

SO parts of the EDF over the radial SO densities J (r) gives
the spherical isoscalar (t = 0) and isovector (t = 1) SO MFs,

W SO
t = 1

2r

[
CJ

t Jt (r) − C∇J
t

dρt

dr

]
L · S, (9)

which can be easily translated into the neutron (q = n) and
proton (q = p) SO MFs,

W SO
q = 1

4r

[(
CJ

0 − CJ
1

)
J0(r) + 2CJ

1 Jq(r)

− (
C∇J

0 − C∇J
1

)dρ0

dr
− 2C∇J

1
dρq

dr

]
L · S. (10)

Next we perform calculations that assume neither spherical
nor time-reversal symmetries. General expressions for the SO
mean fields can be found in numerous references (see, e.g.,
Refs. [13,15]) and are not repeated here. Spherical formulas (9)
and (10) are provided here because they are crucial for
understanding the fitting strategy of the tensor and spin-orbit
coupling constants, which rely on the f7/2-f5/2 SO splittings
in spherical doubly magic 40Ca, 56Ni, and 48Ca nuclei (see
Ref. [10] and the discussion that follows).

The functional of the form of Eqs. (2) and (3) can be
obtained by averaging the conventional Skyrme effective
interaction, vSk(r), within the Skyrme-Hartree-Fock (SHF)
approximation [13]. In such an approach, 20 EDF coupling
constants Ct are uniquely expressed by means of 10 auxiliary
Skyrme-force parameters (see Ref. [14]). Hence, the SHF
approximation superimposes relatively strong limitations on
the EDF. However, it serves as a reasonable starting point for
further studies. The EDF approach starting from the effective
force also indicates possible ways of generalizing the nuclear
EDF. In particular, an investigation of the tensor component
requires the use of a generalized Skyrme force augmented by
a local tensor interaction vT (r):

v(r) = vSk(r) + vT (r), (11)
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where

vT (r) = 1
2 te{[3(σ 1 · k′)(σ 2 · k′) − (σ 1 · σ 2)k′ 2]δ(r)

+ δ(r)[3(σ 1 · k)(σ 2 · k) − (σ 1 · σ 2)k2]}
+ to[3(σ 1 · k′)δ(r)(σ 2 · k) − (σ 1 · σ 2)k′ · δ(r)k]

(12)

and, conventionally, r = r1 − r2 and k = − i
2 (∇1 − ∇2) are

relative coordinates and momentum and k′ is the complex
conjugation of k acting on the left-hand side. By averaging
vT (r) within the HF approach, one obtains the following
contribution to the time-even part of the EDF [15]:

δHeven
t = 5

3BT
t

[
J

(0)
t

]2 − 5
4BT

t Jt
2 + 1

2BT
t

∑
µν

[
J

(2)
t,µν

]2
(13)

where

BT
0 = − 1

8 (te + 3to) and BT
1 = 1

8 (te − to). (14)

Note that there are two independent contributions to the tensor
part of the EDF. The Skyrme force contributes, through the
exchange term, to the tensor part of the EDF in a uniform
manner; that is, it depends on a unique coupling constant (4).
In contrast, the tensor force contributes to the EDF in a
nonuniform way. Hence, the tensor force generates a clear
theoretical need to generalize the EDF (4) by using three
independent coupling constants and multiplying each of the
three terms appearing in Eq. (7):

HT
t −→ CJ (0)

t

[
J

(0)
t

]2 + CJ
t Jt

2 + CJ (2)

t

∑
µν

[
J

(2)
t,µν

]2
. (15)

The effects of such an extension, in which the new coupling
constants must be adjusted, can only be probed in deformed
nuclei. Because conventional effective interactions and func-
tionals are rather successful in describing nuclear deformation,
no first-hand motivation exists for such a generalization.
Hence, in the present study, we do not implement this possible
extension of the EDF, and we use the unique tensor coupling
constants CJ

t , as defined in Eq. (2).
The contribution to the time-odd part of the EDF coming

from the tensor interaction is

δHodd
t = BT

t (st · T t − 3st · Ft )

+ B�s
t [st · �st + 3(∇ · st )

2], (16)

where

B�s
0 = 3

32 (te − to) and B�s
1 = − 1

32 (3te + to). (17)

New terms that appear in the time-odd part of the EDF,
namely ∼st · Ft and ∼(∇ · st )2, are not considered here
mostly because of a lack of clear experimental indicators
available to fit their strength. Extensive discussion linking the
Skyrme forces to the tensor component in the EDF including,
in particular, the definition of the density Ft can be found in
Ref. [16] (see also Ref. [15]).

The starting point of our consideration is always the
conventional Skyrme-force-inspired functional with coupling
constants fixed at the values characteristic for either SkP [17],
SLy4 [18], or SkO [19] Skyrme parametrization. The variants
of the EDF with tensor and spin-orbit strengths modified

along the prescription of Refs. [10,20] are marked by an
additional subscript T : SkPT , SLy4T , and SkOT . In the
time-odd sector, two variants of the functional are tested with
coupling constants fitted to the empirical values of the s-wave
Landau parameters [21–23] g0 = 0.4, g ′

0 = 1.2 and to the
Gogny-force values of the p-wave Landau parameters [22,23]
g1 = −0.19, g ′

1 = 0.62:

g0 = N0
(
2Cs

0 + 2CT
0 βρ

2/3
0

)
, g1 = −2N0C

T
0 βρ

2/3
0 , (18)

g ′
0 = N0

(
2Cs

1 + 2CT
1 βρ

2/3
0

)
, g ′

1 = −2N0C
T
1 βρ

2/3
0 , (19)

where β = (3π2/2)2/3 and N−1
0 = π2h̄2/2m
kF is an

effective-mass-dependent normalization factor. In these vari-
ants of the EDF, we additionally assume density indepen-
dence of coupling constant Cs

t , set the spin-surface term
C�s

t ≡ 0, and assume gauge-invariant relations C
j
t = −Cτ

t

and C
∇j
t = C∇J

t . Concerning the time-odd tensor coupling
constants, CT

t , the following two possibilities are tested: (i) a
broken gauge-symmetry scenario with CT

t fitted to the Landau
parameters and (ii) a gauge-invariant scenario with CT

t = −CJ
t

determined using the time-even coupling constants CJ
t . The

variants of the EDF with spin fields defined using the Landau
parameters are labeled either by subscript LS or subscript
LB for the gauge-invariant and the gauge-symmetry-violating
functionals, respectively.

III. TOPOLOGY OF TENSOR CONTRIBUTION TO THE
NUCLEAR BINDING ENERGY

The recent revival of interest in the tensor interaction was
triggered by empirical discoveries of strong and systematic
changes in the shell structure of neutron-rich oxygen [24], neon
[25], sodium [26,27], magnesium [28], and titanium [29,30]
nuclei, including a new shell gap opening at N = 32. These
empirical discoveries were successfully interpreted within
the nuclear shell model after the so-called monopole shifts
were introduced. To account for the data, the monopole
shifts are (i) attractive between jν

><
and jπ

<>
orbitals and

(ii) repulsive between jν
><

and jπ
><

orbitals where j><
= l ± 1/2.

The physical origin of these monopole shifts was attributed
to the tensor interaction [31–33]. Soon after successful
shell-model calculations, the mechanism was confirmed to
work within self-consistent MF calculations using finite-range
Gogny force augmented by the finite-range tensor interaction
(see Ref. [34]). It was shown in Ref. [34] that, apart from
explaining the shell-structure evolution in light exotic nuclei,
the tensor interaction could also account for empirical trends
in the relative positions of the 1f5/2 and 1p3/2 levels in
copper isotopes [35,36] or for the evolution of the single-
particle 1h11/2-1g7/2 level splittings versus N in antimony [37]
isotopes.

The local tensor interaction within the SHF approximation
was first studied in Ref. [38]. Based on the SPE analysis, the
effective functional coupling constants CJ

t were evaluated to
lie within the triangle [known as the Brink-Stancu-Flocard
(BSF) triangle] marked schematically in Fig. 1. For strictly
pragmatic reasons, like technical complexity and lack of
firm experimental indicators further constraining the BSF
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FIG. 1. The isovector, CJ
1 , versus the isoscalar, CJ

0 , tensor
coupling constant. Open circles represent values of several pop-
ular parametrizations fitted predominantly to the binding energies
of spherical nuclei. Black diamonds represent coupling constants
deduced recently from direct fits to the SPE and the SP splittings [10].
Black triangles represent fits of Refs. [39–41]. The shaded area
shows the so-called BSF triangle reflecting the range of the tensorial
parameters deduced in a pioneering paper by Brink, Stancu, and
Flocard [38].

estimate, in many Skyrme parametrizations (including SIII
[42], SLy4 [18], SkM∗ [43], and SkO [19]), the tensor terms
are simply disregarded by setting CJ

t ≡ 0. Moreover, the CJ
t

coupling constants established predominantly through fits to
bulk nuclear data seem to contradict the BSF estimates. Indeed,
the isoscalar-tensor coupling constants of such popular forces
as SLy5 [18], SkP [17], or Skxc [44] are relatively weak
whereas their isovector coupling constants are positive. These
coupling constants lie outside the BSF triangle, as shown in
Fig. 1.

However, direct fits to the SP-level splittings [10,39,41]
clearly reveal that drastic changes in the commonly accepted
tensor coupling constants are needed to account for the SP data.
This is visualized in Fig. 1, where the new parametrizations are
marked by black triangles and black diamonds, respectively.
The fact that new values of CJ

t are still slightly scattered
is a consequence of both different fitting strategies and
different starting-point parametrizations used by different
groups.

Our strategy of fitting the coupling constants of the nuclear
EDF (see Ref. [10]) differs from the strategies applied
by other groups. Unlike other groups, we simultaneously
fit the isoscalar spin-orbit, C∇J

0 , as well as the isoscalar
and the isovector tensor coupling constants, CJ

0 and CJ
1 ,

respectively, using a simple three-step method. The entire
idea of this procedure is based on the observation that the
empirical 1f7/2-1f5/2 SO splittings in 40Ca, 56Ni, and 48Ca
form a distinct pattern that cannot be reproduced solely
by using the conventional SO interaction. The readjustment
of the coupling constants proceeds as follows: (i) C∇J

0
is established in the isoscalar spin-saturated nucleus 40Ca,

(ii) the CJ
0 coupling constant is readjusted in spin-unsaturated

isoscalar nucleus 56Ni, and, finally, (iii) the CJ
1 coupling

constant is readjusted to the spin-unsaturated isovector
nucleus 48Ca.

Our results (see Refs. [10–12,20]) show that drastic changes
in the isoscalar SO strength and the tensor coupling constants
are required compared to commonly accepted values. In
turn, one obtains systematic improvements for such SP
properties as SO splittings and magic gap energies. It is also
interesting to note that the isoscalar SO and the isoscalar
tensor coupling constants resulting from such a fit are to
large extent independent of the parametrization and equal to
C∇J

0 ≈ −60 ± 10 MeV fm5 and CJ
0 ≈ −40 ± 10 MeV fm5,

respectively. The uncertainties are rough estimates that reflect
the sensitivity of the method. The isovector tensor coupling
constant, CJ

1 , is less certain. It depends on the actual ratio of the
SO coupling constants, C∇J

0 /C∇J
1 , which, in the adjustment

process, was kept fixed at its Skyrme-force value because
of a lack of empirical data for 48Ni, which does not allow
for firm independent readjustment of the fourth coupling
constant, C∇J

1 .
The influence of the tensor interaction on nuclear SPE

and SP-level splittings has been analyzed by many authors.
It was shown that the tensor interaction leaves unique and
robust fingerprints when the SPE and SP-level splittings are
studied along isotopic or isotonic chains. It also appears that
the contribution to the binding energy coming from the tensor
interaction, δBT (N,Z), shows several highly interesting and
robust topological features. In particular, the contribution
δBT (N,Z) shows a generic pattern closely resembling that of
a shell correction. The tensorial magic numbers at N (Z) = 14,
32, 56, or 90 correspond to the maximum spin-asymmetries
in 1d5/2, 1f7/2 ⊕ 2p3/2, 1g9/2 ⊕ 2d5/2, and 1h11/2 ⊕ 2f7/2

SP configurations, respectively, in the extreme SP scenario
at spherical shape. The robustness (i.e., the model inde-
pendence of the tensorial magic pattern) results from the
rather unambiguously established order of SP levels, which
is relatively well reproduced by state-of-the-art nuclear MF
models, particularly for light- and medium-mass nuclei. Note
that the tensorial magic numbers are only slightly shifted
compared to classic magic numbers at N (Z) = 8, 20, 28, 50,
and 82.

The tensorial magic pattern is clearly visible in Fig. 2.
Figures 2(a)–2(c) show the contribution to the binding energy
coming from (a) the isovector part of the tensor term, δET

1 =
CJ

1

∫
d3rJ2

1(r); (b) the isoscalar part of the tensor term, δET
0 =

CJ
0

∫
d3rJ2

0(r); and (c) the total tensor contributions to the
EDF. These calculations were performed using the spherical
Hartree-Fock-Bogolyubov (HFB) code HFBRAD [45] with
the SLy4T functional of Ref. [10] in the particle-hole channel
and the volume-δ interaction in the pairing channel. This part
of Fig. 2 shows several interesting features:

(i) Additional smearing of the SP tensorial magic struc-
ture occurs due to configuration mixing caused by
nuclear pairing. In light- and medium-mass nuclei,
substantial tensor contributions are located in relatively
broad regions centered around the SP tensorial magic
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FIG. 2. (Color online) The isovector (top), the isoscalar (middle), and the total (bottom) tensor contribution to the nuclear binding energy
obtained from spherical (left) and deformed (right) HFB calculations. Both sets of calculations were done using the SLy4T interaction in the
particle-hole channel and the volume-δ interaction in the particle-particle channel. Vertical and horizontal lines indicate single-particle tensorial
magic numbers at spherical shape. See text for further details.

numbers. In heavier nuclei, where pairing effects are
relatively stronger due to the larger density of SP
levels, the erosion of the SP tensorial magic structure
is stronger. The maximum of the tensor contribution
is shifted away from the SP magic numbers. The
details, however, are strongly model dependent, mostly
because of large uncertainties in the positions of
the SP levels in heavier nuclei. Indeed, problems
persist in using Skyrme models to reproduce absolute
positions of the experimental SPE as shown recently in
Ref. [46].

(ii) The contribution from the isovector part of the tensor
interaction is much weaker than the isoscalar contribu-
tion. This conclusion depends on the tensorial coupling
constants.

(iii) The isoscalar tensor interaction creates oscillatory
effects in nuclear masses that depend on the degree
of spin-unsaturation in a given nucleus. This additional

nonuniform N and Z dependence, in particular, may
obscure conclusions deduced from the widely used
binding-energy indicators technique.

The second major source of configuration mixing comes
from the spontaneous breaking of spherical symmetry inherent
in the MF method. The influence of nuclear deformation on
the topology of the tensor contributions to the binding energy
is illustrated in Figs. 2(d)–2(f). The calculations presented in
the figure were performed for even-even nuclei with N � Z

and the range 6 � Z � 64 using the HFODD code [47]. The
same SLy4T interaction of Ref. [10] was used in the particle-
hole channel and volume-δ interaction in the particle-particle
channel. It is clearly visible that the effect of deformation does
not change the topology of the tensor energy contribution; it
strongly reduces its magnitude. One should stress though that
the quantitative estimate of the deformation effect is uncertain.
The magnitude of the deformation is extremely sensitive to
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FIG. 3. (Color online) Tensor contribution to the total binding
energy obtained from spherical HFB calculations. The map is overlaid
with the map of known nuclei (according to Ref. [48]). The figure
illustrates these regions where strong tensor effects may be expected
in neutron- and proton-rich nuclei.

the balance between SO and tensor strengths. This effect is
discussed in detail in Sec. V.

Figure 3 shows again the total contribution to the binding
energy calculated using the spherical HFB model. The map is
overlaid with the map of known nuclei, according to Ref. [48].
The aim of the figure is to illustrate mass regions where
enhanced tensor effects, and in turn perhaps new physics,
may be expected on the neutron- and proton-rich sides.
On the neutron-rich side, the regions of interest (i.e., those
which are or can be accessible experimentally in the nearest
future) include Z ≈ 14 and N ≈ 32, Z ≈ 32 and N ≈ 56,
and Z ≈ 56 and N ≈ 90. In particular, recent measurements
of exotic 40

12Mg28 and 42
13Al29 by Bauman et al. [49] (see also

the discussion in Ref. [50]) approach closely the first of the
aforementioned mass regions. However, whether or not extra
binding due to the strong attractive tensor interaction gives
rise to stabilization of these nuclei and nuclei around them
remains to be studied. MF calculations using conventional
Skyrme forces predict these nuclei to be bound [51].

IV. ENERGY-DENSITY FUNCTIONAL FITTED TO
SINGLE-PARTICLE SPIN-ORBIT SPLITTINGS AND TO

THE TOTAL BINDING ENERGIES OF
SPHERICAL NUCLEI

The topology of the tensor contribution to the total binding
energy is, as discussed earlier, a generic feature related to
shell structure and the degree of spin-saturation. However,
the quantitative features, including the total magnitude and
the isovector-to-isoscalar ratio of the tensor contributions,
depend on the actual values of the tensorial coupling constants.
The two strategies of fitting effective forces—namely the
conventional one based on the large-scale fit to the binding
energies and the one based on the fit of CJ

t and C∇J
t

coupling constants directly to the SO splittings—seem to yield
contradicting results. This result is clearly visible in Fig. 1,
where the ranges of the CJ

t strengths deduced using these two
methods simply exclude each other.

A direct fit to the SO splittings leads to drastic changes in
the isoscalar SO strength and the tensor coupling constants
compared to commonly accepted values. In particular, the
pronounced reduction of the SO strength, which varies from
20% for large effective mass forces, m∗, to even 35% for low
forces (m∗ ≈ 0.7), jeopardizes the agreement with observed
binding energies. This effect cannot be solely compensated
by strong attractive tensor fields. Hence, further readjustments
of the other coupling constants of the EDF are necessary to
ensure good performance for masses.

In Ref. [10] it was demonstrated that a considerable
improvement in the quality of mass fits can be achieved be
relatively small readjustments of the EDF coupling constants.
For the purpose of this work, we performed similar calculations
using a multidimensional minimization technique but starting
from the SkPT force. In both cases, tiny modifications (of
the order of a fraction of a percent) in the coupling constants
clearly improve the quality of the mass fit compared to the
SLy4T and SkOT forces but still do not provide the quality of
the original SLy4 and SkO parametrizations.

Inherent to the multidimensional minimization technique
is a merit function as a subject of minimization. In our
calculations, the merit function is constructed out of rela-
tive deviations from measured masses of selected spherical
doubly magic nuclei. It appears that the merit function in
the multidimensional space spanned by the EDF coupling
constants varying in the minimization process is very steep
for some specific directions and extremely flat in others. This
finding implies that the entire minimization problem is not well
defined. We visualize this by taking the SkO parametrization
as a starting point.

By reducing the SO strength by 15%, corresponding to
CJ

0 ≈ −65.6 MeV fm5 and CJ
1 ≈ 84.5 MeV fm5 and taking

CJ
0 = −44.1 MeV fm5 and CJ

1 = −91.6 MeV fm5, we
create a modified version of the SkOT parametrization of
Ref. [10]. This parametrization, dubbed SkOT ′ , has a slightly
stronger SO term and more attractive tensor fields compared to
the SkOT functional. These changes aim to improve the mass
performance of the SkOT functional. Direct calculations show
(see Fig. 4) that the SkOT ′ functional reproduces masses at a
level of accuracy similar to one of the most popular SLy forces.
The calculations illustrated in Fig. 4 were performed using the
HFODD code with 20 spherical shells. For this study we had
to use the HFODD code because the spherical HFBRAD code
has no two-body center-of-mass correction implemented.

The performance of the SkOT ′ force can be further
improved in many different ways. One example, dubbed
SkOT ′′ , is illustrated in Fig. 4. This force was obtained by
readjusting isoscalar and isovector central fields in the follow-
ing way: C

ρ

0 → 1.00015C
ρ

0 and C
ρ

1 → 0.99C
ρ

1 . As a result,
the standard deviation drops from σ (SkOT ′) ≈ 1.663 MeV to
σ (SkOT ′′) ≈ 1.475 MeV where, for comparison, σ (SLy4) ≈
1.879 MeV. Similar improvements can be made, by readjusting
the density-dependent term, for example.

A reasonable performance of the SkOT ′ or SkOT ′′ function-
als with respect to the binding energies of spherical doubly
magic nuclei is of great interest. It may help to resolve
the conflict between the tensor and SO coupling constants
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FIG. 4. Differences between theoretical and experimental bind-
ing energies in spherical doubly magic nuclei and in 80Zr. The
calculations have been done using the SkOT ′ (white dots) and SkOT ′′

(gray dots) functionals. The conventional SLy4 Skyrme-force result
(black dots) is also shown for the sake of comparison.

resulting from (local) fits to the SO splittings and the SPE
[10,46] preferring strong tensor and weak SO terms, on one
hand, and large-scale fits to the binding energies [16] pointing
toward weak tensor and stronger SO terms, on the other hand.
Indeed, the current results indicate that, for large-scale fits,
one should explore functionals that have nonstandard forms,
including, in particular, functionals with a nonconventional
isovector spin-orbit, which characterizes the SkO functional.

V. TIME-EVEN AND TIME-ODD POLARIZATION
EFFECTS IN THE PRESENCE OF STRONG

TENSOR FIELDS

The aim of this section is to analyze the polarization
phenomena that occur in the presence of strong tensor fields
and to show that, in spite of the relatively large readjustments as
compared to the SkOT parametrization, the SkOT ′ functional
can still reproduce the empirical 1f5/2 and 1f7/2 SO splittings
quite well. Figure 5 illustrates the neutron (left-hand side) and
proton (right-hand side) SO splittings between the 1f5/2 and
1f7/2 SO partners in 40Ca, 48Ca, and 56Ni. The empirical data
are indicated by filled circles. The values shown are average
means of empirical results taken from Refs. [52] and [53] (see
also Table III in Ref. [10] for a compilation of the empirical
SO splitting data). Error bars represent deviations from the
mean values.

Open circles illustrate the results of our calculations using
the original SkO parametrization. Open and filled diamonds
represent calculations using the SkOT ′ functional. In all
variants of the calculations, the C�s

t strength was set to zero
to ensure convergence. Different panels represent different
variants of the calculations that concern treatment of the time-
odd sector. Figures 5(a) and 5(e) show bare, unpolarized SO
splittings deduced directly from the SP spectra calculated in the
doubly magic 40Ca, 48Ca, and 56Ni nuclei. Results presented
in the other panels are calculated from the binding energies
in the doubly magic cores and their one-particle(hole) odd-A
neighbors following the prescription given in Ref. [10]. In the
calculations, the odd-A binding energies correspond to fully
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FIG. 5. SO splittings between (a)–(d) the neutron ν1f5/2 and
ν1f7/2 and (e)–(h) the proton π1f5/2 and π1f7/2 (right part) orbitals
in 40Ca, 48Ca, and 56Ni nuclei. Filled or open circles mark empirical
and theoretical splittings calculated using the conventional SkO
force, respectively. Open and filled diamonds indicate calculations
performed using the SkOT ′ functional. Panels (a) and (e) show
bare, unpolarized SO splittings deduced directly from the SP spectra
calculated in the doubly magic 40Ca, 48Ca, and 56Ni nuclei. Parts
(b) and (f) include only the time-even (mass and deformation)
polarization effect. Panels (c) and (g) include both time-even and
time-odd polarization effects. Finally, panels (d) and (h) show two
variants of the calculations with spin fields readjusted to match
empirical Landau parameters, namely the SkOT ′LS

(open diamonds)
and the SkOT ′LB

(filled diamonds) functionals.

aligned 〈Iy〉 = j states at oblate (for one particle) and prolate
(for one hole) nuclei, respectively. Unlike in our previous
study [10], the current calculations include polarization effects
exerted by the odd particle or hole on the even-even core in
the presence of strong attractive tensor fields.

To visualize the role of the tensor interaction, particularly
in the time-odd sector, we performed three different variants of
the calculations. Figures 5(b) and 5(f) include only the time-
even (mass and deformation) polarization effect. These results
were obtained by setting all time-odd coupling constants
to zero. Figures 5(c) and 5(g) illustrate the effect of the
time-odd fields. These results include both the time-even and
time-odd polarizations. In these calculations, a gauge-invariant
functional with the CT

t = −CJ
t tensor coupling constants fitted

to the SO splittings was used. All other coupling constants in
this run, except C�s

t ≡ 0, are equal to the values given by the
SkO parametrization. Note that the splittings calculated in this
way match the empirical data almost perfectly. Note also that
the time-odd polarization effects are indeed large, reaching a
few hundred keV.

Figures 5(d) and 5(h) show two variants of the calcula-
tions with spin fields readjusted to match empirical Landau
parameters, namely the SkOT ′LS

and SkOT ′LB
variants (see

Sec. II). The SkOT ′LS
variant is indicated with open diamonds.
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It corresponds to a fully gauge-invariant functional. In this
variant we use the CT

t = −CJ
t tensor coupling constants fitted

to the SO splittings and the spin-field coupling constants
readjusted to the s-wave Landau parameters according to
Eqs. (18) and (19).

In the SkOT ′LB
variant, which is indicated in the figure by

filled diamonds, the CT
t coupling constants are fist readjusted

to the Gogny values of the p-wave Landau parameters
g1 = −0.19 and g′

1 = 1.2. This approach leads to a gauge-
symmetry-violating functional with the tensorial coupling
constant CJ

0 ≈ −44.1 MeV fm5 and CJ
1 ≈ −91.6 MeV fm5

in the time-even channel and CT
0 ≈ 9.2 MeV fm5 and CT

1 ≈
−29.9 MeV fm5 in the time-odd channel, which are used
subsequently to calculate spin-field coupling constants. Note
that the SO splittings are quite sensitive to the way the
functional is set up in the time-odd sector. It means that the
entire concept of fitting the time-odd coupling constants to
the Landau parameters in the presence of strong tensor terms
must be reconsidered. In particular, the p-wave parameters
deduced from the Gogny force g1 = −0.19 and g′

1 = 1.2 lead
to CT

t coupling constants that are completely inconsistent with
the time-even values for CJ

t deduced from the SO splittings.
In turn, the SkOT ′LS

and SkOT ′LB
variants have entirely

different spin fields with coupling constants Cs
0 ≈ 426.4 MeV

fm5 and Cs
1 ≈ 48.6 MeV fm5 and Cs

0 ≈ 18.0 MeV fm5 and
Cs

1 ≈ 155.9 MeV fm5, respectively.

VI. EFFECT OF TENSOR FIELD ON NUCLEAR
DEFORMATION

In the previous section it was shown that one can construct
an EDF capable of reproducing reasonably well the binding
energies of the spherical doubly magic nuclei, simultaneously
accounting for the SO splittings of the 1f7/2-1f5/2 SP levels.
From closer inspection of the results presented in Fig. 2,
one observes very strong time-even (mass and deformation)
polarization effect on the calculated SO splitting in 56Ni.
(Compare Figs. 2(a) and 2(b) or Figs. 2(e) and 2(f). The
effect is definitely stronger for the SkOT ′ variant than for
SkO, indicating that the reduction of the spin-orbit combined
with strong attractive tensor fields can affect deformation
properties, which are rather well captured by conventional
Skyrme forces. Hence, nuclear deformability in the presence
of strong attractive tensor fields and reduced SO potential poses
a very stringent test for this new class of functionals.

The aim of this section is to show that deformation
properties indeed depend sensitively on the balance between
the SO and tensor fields. Two contrasting cases are discussed.
The first is an example of the yrast superdeformed (SD) band
in 56Ni [54]. The band is formed by promoting two protons and
two neutrons from the 1f7/2 to the 1f5/2 orbital or, in terms
more appropriate from an MF point of view in asymptotic
Nilsson model quantum numbers, from the [303]7/2 to
the [321]3/2 Nilsson orbital, as illustrated schematically in
Fig. 6(a).

In the spherical ground state (GS) of 56Ni, the entire 1f7/2

orbital is fully occupied while the 1f5/2 orbital is empty. This
creates large spin-asymmetry and, in turn, a large contribution
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FIG. 6. (a) Schematic of the mechanism underlying the formation
of the SD band in 56Ni. It is associated with 4p-4h isoscalar excitation
from the 1f7/2 to the 1f5/2 orbital. Panels (b)–(d) show potential
energy curves for the ground-state and the superdeformed (SD)
bands calculated using the SkO, SkOT X , and SkOT ′ functionals,
respectively. Panels (b) and (c) demonstrate the effect of a strong
attractive isoscalar tensor field and panel (d) the effect of reduced
spin-orbit field on the excitation energy of the SD band. Panel (e)
shows the change in the tensor energy associated with the 4p-4h
excitation leading to the SD band.

to the GS from the tensor field. By promoting four-particles
from the 1f7/2 to the 1f5/2 orbital, one creates the SD state,
which has reduced spin-asymmetry compared to the GS.
The reduced tensor field shifts the SD state up in energy
with respect to the GS. The subsequent reduction of the
SO potential shifts the 1f5/2 orbital and, in turn, the entire
SD band down in energy. This compensating mechanism is
illustrated in Figs. 6(b)–6(d). The figures show the results of
the self-consistent quadrupole-constrained HF calculations for
the GS and SD configurations. Because it is impossible to go
diabatically through the GS–SD configuration crossing region,
the self-consistent results for the GS and SD configurations are,
for the sake of simplicity and clarity, extrapolated diabatically
through this region. This does not affect the physics discussed
later.

Figure 6(b) shows the calculations performed using the
conventional SkO force. These calculations predict the 0+
SD state to be excited by ∼4 MeV with respect to the GS,
which agrees quite well with the empirical estimate [54].
Readjustment of the tensor coupling constant in the SkO
force to the value characteristic of the SkOT ′ functional (this
functional is called SkOT X) shifts the position of the 0+
SD state up in energy by 4 MeV. This intermediate step is
illustrated in Fig. 6(c). The change in the tensor field on the
passage from the GS to the SD minimum is shown in Fig. 6(e).
Finally, Fig. 6(d) shows the result obtained using the full SkOT ′

functional. The effects of the reduced SO and strong attractive
tensor fields almost cancel each other, restoring the position of
the 0+ SD state close to its empirical (and to the SkO) value.

The second example is shown in Fig. 7. The figure illustrates
potential energy curves in 80Zr calculated using the HFB
model with volume-δ interaction, V δ(r), of the strength

064307-8



GLOBAL NUCLEAR STRUCTURE EFFECTS OF THE . . . PHYSICAL REVIEW C 80, 064307 (2009)

0

1

2

3

4

5

6

0.1 0.2 0.3 0.4 0.5

SkOTX

SkO
SkOT′

tensor
spin-orbit

∆E
 [

M
eV

]

β2

80Zr

FIG. 7. Potential energy curves calculated using a quadrupole-
constrained Skyrme HFB model. The solid curve represents the
SkO calculations. Dotted and dashed curves illustrate the SkOT X

and SkOT ′ results, respectively. Note that the tensor field tends to
favor strongly elongated shapes, which leads to a well-deformed
absolute minimum. The subsequent reduction of the SO strength,
however, shifts the entire potential energy curve up in energy close
to its original SkO position.

V = −190 MeV in the particle-particle channel. The three
curves represent the SkO, SkOT X, and SkOT ′ functionals in
the particle-hole channel. All curves are normalized to the
spherical minimum to facilitate further discussion.

Unlike 56Ni, 80Zr is spin-saturated in the spherical mini-
mum. A deformation buildup is associated in this nucleus with
partial occupation of the 1g9/2 subshell. It leads to increasing
spin-asymmetry and, in turn, to extra attraction because of
the tensor terms. This effect is clearly visible for the SkOT X

functional (see Fig. 7). The mechanism is strong enough to
create a well-deformed minimum. In this case, reduction of
the SO strength shifts the 1g9/2 subshell up with respect to the
negative-parity fp levels. In turn, the well-deformed minimum
is also lifted up in energy and ends up slightly higher than the
SkO prediction.

These two examples show that the SkOT ′ functional has
deformation properties quite similar to those of the conven-
tional Skyrme functionals, at least in isoscalar N ≈ Z nuclei.
The situation is slightly more intricate in the isovector channel
because of the uncertainties of the C∇J

1 strength and, in turn, in
the CJ

1 coupling constant. Nevertheless, the two cases analyzed
above clearly show that

(i) nuclear deformation properties strongly depend on the
balance between tensor and spin-orbit terms;

(ii) detailed and systematic studies of nuclear deformation
in the presence of strong tensor fields open up new,
promising venues that may help to tune the effective
tensor coupling constants CJ

t ;
(iii) there is a large, and so far completely unexplored, po-

tential to modify deformation properties by extending
the tensor term from the uniform form used here to the
nonuniform form (15); and

(iv) possible modifications of collective rotational motion,
which is inherently related to the spontaneous breaking

of spherical symmetry within the EDF formalism,
opens up yet another almost completely unexplored
area in studying tensor fields.

VII. SUMMARY AND CONCLUSIONS

The direct fit of the isoscalar spin-orbit and both isoscalar
and isovector tensor coupling constants to the f5/2-f7/2 SO
splittings in 40Ca, 56Ni, and 48Ca requires (i) a drastic reduction
of the isoscalar SO strength and (ii) strong attractive tensor
coupling constants [10]. In this work, the global nuclear
structure consequences of this novel fitting strategy of the
nuclear EDF were addressed. Among others, we show that the
contribution to the nuclear binding energy from the tensor
field shows a generic magic structure with the tensorial
magic numbers at N (Z) = 14, 32, 56, or 90 corresponding
to the maximum spin-asymmetries in 1d5/2, 1f7/2 ⊕ 2p3/2,
1g9/2 ⊕ 2d5/2, and 1h11/2 ⊕ 2f7/2 SP configurations and that
these numbers are smeared out by pairing correlations and
deformation effects.

We explicitly construct a functional, dubbed SkOT ′ , which
is able to reproduce simultaneously the f5/2-f7/2 SO splittings
in 40Ca, 56Ni, and 48Ca nuclei and the binding energies of
spherical nuclei. In fact, one can construct many parametriza-
tions that reproduce these data in a more or less equivalent
manner because multidimensional merit functions, which are
minimized in the fitting process, are flat in certain directions
and the entire minimization procedure is not well defined.
Reasonable performance of the binding energies of the SkOT ′

functional, which is characterized by its nonconventional
isovector SO term, is very interesting by itself. Indeed, this
result may open up the possibility of bridging the CJ and C∇J

coupling constants resulting from (local) fits to the SPE with
the values resulting from global large-scale fits to the binding
energies by exploring nonstandard local functionals.

Using the SkOT ′ functional, polarization effects exerted by
one particle and one hole on the values of the f5/2-f7/2 SO
splittings were analyzed. It was shown that the polarization
effects are large and very sensitive to the way the functional is
set up in the time-odd channel. Fits to the Landau parameters
are uncertain due to rather poorly known p-wave Landau
parameters. In particular, the use of the p-wave Landau
parameters deduced from the Gogny force, which is advocated
in Ref. [23], leads to strong gauge-symmetry-violating effects
and, in turn, large differences in the Cs coupling constants
between the gauge-invariant SkOT ′LS

functional and the
gauge-symmetry-violating functional SkOT ′LB

.
Deformation properties in atomic nuclei can be easily and

strongly modified in the presence of strong tensor fields and
these properties are extremely sensitive to the balance between
the tensor and the SO coupling constants. For the particular
case of the SkOT ′ functional, it was shown that the tensor
effects are almost perfectly compensated, at least in the
isoscalar channel, by the reduced SO potential. We suggest
that the role of the tensor interaction, in particular in the
time-odd channel, can be studied via dynamic effects induced
by fast nuclear rotation. For this purpose one must select and
use nuclear states that represent, as closely as possible, an
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unperturbed SP motion to suppress other effects or correlations
that may obscure the analysis. The examples include SD bands,
which have been very well described using a simple one-body
cranking approximation (see Ref. [55] and references therein)
or terminating states [20].
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