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We study systematically the impact of the time-even tensor terms of the Skyrme energy density functional, i.e.,
terms bilinear in the spin-current tensor density, on deformation properties of closed-shell nuclei corresponding
to 20, 28, 40, 50, 82, and 126 neutron or proton shell closures. We compare results obtained with three different
families of Skyrme parametrizations whose tensor terms have been adjusted on properties of spherical nuclei:
(i) TIJ interactions proposed in the first article of this series [T. Lesinski et al., Phys. Rev. C 76, 014312 (2007)]
that were constructed through a complete readjustment of the rest of the functional and (ii) parametrizations
whose tensor terms have been added perturbatively to existing Skyrme interactions, with or without readjusting
the spin-orbit coupling constant. We analyze in detail the mechanisms at play behind the impact of tensor terms on
deformation properties and how studying the latter can help screen out unrealistic parametrizations. It is expected
that findings of the present article are to a large extent independent of remaining deficiencies of the central and
spin-orbit interactions and will be of great value for the construction of future, improved energy functionals.

DOI: 10.1103/PhysRevC.80.064302 PACS number(s): 21.30.Fe, 21.10.Dr, 21.10.Pc, 21.60.Jz

I. INTRODUCTION

Our experimental knowledge of the evolution of shell
structure in atomic nuclei as a function of proton and neutron
numbers has largely increased over the past few years. The
difficulty to describe these new results has triggered the search
for mechanisms that could alter nuclear shell structure when
going toward unstable nuclides and approaching nucleon drip
lines. One such mechanism that has an impact on the shell
structure of stable and unstable nuclei is provided by the tensor
force between nucleons [1].

The tensor force is a key ingredient of all vacuum nucleon-
nucleon interactions. It is also explicitly included in the
shell-model interaction for Hamiltonians constructed from first
principles. By contrast, it was absent from methods based
on the introduction of a self-consistent mean field [2], until
recent studies based on the Skyrme or Gogny modeling of the
in-medium strong interaction [3–8].

The renewed interest in the residual tensor interaction is
due to its very specific effect on nuclear spectra. It brings a
correction to binding energies and to spin-orbit splittings that
fluctuates with the filling of shells. Its introduction seems,
therefore, necessary to improve the predictive power of mean-
field-based methods. The Skyrme and Gogny parametrizations
are viewed today as nuclear energy density functionals (EDF).
Their derivation from first principles is still lacking, although
significant advances have been made recently for the pairing
part [9]. Instead, one still has to resort to the phenomenological

construction of an EDF and adjust its free parameters,
including those associated with tensor terms, to data. How
to perform this adjustment in an optimal manner is still an
unsettled question. The main problem is to find experimental
observables that can unambiguously be related to a mean-field
result and are primarily sensitive to a specific part of the EDF,
e.g., the tensor part. Such a link between experiment and theory
is very often obscured by collective fluctuations around the
mean-field states [10,11].

The tensor contribution to single-particle energies depends
on the filling of shells. It (nearly) vanishes in spin-saturated
nuclei, whereas it might be significant when only one level out
of two spin-orbit partners is filled. The breaking of spherical
shells in deformed nuclei leads to a strong modification of the
net spin saturation; hence, the contribution of the tensor force
to mean fields and the total energy evolves with deformation.
To the best of our knowledge, this was never studied in
the published literature. The authors of Ref. [8] considered
deformation but did not study the impact of tensor terms on
deformation properties as such.

In local energy density functionals of the Skyrme type, the
tensor force manifests itself through terms that are bilinear
in the local pseudotensor spin-current density. In Ref. [6],
referred to as Article I in what follows, the impact of
these terms on the mean-field ground states of spherical
nuclei was studied. In the most general case, three bilinear
combinations of the pseudotensor spin-current density can be
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constructed from a zero-range tensor force, one of them being
also generated by a momentum-dependent central zero-range
two-body force. All of these terms extrapolate differently when
going from spherical to deformed shapes. For the sake of
simplicity, we will denote all of the three terms that are bilinear
in the spin-current tensor density as tensor terms throughout
this article, although one of them is already present as soon as
a zero-range central velocity-dependent interaction is used as
a starting point to derive the EDF.

A word of caution: We cannot expect to significantly
improve the agreement with all experimental data, as we
learned in our study of spherical nuclei that most deficiencies
of the single-particle spectra predicted by standard Skyrme
interactions without tensor terms persist in our fits including
these terms. Indeed, one of the major results of Article I is
that the current form of the central Skyrme interaction is
not flexible enough to allow for a satisfactory description
of single-particle spectra. Adding tensor terms and adjusting
them tightly to very specific spectroscopic quantifies often
amplifies the deficiencies of the central and spin-orbit parts
as currently used, which seem to establish a compromise
that averages over the details of shell structure. This is
consistent with the recent study of Kortelainen et al. [12], who
point out that it seems impossible to satisfactorily describe
single-particle levels of doubly magic nuclei with a standard
Skyrme energy density functional including tensor terms, even
when relaxing all constraints from bulk properties.

The aim of the present study is to investigate the generic
influence of the tensor terms on deformation properties. The
questions to be addressed here are as follows:

(i) How do the tensor terms influence the topography of
deformation energy curves of even-even nuclei, given
their spherical shell-structure, in particular regarding
the number of spin-unsaturated levels at sphericity?

(ii) How much of these changes is caused by the tensor
terms themselves and how much is caused by the
rearrangement of all other terms during the fit of the
parametrizations?

(iii) How do the three different tensor terms behave in
deformed nuclei depending on the symmetries chosen
for the nuclear shapes? For spherically symmetric
systems, two of them reduce to the same functional
form, whereas the third one vanishes.

The answers to these questions will to a large extent remain
independent of remaining deficiencies of the central and spin-
orbit interactions and will be of great value for the construction
of future improved energy functionals. We will address the
question of how the surface and surface symmetry energy
coefficients change in dependence of the coupling constants
of the tensor terms and how this influences the deformation
energy at large deformation in a future work.

II. THE SKYRME ENERGY FUNCTIONAL WITH
TIME-REVERSAL SYMMETRY

The total energy of a nucleus can be modeled by an
energy density functional [2,13–15] that is the sum of five

terms: the uncorrelated kinetic energy, a Skyrme potential
energy functional that models the strong interaction in the
particle-hole channel, a pairing energy functional, a Coulomb
energy functional whose exchange term is treated using the
Slater approximation and correction terms that approximately
remove the excitation energy due to spurious motions caused
by broken symmetries

E = Ekin + ESk + Epairing + ECoulomb + Ecorr. (1)

The Skyrme energy density functional is local and can
be decomposed into isoscalar t = 0 and isovector t = 1
contributions of central, spin-orbit and tensor terms

ESk =
∫

d3r
∑
t=0,1

HSk
t (r) (2a)

=
∫

d3r
∑
t=0,1

[
Hc

t (r) + Hls
t (r) + Ht

t (r)
]
. (2b)

The physics contained in the Skyrme functional has been
discussed in great detail in the literature [2,6,15–18]. We will
repeat here only those aspects that are relevant for the present
study.

A. Local densities and currents

Each of the terms in the Skyrme energy density func-
tional (2a) can be further decomposed into one part that
depends on time-even densities only and another part that
is bilinear in time-odd densities and currents [6,15]. We
follow the common practice to call them “time-even” and
“time-odd” parts of the energy density functional, respectively,
although the energy density functional E itself is time-even
by construction. Throughout this article, we will assume that
time-reversal symmetry is not broken; hence, the densities
and currents entering the time-odd part of the energy density
functional vanish exactly. This allows one to represent the
Skyrme part of the energy density functional through six
independent local densities:

ρq(r) = ρq(r, r′)|r=r′, (3a)

τq(r) = ∇ · ∇′ ρq(r, r′)|r=r′ , (3b)

Jq,µν(r) = − i
2 (∇µ − ∇′

µ) sq,ν(r, r′)|r=r′ , (3c)

which are the scalar density ρq(r), the scalar kinetic density
τq(r), and the spin-current pseudotensor density Jq,µν(r) for
protons and neutrons q = p, n. They can be constructed from
neutron and proton density matrices expressed in the position
basis [15,18]

ρq(rσ, r′σ ′) = 〈â†
r ′σ ′q ârσq〉

= 1
2ρq(r, r′)δσσ ′ + 1

2 sq(r, r′) · 〈σ ′|σ̂ |σ 〉, (4)

where

ρq(r, r′) =
∑

σ

ρq(rσ, r′σ ),

(5)
sq(r, r′) =

∑
σσ ′

ρq(rσ, r′σ ′) 〈σ ′|σ̂ |σ 〉.
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Proton and neutron densities can be recoupled to isoscalar t =
0 and isovector t = 1 densities, for example, ρ0(r) = ρn(r) +
ρp(r) and ρ1(r) = ρn(r) − ρp(r), and similarly for τt (r) and
Jt,µν(r).

The Cartesian spin-current pseudotensor density Jµν(r) can
be separated into its pseudoscalar, antisymmetric vector, and
symmetric and traceless symmetric pseudotensor parts,

Jµν(r) = 1

3
δµνJ

(0)(r) + 1

2

z∑
κ=x

εµνκJ
(1)
κ (r) + J (2)

µν (r), (6)

where δµν is the Kronecker symbol and εµνκ the Levi-Civita
tensor. The Cartesian components of the pseudoscalar, vector,
and traceless pseudotensor parts, expressed in terms of the
Cartesian pseudotensor density, are given by

J (0)(r) =
z∑

µ=x

Jµµ(r),

J (1)
κ (r) =

z∑
µ,ν=x

εκµνJµν(r), (7)

J (2)
µν (r) = 1

2
[Jµν(r) + Jνµ(r)] − 1

3
δµν

z∑
κ=x

Jκκ (r).

The radial component of J = ∑
κ J (1)

κ eκ is the only nonzero
contribution when spherical symmetry is imposed. The pseu-
doscalar J (0)(r) term still vanishes when rotational symmetry
is broken, but parity remains conserved.

B. Skyrme’s tensor force

The Skyrme energy functional representing the central,
tensor, and spin-orbit interactions can be written in different
ways. The most traditional one [16,17] is to consider the
functional as generated by a zero-range two-body effective
interaction including a density-dependent term. In his seminal
articles [19,20], Skyrme introduced two tensor interactions
that have not been considered in standard parametrizations so
far. An “even” tensor force with the coupling constant te mixes
relative S and D waves, whereas an “odd” tensor force with
the coupling constant to mixes relative P and F waves

vt(r) = 1
2 te{[3(σ 1 · k′)(σ 2 · k′) − (σ 1 · σ 2)k′2]δ(r)

+ δ(r)[3(σ 1 · k)(σ 2 · k) − (σ 1 · σ 2)k2]}
+ to[3(σ 1 · k′)δ(r)(σ 2 · k) − (σ 1 · σ 2)k′ · δ(r)k],

(8)

where we use the shorthand notation r = r1 − r2 for the
relative position vector between the two particles, whereas
k = − i

2 (∇1 − ∇2) is the operator for relative momenta acting
to the right and k′ its complex conjugate acting to the left. The
vectors formed by the Pauli spin matrices are denoted by σ 1

and σ 2.
With the symmetry restrictions that we have imposed, only

the time-even part of the energy density corresponding to the

tensor force (8) differs from zero and is given by

Ht
t (v

t) = −BT
t

z∑
µ,ν=x

Jt,µνJt,µν

−BF
t

⎡
⎣1

2

(
z∑

µ=x

Jt,µµ

)2

+ 1

2

z∑
µ,ν=x

Jt,µνJt,νµ

⎤
⎦ . (9)

The labels of the coupling constants BT
t and BF

t refer to
the time-odd terms they multiply in the energy functional
when time-reversal invariance is broken, ensuring Galilean
invariance [6]. The notation Ht

t (v
t) stresses that Eq. (9)

provides the contribution to tensor terms coming from the
Skyrme zero-range tensor effective interaction vt given by
Eq. (8). When starting from the tensor force (8), the four
coefficients BT

t and BF
t in Eq. (9) are determined by te and to.

As discussed in the next section, the central part of Skyrme’s
interaction also gives rise to terms proportional to Jt,µνJt,µν in
the energy density [6,15].

The three terms present in Eq. (9) couple the derivatives
of the single-particle wave functions and the spin matrices
in different ways. In the first term, the derivatives contained
in both Jt,µν are taken along the same direction, as are the
two Pauli spin matrices. The two other terms have a structure
more typical of what is expected for a tensor interaction that
couples a vector in space with a Pauli spin matrix. In the
second term they are coupled within a given Jt,µµ, whereas in
the third therm they are coupled between the Jt,µνs. It is the
simultaneous presence of these three terms that is the signature
of an actual tensor interaction.

C. The Skyrme energy functional

The complete time-even part of the Skyrme energy density
functional is obtained by combining the central, spin-orbit,
and tensor contributions

HSk
t = C

ρ
t [ρ0]ρ2

t + C
�ρ
t ρt�ρt + Cτ

t ρt τt + C∇·J
t ρt∇ · Jt

−CT
t

z∑
µ,ν=x

Jt,µνJt,µν

−CF
t

⎡
⎣1

2

(
z∑

µ=x

Jt,µµ

)2

+ 1

2

z∑
µ,ν=x

Jt,µνJt,νµ

⎤
⎦ . (10)

When the energy functional (10) is generated from a Skyrme
interaction, the coupling constants Ct are the sum of the
coupling constants At coming from the central and spin-orbit
forces and those of the tensor force Bt and are defined in the
Appendix A of Article I.1

One can alternatively consider HSk
t as a functional of

local densities in a more general sense and abandon the link
to effective interactions. The coefficients Ct are then fixed
independently, except for constraints that must be imposed

1The expressions for BT
1 , BF

0 , B�s
0 , and B∇s

0 , Eqs. (A3)–(A6) given
in the published version of Article I have to be multiplied with −1,
whereas the expressions given in the preprint are correct.
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to fulfill Galilean invariance, cf. Article I. In principle, the
twelve constants Ct can furthermore depend on densities, but
in all standard Skyrme parametrizations extensively tested up
to now, only C

ρ
t does depend on the isoscalar local density ρ0.

D. Choice of independent coupling constants in the energy
density functional

The tensor terms are given in Eq. (10) as a function of
the Cartesian representation of the spin-current tensor density.
Using the pseudoscalar, vector, and pseudotensor components
J (0), J (1), and J (2) introduced in Eq. (7), which is more
appropriate when spherical symmetry is imposed, one obtains
an alternative form

Ht
t = −CT

t

z∑
µ,ν=x

Jt,µνJt,µν

−CF
t

⎡
⎣1

2

(
z∑

µ=x

Jt,µµ

)2

+ 1

2

z∑
µ,ν=x

Jt,µνJt,νµ

⎤
⎦

= CJ0
t

(
J

(0)
t

)2 + CJ1
t J2

t + CJ2
t

z∑
µ,ν=x

J
(2)
t,µνJ

(2)
t,µν . (11)

In the last line of Eq. (11) we have introduced new coupling
constants for the terms bilinear in the pseudoscalar, vector, and
pseudotensor parts of the spin-current pseudotensor density.
Their relation to the coupling constants defined in Eq. (10) is
given by

CJ0
t = − 1

3CT
t − 2

3CF
t , (12a)

CJ1
t = − 1

2CT
t + 1

4CF
t , (12b)

CJ2
t = −CT

t − 1
2CF

t . (12c)

In general, the tensor part of the energy density (10) depends
on four independent parameters. This is most obvious in a
Cartesian representation of the tensor functional, where these
four parameters are provided by the CT

t and CF
t . In Article

I, however, we have used two different coupling constants to
characterize the tensor terms that fulfill

CJ
0 = 2CJ1

0 , (13a)

CJ
1 = 2CJ1

1 . (13b)

These two coupling constants are sufficient to describe the
strength of the isoscalar and isovector tensor terms in static2

calculations in spherical symmetry as the pseudoscalar and
pseudotensor parts of the spin-current tensor density are zero
by construction.

When starting from a central and a tensor force, the ratios
between the isospin components of the different terms will
not be proportional, i.e., CJ1

0 /CJ1
1 CJ2

0 /CJ2
1 , CT

0 /CT
1 , and

CF
0 /CF

1 will not be equal. The same property is lost also when

2We recall that in the quasi-particle random-phase approximation
(QRPA) and other dynamical methods all components of Jµν might
be nonzero in the response transition densities also in spherical
symmetry, as do the time-odd densities not addressed here.

one separates the tensor interaction strength between particles
of the same and different isospins.

The tensor terms of existing Skyrme parametrizations have
been adjusted on spherical nuclei, for which one has time-
reversal invariance and J2

t is the only nonzero term in Eq. (11).
Hence, the values of CJ0

t and CJ2
t have not been fixed by these

fits and one has to make additional choices when going beyond
sphericity. In the present work, parity is still conserved as a
good quantum number such that the only problem is to fix the
values of the two constants CJ2

t . The solution to this problem
is not unique and a set of reasonable choices is given by:

(i) One can consider that the tensor terms of the energy
functional are generated by the central and tensor
parts of a Skyrme force. There is then an univocal
relation between CJ2

t and te and to and the balance
between the various terms in Eq. (11) is automatically
fixed. Unless otherwise noted, we will use this choice
throughout the present article for the parameter sets TIJ
introduced in Article I. This choice does not permit
to set CJ1

t and CJ2
t simultaneously to zero without

imposing unrealistic constraints on the central Skyrme
interaction. In particular, the parametrization T22 has
been constructed in such a way that CJ1

t = 0 and
that the tensor terms vanish for spherical shapes. The
values of CJ2

t are then nonzero and the contribution of
the pseudotensor terms does not vanish for deformed
shapes.

(ii) Many authors set to zero the pseudotensor part of the
tensor terms (11) for axially deformed Skyrme EDF
calculations [21,22] although it is a priori nonzero.
They keep only the vector part J that also appears in
the spin-orbit part of the EDF. The main motivation
for this choice is that the spin-current tensor density
in cylindrical coordinates has a complicated form [23].
This can either be viewed as an approximation or as
specific choice of the tensor terms such that CJ2

t = 0.
(iii) Another possible choice is to set CF

t to zero. Together
with suitable choices for the time-odd part of the EDF,
this allows us to keep the functional form of the standard
central Skyrme EDF but with coupling constants of the
symmetric tensor terms that are independent of those
of a central Skyrme interaction. This choice has been
made by the authors of Ref. [8].

(iv) A choice similar to the previous one is to take CT
t equal

to zero, keeping only the antisymmetric combination of
the spin-current tensor density.

(v) Finally, one can take any ratio of CF
t /CT

t leading to a
given CJ1

t value, which interpolates between the two
previous choices.

When choosing CJ1
t and CJ2

t to be independent, we have the
following interrelations between coupling constants

CJ0
t = −CJ1

t + 5
6CJ2

t , (14a)

CT
t = −CJ1

t − 1
2CJ2

t , (14b)

CF
t = 2CJ1

t − CJ2
t . (14c)

The multitude of possible choices for the tensor parametriza-
tion opens the risk of an inconsistent use of the coupling
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constants of the tensor part of a given Skyrme parametrization.
In particular, each choice leads to very different coupling
constants in the “time-odd” part of the EDF, which can lead to
significant differences.

Eventually, the bilinear part of the functional can be
recoupled into terms that contain only densities of the same
isospin on the one hand and terms that couple proton and
neutron densities on the other hand. Such a representation is
often used to characterize the interaction strength in the vector
part of the tensor terms through coupling constants α of the
like-particle J2

t terms and β of the proton-neutron J2
t term

α = CJ
0 + CJ

1 = 2
(
CJ1

0 + CJ1
1

)
, (15a)

β = CJ
0 − CJ

1 = 2
(
CJ1

0 − CJ1
1

)
. (15b)

The relation of α and β to the coupling constants of Skyrme’s
central and tensor forces can be found in Article I. All other
coupling constants of the energy density (10) can be recoupled
in the same manner, of course.

E. The single-particle Hamiltonian

The isospin representation of the EDF is very convenient
for a discussion of its physical content. The codes that we have
developed, however, use a different representation [17] that is
better suited to construct the mean-fields with the symmetries
chosen here. The central and spin-orbit parts of the Skyrme
EDF have been described in Ref. [17]. The additional tensor
terms that were not addressed are given by

Ht = b14

z∑
µ,ν=x

J0,µνJ0,µν

+ b16

⎡
⎣(

z∑
µ=x

J0,µµ

)2

+
z∑

µ,ν=x

J0,µνJ0,νµ

⎤
⎦

+
∑

q=n,p

⎧⎨
⎩b15

z∑
µ,ν=x

Jq,µνJq,µν

+ b17

⎡
⎣(

z∑
µ=x

Jq,µµ

)2

+
z∑

µ,ν=x

Jq,µνJq,νµ

⎤
⎦

⎫⎬
⎭ . (16)

The coupling constants of (16) are related to those of (11)
through

b14 = −CT
0 + CT

1 = CJ1
0 − CJ1

1 + 1
2CJ2

0 − 1
2CJ2

1

b15 = −2CT
1 = 2CJ1

1 + CJ2
1

b16 = − 1
2CF

0 + 1
2CF

1 = −CJ1
0 + CJ1

1 + 1
2CJ2

0 − 1
2CJ2

1

b17 = −CF
1 = −2CJ1

1 + CJ2
1 . (17)

The mean-field equations for protons and neutrons, obtained
by functional derivative techniques [2,15] from the energy
functional (16), read

ĥq(r)ψi(r) = εiψi(r), (18)

with the one-body Hamiltonian corresponding to the energy
functional (10) given by3

ĥq(r) = Uq(r) − ∇ · Bq(r)∇

− i

2

z∑
µ,ν=x

[Wq,µν(r)∇µ + ∇µWq,µν(r)]σ̂ν, (19)

where the σ̂ν denote the Pauli matrices. The expressions for
the single-particle potential U (r) and the inverse effective mass
B(r) are the same as those given in Ref. [17]. When the energy
functional depends on the vector part of the spin-current tensor
only, the second line of Eq. (19) boils down to −iWq(r) · ∇ ×
σ with Wq(r) = ∑

µνκ εµνκWq,µν(r) eκ , where eκ is the unit
vector in κ direction. With the full spin-current tensor, one has
to consider

Wq,µν(r) = δE

δJq,µν(r)
= −b9

z∑
κ=x

εκµν(∇κρ + ∇κρq)

+ 2b14Jµν + 2b15Jq,µν + 2b16Jνµ + 2b17Jq,νµ

+ 2b16

[
z∑

κ=x

Jκκ

]
δµν + 2b17

[
z∑

κ=x

Jq,κκ

]
δµν

(20)

instead. The terms in the first line of Eq. (20) originate from
the spin-orbit part of the functional, the other two lines from
the tensor part. The terms in the last line of Eq. (20) might be
nonzero only when parity is broken.

We recall that for constrained calculations, as discussed
below, the constraints do not contribute to the observable
total energy, which is still obtained from E , Eq. (1), whereas
the eigenvalues εi of the mean-field Hamiltonian used to
construct the Nilsson diagrams contain a contribution from the
constraint [24].

III. PARAMETERIZATIONS

For an overview of earlier choices made for the coupling
constants of the tensor terms in standard parametrizations of
the Skyrme energy functional, we refer to Article I. We will
limit ourselves here to recent parametrizations that explore the
impact of tensor terms on single-particle spectra.

A. TIJ parametrizations of Lesinski et al.

The main aim of the present article is to test the deformation
properties of magic and semimagic nuclei obtained with the
parametrizations TIJ introduced in Article I. The fit of these
parametrizations is based on the same protocol as the one of
the SLyx parametrizations [13,14], with a few minor changes
explained in Article I. We have found in Article I that to add
a tensor term to a standard Skyrme EDF does not globally

3For the standard Skyrme functional (11) with non-density-
dependent coupling constants of the spin-orbit and tensor terms,
the second line can be simplified into −i

∑
µν Wq,µν(r)∇µσ̂ν for the

symmetries chosen here.

064302-5



M. BENDER et al. PHYSICAL REVIEW C 80, 064302 (2009)

FIG. 1. Coupling constants CJ
0 and CJ

1 of the tensor terms for the
parametrizations discussed in the article.

correct its deficiencies for the prediction of masses, radii, or
single-particle properties of semimagic nuclei. In fact, very
different values of the CJ

t constants are required for each of
these observables to be accurately reproduced, and even these
values should vary in different mass regions. Instead of trying
to construct a single “best” EDF in Article I, we have studied
the impact of the tensor terms on different observables by
constructing a set of 36 parametrizations, each corresponding
to given values of CJ

0 and CJ
1 , and all other Skyrme parameters

being determined by the same fitting procedure. In this way, a
wide range of the effective coupling constants CJ

0 and CJ
1 is

systematically covered.
In the present study, we limit ourselves to a small subset of

these 36 parametrizations, i.e., T22, T26, T44, and T62 in most
cases. Figure 1 shows their location in the parameter space
of CJ

0 and CJ
1 . The parametrization T22 has by construction

vanishing tensor terms at sphericity. It should have properties
close to those of SLy4 in which tensor terms have been
neglected. The parametrizations T26, T44, and T62 share
the same value of the isoscalar tensor coupling constant
CJ

0 = 120 MeV fm5 and differ by the isovector one CJ
1 , which

takes the values 120, 0, and −120 MeV fm5 respectively.
Parameterizations having the same proton-neutron coupling

constant β are aligned along the first diagonal in Fig. 1, those
with the same value of α are aligned along the antidiagonal.
For parametrizations TIJ, the coefficient of the proton-neutron
tensor term increases with the first index I for the fixed
like-particle tensor term, whereas that of the like-particle
tensor term increases with the second index J for fixed
proton-neutron tensor coupling. Let us recall that the integers
I and J are related to the constants α and β by

α = 60(J − 2) MeV fm5, (21a)

β = 60(I − 2) MeV fm5. (21b)

B. The parametrization of Colò et al.

The Skyrme parametrization SLy5 introduced in Ref. [14]
is one of the two SLyx functionals that include the tensor
terms generated from the central part of the Skyrme force.

Colò et al. [5] have added a tensor force to it, keeping all the
other coupling constants of the parametrization at their original
values. We will call this interaction SLy5 + T (“SLy5 plus
tensor”) in what follows. The parameters of the tensor force
were adjusted in spherical symmetry to single-particle energies
along the chains of N = 82 isotones and Z = 50 isotopes. The
empirical values for these energies were obtained as separation
energies of the last particle in states of an odd-A nucleus,
assumed to be dominated by one single-particle configuration.
They were compared to the eigenvalues of the one-body Hamil-
tonian, Eq. (19), in the neighboring even-even nucleus. The
resulting coupling constants in MeV fm5 are CJ

0 = −19.333
and CJ

1 = −70.466 or, equivalently, α = −89.8 and β = 51.9.
This parametrization has been used in studies of spherical
shell structure in Ref. [7] and of the Gamov-Teller strength
distribution in 90Zr and 208Pb through RPA calculations in
Refs. [25,26]. As can be seen in Fig. 1, SLy5 + T explores
a different region of the parameter space than the TIJ
parametrizations; α being negative and its modulus larger
than β.

C. The parametrization of Zalewski et al.

In Ref. [8], Zalewski et al. did refit the spin-orbit and tensor
coupling constants of some standard Skyrme interactions. We
will consider here two of their fits that are based on the SLy4
functional [14]. In a first step, Zalewski et al. readjusted C∇J

t

and CJ
t to carefully selected spin-orbit splittings in 40Ca,

48Ca, and 56Ni, keeping all other coupling constants of the
energy functional at their original values. The single-particle
energies of a spherical mean-field calculation of doubly magic
nuclei have been identified with the separation energy of
a nucleon with the same quantum numbers to or from the
odd neighboring nuclei. They were compared to experimental
separation energies corrected through a macroscopic model
taking into account the influence of the coupling of the
single-particle state to collective vibrations of the surface.
The values of the parameters resulting from this procedure
are CJ

0 = −45, CJ
1 = −60, C∇J

0 = −60, and C∇J
1 = −20 (all

in MeV fm5) and define an EDF called SLy4T. The strength
of the standard zero-range spin-orbit force of SLy4T is equal
to W0 = 80 MeV fm5 and is much lower than in the original
SLy4 parametrization, for which W0 = 123 MeV fm5.

Such a modification of CJ
t and C∇J

t from their original
values without changing the other parameters of the EDF
degrades prohibitively the masses calculated with SLy4T with
respect to those obtained with SLy4. For this reason, Zalewski
et al. refitted all parameters of SLy4T except CJ

t and C∇J
t

in a second step to restore a reasonable description of bulk
properties, leading to the parametrization SLy4Tmin.

The parametrizations SLy4T and SLy4Tmin are explicitly
constructed as energy density functionals without making
reference to any underlying central, spin-orbit, or tensor
force. In particular, the authors chose to set the two coupling
constants CF

t of the asymmetric Cartesian tensor term to zero
and to vary only CT

t . This automatically fixes the value of
CJ2

t to be equal to two times that of CJ1
t for t = 0 and t = 1.

Although the coupling constants C∇J
t of the spin-orbit term

were readjusted, the ratio between the isoscalar and isovector
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TABLE I. Skyrme parametrizations discussed in this work. Procedure: variational (V) corresponds to Skyrme parametrizations where, for
given tensor coefficients, all other Skyrme parameters are fitted following the procedure of Ref. [14], slightly modified in Article I for the TIJ
interactions, while perturbative (P) labels parametrizations for which tensor terms are added without refit. Type: the parametrization is treated
as an interaction (I) or a functional (F). Central: the contribution to the tensor terms coming from the central part of the interaction is included
or not. Tensor: a tensor interaction is included or not.

Procedure Type Central Tensor Ref. Remarks

SLy4 V I N N [14] The tensor contributions from the central part of the interaction are neglected
SLy5 V I Y N [14]
TIJ V I Y Y [6] Isovector tensor coefficients equal to zero if I = J

T22 V I Y Y [6] Central and tensor contributions to the tensor terms such that they cancel each
other at sphericity (close to SLy4)

SLy4T P F – – [8]
SLy4Tmin V F – – [8] Refit of SLy4T on masses keeping tensor and spin-orbit coefficients fixed
SLy5 + T P I Y Y [5]

SLy4Tself V I Y Y This work Refit of SLy4T with the same protocol as TIJ keeping the same spin-orbit and
tensor coefficients for spherical shapes as in Ref. [8]

TZA V I Y Y This work Refit of SLy4T with the same protocol as TIJ for the tensor coefficients used in
Ref. [8]

coupling constants C∇J
0 /C∇J

1 was kept at the value of the
original fit.

To analyze the consequences of the choices made in the
fitting strategy of Zalewski et al. and those of Article I, we
performed two additional fits using the same protocol as in Ref.
[6] but exploring a different region around (−45, −60) MeV
fm5 corresponding to SLy4T in the CJ

0 , CJ
1 plane of Fig. 1. For

the first one, called SLy4Tself hereafter, we fixed CJ
t and C∇J

t

at their SLy4T values but readjusted all the other constants
of the functional to obtain the “best” EDF corresponding to
our protocol. This parametrization differs from SLy4Tmin by
the fit protocol and by our choice to keep the interrelations
between the coupling constants of the tensor terms as obtained
from a two-body central and tensor forces. To study also the
impact of the readjustment of the spin-orbit interaction, we
constructed a second parametrization, called TZA hereafter,
where we additionally vary W0, resulting to a value W0 =
111.934 MeVfm5. This parametrization is thus fitted exactly
as the TIJ ones, except that it is outside of the rectangular
parameter space for CJ

0 and CJ
1 considered in Article I. The

coupling constants for SLy4Tself and TZA can be found in
the Physical Review archive [27]. The properties of all the
interactions that we have used are summarized in Table I.

IV. RESULTS

A. Technical details

The wave functions are constructed with the code EV8
[28,29] that has been modified to include the tensor terms in the
energy density functional and the single-particle Hamiltonian.
The energies have been recalculated after convergence with a
code that uses a more accurate algorithm for the derivatives.

Pairing correlations are treated with the Lipkin-Nogami
(LN) method to avoid the breakdown of Bardeen-Cooper-
Schrieffer pairing and the resulting discontinuities in the

deformation energy curves. We use an effective density-
dependent zero-range pairing interaction with two soft cutoffs
at 5 MeV above and below the Fermi energy as described
in Ref. [30]. For consistency with our recent calculations
[31,32], we chose a strength of −1000 MeV fm−3 for light
and medium-heavy nuclei and −1250 MeV fm−3 for 186Pb
and 208Pb.

B. General comments

The magic numbers close to stability can be divided into two
categories: up to 20, they correspond to a spin-saturated closure
of major oscillator shells, whereas above 20, they are created
by the spin-orbit interaction that pushes down the level with
largest j value into the gap between the oscillator shells for 28
or even into the oscillator shell below the gap for 50, 82, and
126. One usually labels a spherical nucleus spin saturated when
all pairs of spin-orbit partners are either occupied or empty. In
realistic mean-field calculations this will not result in an exact
cancellation of the spin-current tensor density, as it should
be the case for an exact spin saturation. This has two origins.
First, the radial wave functions of the spin-orbit partners are not
identical, and, second, pairing correlations will smear out the
distribution of occupation numbers. The effect of these two
factors will be discussed in a forthcoming publication [33].
Tensor terms in the time-even part of the energy functional
fluctuate with the spin-current tensor density Jµν , which is
small in spin-saturated systems and large whenever only the
lower level of a pair of spin-orbit partners is filled, while its
partner level remains empty. For an illustration we refer to
Article I.

Deformation breaks this simple picture. As soon as it sets in,
the spin saturation or nonsaturation disappears and the energy
due to tensor terms varies in a way related to the sign of the
coupling constants. Close to sphericity, this can be determined
by looking at the CJ

t coefficients. For N = Z spin saturated
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FIG. 2. (Color online) Nilsson diagram of the neutrons (top),
change of the total contribution from the tensor terms to the total
energy relative to the values at the spherical shape (middle), and
deformation energy relative to the spherical shape (bottom) for 56Ni
obtained with the parametrizations T22, T24, and T26. The energy
scale is the same for the two lower panels.

nuclei and parametrizations with CJ
0 positive, the contribution

from the tensor interaction is zero at sphericity and becomes
repulsive as soon as deformation sets in. For N = Z spin-
unsaturated nuclei, the tensor contribution will be largest at
sphericity and decrease with deformation.

C. 56Ni

Let us start our study by looking in detail into 56Ni, the
lightest doubly magic nucleus with major proton and neutron
shell closures due to the spin-orbit interaction. The values and
systematics of static [34,35] and transition moments [36] of
low-lying states around 56Ni suggest that it is not as good an
inert magic core as other doubly magic nuclei. This feature
is also observed in shell-model calculations [37] and is at the
origin of substantial corrections found between “empirical”
and “bare” single-particle energies in Ref. [38]. Several well-
deformed rotational bands coexisting with the spherical shell-
model-type states have been observed, one of them down to a
2+ level at 5.351 MeV [39].

1. Key quantities

Figure 2 provides three key quantities for the analysis of the
deformation properties of 56Ni: the neutron Nilsson diagram,

the contribution of tensor terms to the deformation energy
and the total energy, all as a function of axial quadrupole
deformation. Three parametrizations have been used, T22,
T24, and T26, which differ in the strength of the tensor
terms. The proton Nilsson diagram is very similar to the
one for neutrons, except for an overall shift due to the
Coulomb interaction. The dependence of these quantities on
the axial quadrupole deformation is shown as a function of the
dimensionless deformation β2 of the mass density distribution
defined as

β2 =
√

5

16π

4π

3R2A
〈2z2 − y2 − x2〉, (22)

where R = 1.2A1/3 fm.
The presence of tensor terms in the energy functional has

an obvious impact on the single-particle levels. An increase of
the tensor interaction results in a reduction of the spin-orbit
fields and in a smaller spherical gap at N = 28. The net result
is a sizable decrease of the splitting of the 1f levels from T22
to T62. At the same time, tensor terms also modify the slope
of the Nilsson levels at small deformations, whereas, at large
deformation, the levels predicted by the three parametrizations
nearly lie on top of each other.

At sphericity, the tensor contribution for T22 is zero by
construction. In practice, one can see that the tensor energy
remains close to zero for all deformations. As soon as
the nucleus is deformed, the decrease of spin nonsaturation
strongly affects the tensor terms. Parameterizations like T24
and T26 have a positive like-particle coupling constant α and
give repulsive tensor energies at sphericity. This repulsion is
decreased by deformation, which reduces the tensor terms
by several MeV. For T26, the total energy curve obtained as
a function of deformation is softer than without the tensor
interaction. In particular, the shoulder at prolate deformations
becomes lower in energy and more pronounced. This structure
is associated with the rotational band observed down to spin
2+ [39]. The gain in total deformation energy, however, is
much smaller than the gain in deformation energy from the
tensor terms.

In the following subsections, we will analyze the origin of
these differences and their dependence on the fit strategy.

2. Contributions to the total energy

Let us first recall that the interactions constructed in Article
I differ by their choice of the strengths of the tensor interaction;
in addition, all the other terms of the energy functional are also
different because each interaction is refitted on the same set of
data. It is, therefore, interesting to examine how the different
terms of the functional vary from one set to another and how the
changes induced by the tensor interaction are, in fact, largely
attenuated by a readjustment of the entire functional.

Figure 3 presents the decomposition of the total binding
energy into the contributions from the various terms in the
energy functional, Eq. (1), for parametrizations T22, T24, and
T26. Those panels showing contributions to the Skyrme energy
functional are labeled by their content in densities, Eq. (10),
whereas the other panels provide the kinetic energy (plus the
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FIG. 3. (Color online) Decomposition of the total energy of 56Ni
obtained with the parametrizations T22, T24, and T26 into the various
contributions to the EDF, Eqs. (1) and (10), as a function of the
quadrupole deformation β2 (see text).

one-body center-of-mass correction), the Coulomb energy, and
the pairing energy (including the Lipkin-Nogami correction).

Unlike in Fig. 2, Fig. 3 shows here the absolute values for the
total binding energy and the tensor contributions. The binding
energy of 56Ni is included in the data the TIJ parametrizations
are adjusted to and, indeed, the total energy (lower left panel)
differs by only a few 100 keV at sphericity. Also, as already
pointed out, the deformation energy curves obtained with
the three parametrizations differ by less than 2 MeV. These
similarities result from a complicated compensation between
the various components of the energy. All of them, with the
exception of the Coulomb energy, differ on a much larger scale,
both in absolute values and deformation dependence.

It can be seen also that each term of the EDF has a
very different dependence on deformation and that the total
deformation energy also always results from subtle compen-
sations. Both the kinetic energy and the part of the Skyrme
functional that contributes to E/A in infinite homogeneous
nuclear matter, Cρ[ρ]ρ2 + Cτρτ , vary by about 70 MeV as
a function of deformation. The part of the EDF that does
not depend on gradient terms is obtained by summing these
two terms and the Coulomb energy and is represented in the
panel in the fourth row on the left. It varies with deformation
by about 15 MeV. For all parametrizations, the latter curves
exhibit pronounced prolate and oblate minima. The gradient
term C�ρρ�ρ even amplifies the preference for deformed
minima. The combined spin-orbit and tensor terms, shown
individually and summed up in the three lower right panels,
are the necessary ingredient to obtain a spherical ground state
in 56Ni. This underlines the fact that the spin-orbit and tensor
terms are not only important for single-particle spectra but
also might play a crucial role for the total binding energy, in
particular for its deformation dependence. Interestingly, for
this nucleus and the parametrizations shown, the contributions
of the spin-orbit and tensor terms are of opposite sign and
sum up such that their sum is much less dependent on the
parametrization than the individual terms.

Figure 4 provides the same decomposition for various
variants of SLy4 adjusted with different strategies, i.e., SLy4,
SLy5, SLy4Tmin, and SLy5 + T.

The results obtained with the two functionals SLy4 and
SLy5 adjusted in Ref. [14] are quite close for all terms, except
of course for the tensor contribution, excluded in the case
of SLy4 and restricted to the contribution from the central
interaction for SLy5. All components of the energy differ
slightly because the coupling constants are completely refitted
in both cases. The total energies obtained with these two
parametrizations, however, are quite close.

In particular, although SLy4 and SLy5 correspond to
slightly different coupling constants, they lead to results that
differ on a much smaller scale than SLy5 and SLy5 + T,
which differ only by the tensor terms. This underlines the
role of self-consistency: the difference in the tensor terms is
responsible for changes in the single-particle properties, which
ultimately induce changes in each individual contribution to
the energy functional.

The similarity between the curves obtained with SLy4 and
T22 (Figs. 3 and 4) shows that the slight differences between
the interactions have no significant effect.

3. Decomposition of the tensor terms

The energy contribution from the tensor terms can be de-
composed in several ways. We first compare the contributions
from the central and tensor parts of the parametrizations
T22 and T26 in Fig. 5. As explained in Sec. II D, such
a decomposition has a meaning only when assuming an
underlying force but not for genuine functionals. The central
contribution is very similar for both parametrizations (and
all others from the TIJ family), which is a consequence of
its correlation with effective masses and surface tensions
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FIG. 4. (Color online) Same as Fig. 3, but for the parametrizations
SLy4, SLy4Tmin, SLy5, and SLy5 + T.

through t1 and t2 terms of the two-body Skyrme force; see
the discussion of Fig. 3 in Article I. The contribution from
central and tensor parts cancel nearly exactly for T22 for all
deformations. As exemplified by T26, the contributions from
the central and tensor forces to the tensor terms have the same
sign for 56Ni for all other TIJ parametrizations that have zero
or positive values for CJ

0 and CJ
1 .

In Fig. 6, we decompose the tensor energy in the Carte-
sian and in the angular-momentum coupled representations.
Isovector contributions for this N = Z nucleus are smaller
than 20 keV for all deformations. In the left panels, the
contributions corresponding to the symmetric and asymmetric
terms in the Cartesian representation are plotted. Both are
of the order of a few MeV for T22 and of opposite sign
to ensure a total contribution close to zero. They are also

FIG. 5. (Color online) Decomposition of the isoscalar tensor
energy obtained in 56Ni for the parametrizations T22 and T26 into
the contributions from the central and tensor parts of the forces.

of similar magnitude for T26 but repulsive in both cases.
Results from T24 are intermediate between those of T22
and T26. The right panels show the contributions to the total
tensor energy from the vector and pseudotensor terms in the
angular-momentum coupled representation. The contribution
from the pseudoscalar term is zero with the symmetries
assumed here. Except for T22, where the vector contribution
is zero by construction, the pseudotensor contribution is two
orders of magnitude smaller than the vector one. We found
similar results for all other parametrizations with nonzero CJ1

0
and for all nuclei studied here. This justifies the common
practice of neglecting the pseudotensor terms for the purpose
of calculating binding energies in situations where Galilean
invariance is not an issue.

All decompositions of the tensor energy exhibit the
same trend: this energy decreases with deformation, without

FIG. 6. (Color online) Decomposition of the isoscalar tensor
energy obtained in 56Ni for the parametrizations T22, T24, and T26
into the contributions from symmetric and asymmetric terms in the
Cartesian representation (left), or the contributions from vector and
pseudotensor contributions (right). The same energy scale is used for
all panels except the one for the pseudotensor contribution J (2)J (2).
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TABLE II. Eigenvalues corresponding to the neutron pf and the g9/2+ orbitals obtained for the single-particle Hamiltonian at spherical
shape in 56Ni (see text).

Parametrization εf7/2 εf5/2 �εf εcent
f εp3/2 εp1/2 �εp εcent

p �εf /�εp εcent
f − εcent

p εg9/2

Experiment (±S1n) −16.64 −9.48 1.02 −13.57 −10.25 −9.14 0.37 −9.88 2.75 3.69 –
Empirical [38] −16.93 −9.53 1.06 −13.76 −10.36 −8.48 0.63 −9.73 1.68 4.03 –

T22 −16.18 −7.70 1.21 −12.54 −11.21 −9.19 0.67 −10.54 1.80 2.00 −4.26
T26 −15.47 −8.97 0.93 −12.68 −10.98 −9.19 0.60 −10.38 1.56 2.30 −3.56
T44 −15.56 −8.69 0.98 −12.61 −11.09 −9.20 0.63 −10.46 1.56 2.15 −3.75
T62 −15.61 −8.52 1.01 −12.57 −11.22 −9.25 0.66 −10.56 1.54 2.00 −3.89

SLy5 −16.01 −8.03 1.14 −12.59 −11.11 −9.17 0.65 −10.47 1.76 2.12 −4.05
SLy5 + T −16.66 −7.09 1.37 −12.56 −11.15 −9.01 0.72 −10.44 1.91 2.12 −4.67

SLy4 −16.17 −7.80 1.20 −12.58 −11.13 −9.14 0.66 −10.47 1.81 2.11 −4.20
SLy4T −15.49 −8.71 0.97 −12.58 −11.20 −9.47 0.57 −10.62 1.69 1.96 −3.54
SLy4Tmin −15.63 −8.72 0.99 −12.67 −11.26 −9.50 0.59 −10.67 1.68 1.98 −3.57
SLy4Tself −15.73 −8.59 1.02 −12.67 −11.29 −9.50 0.60 −10.70 1.70 1.97 −3.71
TZA −16.57 −7.08 1.36 −12.50 −11.33 −9.18 0.72 −10.61 1.90 1.89 −4.65

exhibiting much structure. This behavior can be understood
rather easily in this N = Z nucleus where the f7/2− orbitals
are filled at sphericity while the f5/2− ones are empty. This
situation makes the tensor interaction maximal. As soon as
deformation sets in, this simple picture is destroyed: the
single-particle levels loose their purity and cross, cf. the upper
panel of Fig. 2.

4. Single-particle spectra at sphericity

We give in Table II the eigenvalues of the single-particle
Hamiltonian ĥq , Eq. (18) for neutron orbitals in the pf shell
obtained in calculations of 56Ni imposing spherical shape. The
position of the 1g9/2+ level is also given, although it is far
above the Fermi energy at spherical shape, as it determines the
size of the deformed gap at 28 in the Nilsson diagram through
its downsloping jz = 1/2 levels, cf. Fig. 2.

We also give the renormalized spin-orbit splittings

�ε = 1

2 + 1
(εj=−1/2 − εj=+1/2), (23)

which for a standard modified oscillator potential would be
independent on the quantum numbers of the single-particle
states, the centroids

εcent
 =  + 1

2 + 1
εj=+1/2 + 

2 + 1
εj=−1/2, (24)

of spin-orbit partners for the 2p and 1f levels, the ratio
�εf /�εp of the spin-orbit splittings of the 1f and 2p levels,
and the distance of their centroids εcent

f − εcent
p .

Experimental separation energies from or into low-lying
levels in the odd-A neighbors of 56Ni that have the character-
istics of a single-particle configuration are given in the first line
of Table II. Empirical values for the single-particle energies
are given in the second line. These quantities are usually
compared to the eigenvalues εi of the mean-field Hamiltonian,
although many factors make this comparison questionable;
see for instance Ref. [8] and Sec. IV B of Article I. One
source of ambiguity is the coupling of the particle or hole

outside the closed shell to the vibrations of the core. Using
the schematic extended unified model, the authors of Ref. [38]
attempted to remove this effect to determine “bare” values of
the single-particle energies by reverse engineering from the
low-lying excitation spectra of 56Ni and its odd-A neighbors.
Although model dependent, we include these values here in
the second line of Table II to have a rough estimate of the order
of magnitude of the corresponding corrections. In any event,
for an N = Z nucleus such as 56Ni, there is also a contribution
from the Wigner energy to the separation energies [40], which
is not considered in Ref. [38]. Its main effect for a magic
nucleus is to render the gap in the separation energies much
larger than the gap in the spectrum of eigenvalues of the mean
field. Using a schematic model, Chasman [40] estimates the
correction from the Wigner energy to the size of the N = 28
gap in the empirical spectrum from separation energies to be
larger than 2 MeV.

The results for the parametrizations T22, T26, T44, and
T62 are given in the next four lines. By construction, there is
no tensor contribution at sphericity for T22. The other three
interactions share the same isoscalar coupling constant CJ

0 =
120 MeV fm5 but differ in their isovector one CJ

1 . The presence
of a tensor term has a small effect on the absolute position of
the 2p levels, which move at most by 200 keV, much less
than the 1f levels for which the changes go up to 1.2 MeV.
The tensor term is mainly responsible for a reduction of the
spin-orbit splittings, whereas the centroids of the 2p and 1f

levels are affected to a much smaller extent. A change in the
centroid position cannot be directly related to the tensor terms
because they do not contribute directly to the part of the mean
field that governs it. The modification of the centroids is a
nonlinear effect induced by the tensor. Although small, the net
effect is visible, in particular for the distance between the 1f

and 2p centroids that are pulled into opposite directions.
The shift of the centroids is correlated to the isoscalar tensor

coupling constants (cf. T22 and T44), but unexpectedly for a
N = Z nucleus, also slightly to the isovector ones (cf. T26,
T44, and T62). The isovector densities and currents induced by
the isospin breaking Coulomb interaction are small and do not
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significantly contribute to mean fields and energies. The differ-
ences between the centroids obtained with T26, T44, and T62
are predominantly a consequence of the readjustment of the
entire energy functional for each strength of the tensor terms.

The larger impact of the tensor terms on the 1f levels than
on the 2p ones is still more apparent when a trivial angular-
momentum factor in the spin-orbit splitting �ε is taken out.
This result has a geometrical origin discussed in Fig. 16 of
Article I for a different example: a zero-range tensor interaction
has the largest impact on spin-orbit splittings for those levels
that have the same nodal structure as the ones that dominate
the spin-current J.

As discussed in Article I and exemplified in Fig. 4, the
isoscalar tensor term has the tendency to reduce the spin-orbit
splitting in spin-unsaturated nuclei for the TIJ parametriza-
tions studied here. To maintain a given splitting, the spin-orbit
coupling constant has to be increased. Thus, the reduction
of the spin-orbit splittings obtained with T44, as compared
to those from T22, results from the partial compensation of
the change in tensor and spin-orbit contributions. By contrast,
the spin-orbit splittings obtained with T26, T44, and T62 are
fairly independent on the value of the isovector tensor coupling
constant CJ

1 . The reason is twofold: on the one hand, the
isovector spin-current tensor density is negligibly small in an
N = Z nucleus and all direct isovector contributions to the
spin-orbit field are suppressed. On the other hand, changing
CJ

1 in the fit does not induce a significant change of the strength
of the spin-orbit interaction within the protocol of the TIJ
interactions.

The values obtained with SLy5 and SLy5 + T are listed in
the next two lines of Table II. The negative value chosen for
CJ

0 in SLy5 + T is not compensated by a readjustment of the
spin-orbit strength and leads to a substantial increase of all
spin-orbit splittings. The negligible changes in the position of
the centroids gives an indication of the order of magnitude of
rearrangement effects from self-consistency.

The results obtained with SLy4, SLy4T, SLy4Tmin,
SLy4Tself , and TZA can be found in the last five lines of
Table II. Although the tensor coupling constants of SLy4T and
SLy5 + T are similar, cf. Fig. 1, their behavior with respect to
the parametrizations from which they have been constructed
is quite different. The spin-orbit splitting of the 1f levels
obtained with SLy5 + T is much larger than with SLy5, while
that of SLy4T is smaller than that of SLy4. The good agreement
with experiment obtained with SLy4T is not surprising because
56Ni is one of the data that has been used to adjust the spin-orbit
and tensor strengths. The origin of the differences between
these interactions is the additional reduction of the spin-orbit
force in SLy4T to about 2/3 of its original value. For 56Ni,
the reduced spin-orbit interaction of SLy4T overcompensates
the effect of the tensor interaction. The single-particle spectra
obtained with SLy4T, SLy4Tmin, and SLy4Tself differ slightly,
which results from self-consistency in the calculations and the
readjustment of the other coupling constants of the functional.
Because TZA has the same tensor coupling constants as
SLy4T, but an increased spin-orbit interaction, it predicts too
large spin-orbit splittings.

The single-particle spectra from SLy4 and T22, obtained
from almost the same fit protocol, are very close as should

be expected. Also, the single-particle spectrum obtained with
SLy4 lies in between those from SLy5 and SLy5 + T, as could
be expected from their tensor coupling constants, Fig. 1, and
the similarities of the respective fits.

Comparing calculated single-particle energies to empirical
ones from Ref. [38] and to experimental separation energies,
the fine-tuning of the spin-orbit splittings that constitutes the
main difference between the interactions studied here does
not significantly improve the overall agreement with data.
The main deficiency shared by all parametrizations is that
the relative distance between the centroids of the 1f and 2p

levels is nearly 2 MeV too small, leading to different sequences
of the 1f5/2− and 2p1/2− levels in calculations and data. This
result is consistent with the suspicion raised in Ref. [41] that a
substantial increase of the distance between the centroids given
by SLy4 might be needed to reproduce the shape coexistence
phenomena around 74Kr. However, a more careful analysis
of the physics that connects the single-particle spectra and
the observable separation energies is needed before a final
conclusion can be drawn.

5. Nilsson diagrams

At sphericity, the single-particle spectra obtained with
interactions adjusted using the same protocol exhibit minor
differences, with a splitting of the 1f levels varying by about
250 keV. Variations are slightly larger when the tensor term
is added perturbatively. The effects of these differences on the
dependence of the single-particle levels on deformation can be
found in Fig. 7. Two TIJ parametrizations only are plotted, as

FIG. 7. (Color online) Neutron Nilsson single-particle diagrams
for 56Ni obtained using various families of parametrizations (see text).
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the results do not depend on the isovector coupling constant
CJ

1 . Nilsson diagrams for protons differ mainly by a constant
shift due to the Coulomb interaction.

The most striking insight from Fig. 7 is that changing
the strength of the isoscalar tensor coupling modifies the
slope of the level dependence on deformation, especially close
to sphericity. The impact on deformed shell gaps depends,
however, on how a tensor term has been introduced.

For refitted parametrizations such as as T22 and T26,
the difference between the position of the 1f7/2− levels at
sphericity is compensated by the change of the slope of the
single-particle levels in such a way that the gap at β2 = 0.5
has about the same size. A similar result is obtained for all TIJ
and SLyx parametrizations.

In contrast, for interactions with perturbatively added or
rescaled terms, the size of the deformed gap is strongly
modified: it becomes smaller for SLy5 + T, and larger for
SLy4Tmin. The origin of the latter difference is the reduced
spin-orbit interaction for SLy4Tmin. With the same tensor
coupling constants as SLy4Tmin, TZA leads to results similar
to those of the TIJ parametrizations.

Similar results and similar observations can be made are
obtained for all other nuclei discussed hereafter.

6. Deformation energy and its tensor term contribution

Deformation energy curves are plotted in Fig. 8. To facilitate
their correlation with shell structure, the corresponding neu-
tron and proton single-particle spectra at sphericity are given
in the upper panels. The total deformation energy is given on
the left-hand side in the lower panels, whereas the difference
between the tensor energy contribution at a given deformation
and at sphericity is provided on the right-hand side. This
tensor energy contribution decreases with deformation for
TIJ parametrizations and for SLy5, for which CJ

0 is positive.
It increases for the other parametrizations that have a neg-
ative CJ

0 .
The differences between the energy curves are not directly

linked to the evolution of the tensor energy. They can, in fact,
be related to the shell effects that are seen in Fig. 7 and, in
particular, to the relative size of the spherical and prolate de-
formed N = Z = 28 gaps. A well-defined spherical minimum
and a pronounced shoulder at a deformation around β2 = 0.5
are obtained for SLy4, SLy5, and the TIJ parametrizations.
This structure in the energy curve is at a position qualitatively
in agreement with the properties of a superdeformed rotational
band observed in 56Ni [39].

The combined effect of the reduced spherical N = Z = 28
gap and the large deformed gap obtained with SLy4T has the
unphysical consequence that the ground state corresponds to a
superdeformed minimum. This result is related to a deficiency
of SLy4 on which the tensor interaction has no effect. This
interaction, indeed, predicts too small a distance between the
centroids of the 1f , 2p orbitals (see Table II). In such a case,
reproducing the empirical data for the splitting of the 1f levels
does not guarantee a realistic shell structure. In practice, the
gap between the 1f7/2− and 2p3/2− levels becomes too small,

FIG. 8. (Color online) The single-particle spectra at spherical
shape are shown in the upper panel for neutrons (left) and protons
(right) The deformation energy (left) and the variation of the total
tensor energy (right) are plotted on the lower panels for 56Ni and
different Skyrme parametrizations, as indicated.

whereas the distance between the 1f7/2− and 1g9/2+ levels is
now too large.

The parametrization SLy5 + T has the inverse drawback:
the gap at 28 is too large at sphericity, preventing the formation
of a secondary gap at large deformation.

The deformation energy and the relative change of the
tensor terms obtained with SLy4T (shown) and with SLy4Tmin

(not shown) cannot be distinguished within the resolution of
Fig. 8. This is less obvious than one might think. The refit that
leads from SLy4T to SLy4Tmin changes the absolute binding
energy of 56Ni by nearly 6 MeV from −469.522 (SLy4T) to
−475.480 MeV (SLy4Tmin).

The results obtained with SLy4Tself and TZA confirm the
crucial role of the spin-orbit strength. Both interactions have
been adjusted with the same protocol and the SLy4T values for
the tensor coefficients, but SLy4Tself shares the same spin-orbit
strength as SLy4T while it has been freely varied for TZA. This
variation of the spin-orbit leads to results quite close to those
of the TIJ parametrizations for TZA, in contrast to what is
obtained with SLy4Tself .
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TABLE III. Tensor coupling constants of T44 and three exten-
sions of T44 beyond the spherical symmetry constructed using the
freedom of choice given by an energy functional (see text). All
values are in MeV fm5. Coupling constants are given for all three
representations of the tensor part of the energy functional, Eqs. (11)
and (16). All coupling constants not shown are identical.

T44 T44 II T44 III T44 IV

CJ0
0 −20.994 −60 40 −160

CJ0
1 50.027 0 0 0

CJ1
0 60 60 60 60

CJ1
1 0 0 0 0

CJ2
0 46.806 0 120 −120

CJ2
1 62.433 0 0 0

CT
0 −83.403 −60 −120 0

CT
1 −31.216 0 0 0

CF
0 73.194 120 0 240

CF
1 −62.433 0 0 0

b14 52.187 60 120 0
b15 62.433 0 0 0
b16 −67.813 −60 0 −120
b17 62.433 0 0 0

7. The freedom of using an energy density functional

As discussed in Sec. III, the fits of tensor couplings have all
been performed assuming spherical symmetry. Two coupling
constants have been fixed in this way, either te and to or
CJ1

t , t = 0, 1. There remains the freedom to choose the CJ2
t

coefficients. It has been assumed, for the interactions TIJ,
that there are underlying two-body central, spin-orbit, and
tensor forces, cf. Sec. II D. In this case, there is a one-to-one
correspondence between the CJ1

t coefficients and parameters
t1, x1, t2, x2 of the central Skyrme force and parameters te and
to of the tensor force. With this choice, all coupling constants
of the energy functional, CJ2

t , t = 0, 1, or, alternatively, the
CT

t and CF
t coupling are also fixed. As explained in Sec. II D,

other choices can be made. To explore the impact of doing
so, we have constructed three variants of the parametrization
T44, listed in Table III. These consist of setting CJ2

0 (case II)
or CF

0 (case III) or CT
0 to zero (case IV). Each choice leads to

different values for the coupling constants of the pseudoscalar
and pseudotensor part of the tensor terms. We concentrate
here on the isoscalar part of the functional, because for the
purpose of our study isovector effects are negligible in a
N = Z nucleus.

The total deformation energy and the variation of tensor
contributions with respect to their value at sphericity are
plotted in Fig. 9 as a function of deformation. The total tensor
energies (bottom left), and the decomposition into vector and
pseudotensor contributions on the one hand (top), and into
symmetric and asymmetric Cartesian components on the other
hand (middle), are presented.

As expected from the smallness of the pseudotensor
contribution in Fig. 6, the choice II where the coefficient CJ2

0
is set to zero does not lead to any sizable difference with T44.
The results for the two other choices are less obvious. As can be

FIG. 9. (Color online) Deformation energy curve (lower right),
tensor energy (lower left), and its decomposition into symmetric,
asymmetric, vector, and pseudotensor parts for 56Ni as obtained with
the variants of T44 defined in Table III.

seen on the middle panels of Fig. 9, the Cartesian components
of the tensor energy are both sizable and one could expect
that setting one of the two coefficients of these terms to zero
will have a large effect. One can see in the middle panels of
Fig. 9 that both terms show significant variation with respect to
deformation. The decomposition is even significantly different
for T44 and choice II, although leading in both cases to the
same total energy. Self-consistency effects are such that for the
choices III (where Jq,µνJq,νµ has a coefficient equal to zero)
and IV (where Jq,µνJq,µν has a coefficient equal to zero),
the remaining contribution has a variation very similar to the
variation of the total tensor energy of T44.

The way a parametrization is extended beyond sphericity
has a small, but visible, effect on the variation of the total
energy with deformation. Setting the coefficient of Jq,µνJq,µν

equal to zero (option IV) significantly softens the energy curve
with an oblate shoulder nearly degenerate with the spherical
configuration. The extension of a parametrization beyond
sphericity is not a trivial choice and the procedure followed
for such extension should always be made transparent. The
small differences seen in a simple nucleus such as 56Ni could
become more dramatic in other nuclei.

D. Doubly-magic nuclei

1. 40Ca

The N = Z = 20 nucleus 40Ca is the heaviest known
doubly magic nucleus that exhibits oscillator shell closures.
The variation of the total energy, the change of the contribution
to the energy of the tensor terms, and the single-particle spectra
at spherical shape are plotted in Fig. 10. The configuration
of 40Ca is spin-saturated at sphericity, and the corresponding
tensor energy is due only to small effects as pairing and
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FIG. 10. (Color online) Same caption as Fig. 8 but for 40Ca. Note
that the scale of the total deformation energy differs from the one of
the tensor terms by a factor two.

nonidentity of the single-particle wave functions of spin-orbit
partners. Spin saturation disappears as soon as the nucleus
is deformed, but the filling of single-particle states remains
identical for protons and neutrons. Thus, the contribution
of the tensor terms to the total binding energy induced by
deformation is almost purely isoscalar and has the same sign
as the isoscalar coupling constant CJ

0 . The tensor term is close
to zero at sphericity and increases with deformation. As the
coupling constant CJ1

0 of the isoscalar vector part of the tensor
terms is the same for T26, T44, and T62, CJ

0 = 120 MeV fm5,
these interactions give nearly identical tensor contributions to
the total energy.

Despite this feature, the energy curves corresponding to
T26, T44, and T62 are not identical. One can see that the
softness of the energy curves increases with the strength of
the isovector part of the tensor interaction. Once again, these
changes result from the readjustment of the coupling constants
of all terms of the energy functional when varying CJ

0 and CJ
1

to a sample of data that includes both N = Z and N �= Z

nuclei. In fact, as for 56Ni discussed in Figs. 3 and 4, most
components of the energy show larger variations between
the parametrizations than the tensor energy. This example
illustrates particularly well the fact that the impact of the tensor

FIG. 11. (Color online) Same as Fig. 7 but for 40Ca.

terms on deformation energies cannot be foreseen from the
sole knowledge of the tensor coupling constants and of the
variation of the degree of spin saturation with deformation.
The energy of the shoulder that can be seen at a β2 value
around 0.5 is significantly lowered for the tensor interactions
T44 and T62. This shoulder can be related to the existence of
a superdeformed band in 40Ca [42,43].

The isoscalar tensor coupling is attractive for SLy5 + T
and SLy4T. The energy curve obtained with SLy5 + T is only
slightly different from the one calculated with SLy5 around
sphericity but presents a significant lowering of the energy
of the shoulder. The situation is quite different for SLy4T.
The energy curve varies in opposite direction from the tensor
energy and is stiffer than that obtained with SLy4. In particular,
the shoulder is obtained at a much larger excitation energy. This
clearly is a consequence of the reduced spin-orbit interaction,
as this feature of SLy4T is shared by SLy4Tself but not TZA.
The energy of the tensor term is larger for the parametrization
TZA than for SLy4T, although the tensor coefficients have the
same values in both cases. The increase (in absolute value) of
the tensor energy is compensated by changes in other terms
of the energy functional, in particular a slight reduction of the
spin-orbit term, in such a way that the energy curves obtained
with SLy4 and TZA are nearly undistinguishable.

The qualitatively different deformation dependence of the
tensor energy found for 56Ni and 40Ca is accompanied by
systematic differences in the single-particle levels given in
Fig. 11. As 40Ca is spin-saturated, the spectrum at sphericity
is nearly the same for all parametrizations, except SLy4T. The
contributions of the tensor terms are indeed small, although
not exactly zero. The largest differences between the results
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obtained with the TIJ parametrizations are those for T22 and
T26. They are related to the slight difference between their
coupling constants and, in particular, to the larger strength of
the spin-orbit of T26 compared to T22, cf. Article I. This effect
of the spin-orbit interaction on the single-particle levels is more
drastic when its strength is explicitly adjusted to spin-orbit
splittings in this mass region, as illustrated by the comparison
between SLy4T and SLy4.

As for 56Ni, Fig. 7, the tensor interaction affects the slope
of the single-particle levels shown in Fig. 11 as a function
of deformation. However, the changes in slopes for a given
parametrization are opposite for both nuclei. This is related to
the difference in the tensor contribution to the spin-orbit field: it
increases with deformation for 40Ca, while it decreases in 56Ni.
The change in slope at least partly compensates the differences
found at spherical shape when going to deformed ones. As a
consequence, the spectra around the Fermi energy at large
deformation are close for refitted parametrizations such as
T22, T26, and TZA. On the contrary, the differences between
the spectra for a perturbative interaction such as SLy5 + T and
the original one increases with deformation. Differences are
larger at all deformations for SLy4T compared to SLy4 and
TZA, as a consequence of a perturbative modification of the
tensor and the spin-orbit parametrizations.

FIG. 12. (Color online) Same caption as Fig. 8 but for 48Ca. Note
that the scale of the total deformation energy differs from the one of
the tensor terms by a factor two.

2. 48Ca

The Z = 20, N = 28 nucleus 48Ca is spin saturated in pro-
tons and unsaturated in neutrons at sphericity. The variations
of the tensor energy and of the total energy with deformation
are given in Fig. 12. The upper panels show that the four
TIJ parametrizations behave very differently in contrast to
the case of 40Ca. The tensor energy is nearly independent of
deformation for T44, whereas it decreases with deformation
for T26 and increases for T62. As confirmed by the behaviors
of the T = 0 and T = 1 components of the tensor energy
that are plotted in Fig. 13, the isoscalar contribution to the
tensor energy does not vary much for all TIJ parametrizations,
whereas the isovector contribution presents an extremum at
sphericity and goes rapidly to zero with deformation. One can
relate the behavior of the tensor energy to the fact that the
spin-current density is the largest for neutrons at sphericity
but nearly zero for protons. With increasing deformation the
proton spin-current density grows, whereas the neutron one
is reduced, as can be deduced from the decomposition of the
tensor terms into their nn, pp, and np contributions provided in
Fig. 13. Note for T62 that the nn and pp contributions are close
to zero at all deformations by construction, but this does not
result in the proportionality of T = 0 and T = 1 components
with respect to each other and to the np contribution. In general,
the nn and pp contributions to both T = 0 and T = 1 part
are nonzero and deformation dependent. Similarly, from the
(by construction) nearly vanishing np contribution found at
all deformations for T26 it also cannot be concluded that the
T = 0 and T = 1 components are proportional to each other
and the sum of the nn and pp contributions.

For 48Ca, the differences between the deformation energy
curves in Fig. 12 are clearly correlated with the variations in

FIG. 13. (Color online) Decomposition of the total contribution
of the tensor terms to the total energy (lower left) into its isoscalar
(T = 0) and isovector (T = 1) parts (upper and middle left) and into
its nn, pp, and np contributions (right panels) for 48Ca and for the
parametrizations T26, T44, and T62.
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the isovector tensor energy. The curve is softer for a repulsive
isovector contribution to the tensor energy, as it is for T26, and
stiffer for an attractive isovector contribution, as it is for T62.
This counterintuitive outcome is the consequence of the rapid
decrease of the isovector tensor energy from large values at
sphericity to very small values with deformation, cf. Fig. 13.
The results obtained with the interactions SLy4T and SLy5 + T
are plotted in the lower panels of Fig. 12. The isovector tensor
term has the same sign for these two interactions as for T62
leading also to stiffer energy curves. However, the magnitude
of the effect is smaller, the isovector coupling constants being
smaller.

Compared to all other interactions but T62, the SLy4T,
SLy4Tmin, and SLy4Tself functionals give a larger Z = 20
gap at the expense of a reduced Z = 28 one. This is the
consequence of the tightly adjusted spin-orbit splittings of the
1f levels in 40Ca, 48Ca, and 56Ni through an attractive tensor
interaction in conjunction with a reduced spin-orbit force. The
reduced spin-orbit interaction also switches the ordering of the
1d3/2+ and 2s1/2+ levels below the Z = 20 gap, at variance with
empirical data. Keeping the negative tensor coupling constants
of SLy4T, but allowing for the readjustment of the spin-orbit
strength in TZA, brings the level spacings back to values close
to the ones of the original SLy4 interaction.

3. 68Ni

It is usually assumed from its spectrum that 68Ni is doubly
magic [44–46]. The excitation energy of its first 2+ state
is, indeed, large and the B(E2; 0+

gs → 2+
1 ) value small [47].

However, while the Z = 28 proton shell closure is clearly
visible in the mass systematics along the N = 40 isotonic
chain [48], there is no pronounced discontinuity in the masses
of Ni isotopes when crossing N = 40 [48,49], which hints
at a more complex situation. An alternative explanation of
the properties of the first 2+

1 state in 68Ni is based on the
impossibility to construct the first 2+ state as a simple neutron
1p-1h excitation. Indeed, the odd-parity pf shell is completely
filled and the 1g9/2+ orbital empty [50,51] and at least a 2p-2h
excitation is needed to construct a positive-parity state. The
interpretation of 68Ni as a doubly magic nucleus has also been
questioned by shell model and QRPA calculations [52]. Let us
mention, finally, that the first excited state of 68Ni is a 0+ level
with a small B(E0) value to the ground state [53], pointing to
a possible shape coexistence with weak mixing.

The deformation energy curves and the variation of the
tensor energy with deformation are plotted in Fig. 14 for 68Ni.
With N = 40 and Z = 28, this nucleus is spin-saturated for
neutrons and spin-unsaturated for protons.

It is instructive to compare 68Ni and 48Ca (Fig. 12). Both
nuclei have, indeed, similar single-particle configurations. The
1f7/2− subshell is completely filled for protons in 68Ni and
for neutrons in 48Ca, and both nuclei are spin saturated for
the other type of nucleons. However, the comparison of both
nuclei in fact indicates large differences. The variance can
be related to two factors. First, the degeneracy of the shells
that makes the N = 40 gap for neutrons is much larger than
those that make the Z = 20 gap for protons. Second, the

FIG. 14. (Color online) Same caption as Fig. 8 but for 68Ni.

Z = 20 and N = 40 gaps have different sizes. The latter is
not large enough to suppress pairing correlations, such that
the spin-saturation is broken and the neutron spin-current
density is non-negligible at spherical shape, in particular
for the T26 parametrization predicting the smallest N = 40
gap. The main consequence is that for 68Ni all contributions
to the tensor energy at spherical shape are nonzero, unless
suppressed by their coupling constant, see Fig. 15. Also,
the np component is not just increasing with deformation
but fluctuating, most obviously for T62, where it is the only
sizable nonzero contribution. By contrast, the rapidly varying
nn and pp contributions for T26 fortuitously add up such
that this parametrization presents the smallest variation of
the tensor energy among the parametrizations with the same
isoscalar coupling constant. The behavior of the tensor energy
is reflected in the total energy curves in Fig. 14: it creates an
inflexion of the energy curve at β2 ≈ 0.4, which is sufficiently
large for T62 to create a secondary minimum.

The tensor energy varies less with deformation for both the
SLy5 and SLy5 + T interactions; therefore, the energy curves
obtained with both of these parametrizations and with SLy4
are very similar. The gap at N = 40 obtained with SLy4T is
larger, having the size of a major shell closure. It results in a
very stiff energy curve. Such a behavior is not directly related
to the variation of the tensor energy with deformation, but
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FIG. 15. (Color online) Same caption as Fig. 13 but for 68Ni.

to the small spin-orbit strength, as shown by comparing the
results of SLy4Tself and TZA, just like for 40Ca.

4. 78Ni

Although it has been observed for the first time more than a
decade ago [54], not much is yet known about the neutron-rich
78Ni besides its existence and its β-decay half-life [55]. The
relatively long half-life and the systematics of the separation
energies to and from N = 50 isotones down to Z = 30
suggests that the N = 50 shell closure persists for 78Ni [56].
In such a case, 78Ni is spin nonsaturated both in protons at
Z = 28 and neutrons at N = 50. The spin-currents from the
unsaturated proton 1g9/2+ and neutron 1f7/2− levels point into
the same direction. Their degeneracies differ by only two, and
their nodeless radial wave functions are sufficiently similar that
their contributions to the isovector spin-current density nearly
cancel. This suggests that the isovector tensor terms cannot
play a decisive role in 78Ni, in spite of this nucleus’ large
isospin asymmetry. The isovector decomposition of the tensor
terms for T26, T44, and T62 shown in Fig. 16 indeed confirms
that the T = 1 contribution is small for all deformations.
The T = 0 contribution dominates and is nearly the same
for all three parametrizations such that the different relative
weight of the nn, np, and pp contributions does not play
a significant role. One can, therefore, expect that its energy
curves depend on the tensor parametrization in a way similar
to that of 56Ni. Figure 17 indicates that this is indeed the case
for all the interactions that we have studied. In particular, all
interactions predict the behavior of a doubly magic nucleus.
The TIJ parametrizations with nonzero CJ

0 values lead to softer
energy curves than T22, SLy4, and SLy5, with an inflexion
point around β2 = 0.3, whereas SLy5 + T gives a much stiffer
deformation energy curve. The difference between the total
deformation energy curves from T26, T44, and T62 is even
smaller for 78Ni than what was found for 56Ni. This suggests

FIG. 16. (Color online) Same caption as Fig. 13 but for 78Ni.

that the readjustment and self-consistency effects at its origin
for 56Ni are compensated by the asymmetry in 78Ni just in
such a way that the net isospin dependence vanishes for this
nucleus.

The parametrizations SLy4T and SLy4Tself give again
results that are qualitatively different from those of the others:
they lead to a very pronounced deformed minimum at an
excitation energy around 1 MeV, although the spherical gaps
at N = 50 and Z = 28 are not smaller than those from T26,
for example. This is again a consequence of the reduced
contribution of the spin-orbit interaction to the deformation
energy for these interactions.

5. 100Sn

The proton-rich and probably heaviest bound N = Z

doubly magic nucleus 100Sn has been observed more than
a decade ago [57,58]. Up to now, the only spectroscopic
information in the direct vicinity of the nucleus is a 172-keV
γ ray observed in 101Sn [59]. It has been tentatively interpreted
as corresponding to the transition between an excited 7/2+
level to the 5/2+ ground state although the order of these
two levels is not firmly established. In any case, the distance
between these two levels is much lower than the energy
difference between the spherical 1g7/2+ and 2d5/2+ orbitals
predicted by all Skyrme parametrizations plotted in Fig. 18.
The tensor interaction has some effect on this spacing: it
decreases from more than 1 MeV for T22 down to 600 keV
for T26. Of course, the comparison between the energy levels
in 101Sn and the single-particle energies supposes that both
are pure single-particle configurations that is far from being
established. Similar discrepancies with other parametrizations
of the self-consistent mean field were reported in Ref. [59].
From this, however, one cannot safely draw the conclusion
that T26 is the most realistic among the parametrizations
studied here. The distance between the 1g7/2+ and 2d5/2+
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FIG. 17. (Color online) Same caption as Fig. 8 but for 78Ni.

levels depends on the balance between the distance of the
centroids of the 1g and 2d levels as well as on their respective
spin-orbit splittings, none of which can be expected to be
described well throughout the chart of nuclei for any of the
current parametrizations of the Skyrme EDF, see Article I and
Ref. [12].

The variation of the deformation energy and of the energy
contribution of the tensor terms with quadrupole deformation
for 100Sn are presented in Fig. 18. For all parametrizations,
the results are very similar to those obtained for 56Ni, Fig. 8,
and 78Ni, Fig. 17. The main difference is that the structure
appearing at moderate deformation in the total deformation
energy surface is less pronounced and located at higher
excitation energies.

6. 132Sn and 208Pb

The results obtained for the two heavy doubly magic
nuclei 132Sn and 208Pb are presented in Figs. 19 and 20. All
neutron single-particle spectra exhibit the usual problem of
all mean-field interactions that the 1h11/2 level in 132Sn is
not intruding the gds shell [2], as suggested by empirical data.
The overall behavior of the energy curves below 8 MeV is very

FIG. 18. (Color online) Same caption as Fig. 8 but for 100Sn.

similar for most interactions. The stiffness of the deformation
energy is marginally modified by the tensor interaction and
much less than one might have expected from the variation
of the single-particle spectra. The TIJ interactions with CJ

0
coefficients different from zero give slightly softer deformation
energy curves than T22 or SLy4. However, the dependence of
the relative tensor energy on the value of the isovector coupling
constant CJ1

1 is very small for all deformations for the same
reason as for 78Ni, in spite of the large asymmetry of both
nuclei. The reduction of the spin-orbit strength for SLy4T
and SLy4Tself leads to a prolate shoulder at about 10 MeV
excitation energy. As already found for lighter nuclei, the
variation of the tensor energy as a function of deformation
can be large, up to 8 MeV in 132Sn and 4 MeV in 208Pb for the
rather small range of deformations covered in Figs. 19 and 20.
This significant variation is, to a large extent, absorbed by the
rearrangement of the other terms of the Skyrme functional,
and it does not affect significantly the total energy curves. The
same mechanism that suppresses the isovector tensor terms
for 78Ni is also at play in 132Sn and 208Pb; hence, the variation
of the tensor and total energy with deformation of both nuclei
is mainly correlated with the isoscalar tensor coupling con-
stant CJ

0 .
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FIG. 19. (Color online) Same caption as Fig. 8 but for 132Sn.

E. Selected Zr isotopes

The Zr, Z = 40, isotopic chain exhibits a rich spectroscopy,
the neutron-deficient and neutron-rich isotopes being very
deformed and the stable ones being spherical [60]. Self-
consistent mean-field methods experience large difficulties
to reproduce these very rapid variations of shapes in detail
[21,61,62].

1. 90Zr

The deformation energy and variation of the tensor con-
tribution with quadrupole deformation for 90Zr are given in
Fig. 21. There is a very close similarity between the results
obtained for 90Zr and those for 48Ca; see Fig. 12. In both cases,
protons are spin-saturated at sphericity, whereas neutrons are
nonsaturated as they fully occupy the lowest shell of a pair of
spin-orbit partners.

2. 80Zr

The situation is different for the N = Z = 40 isotope 80Zr.
In spite of its double subshell closure, the sparse available
spectroscopic data suggest that 80Zr has a large quadrupole

FIG. 20. (Color online) Same caption as Fig. 8 but for 208Pb.

deformation with a β2 value around 0.4. A rotational band
built on the ground state has been observed up to a spin of
10 h̄ [63–65], although it appears to be slightly distorted at low
spin. The large deformation of states in 80Zr is also supported
by the observation of strongly coupled rotational bands built
on several Nilsson states in adjacent 79Y [66] and 81Zr [67]. In
the absence of information on the transition matrix elements
at the bottom of the band in 80Zr; however, it is not ruled out
that spherical and deformed configurations might coexist in
this nucleus and are strongly mixed in the ground state.

The deformation energy curves can be seen in Fig. 22.
Protons and neutrons are spin-saturated at sphericity. As a
consequence, the predicted properties of this nucleus present
similarities with those of 40Ca: the energy of the tensor terms
obtained using the T26, T44, and T62 interactions is very
similar as only the isoscalar part of the tensor terms gives a
sizable contribution. The total deformation energy, however,
does exhibit a weak dependence on the value of CJ1

1 . Also,
comparing T22 and the other TIJ interactions, the variation of
the tensor terms with deformation is in opposite direction to
that of the total energy. Both results illustrate the importance
of the changes induced in all terms of the functional by the
fitting procedure.
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FIG. 21. (Color online) Same caption as Fig. 8 but for 90Zr.

The situation is different for interactions obtained by a
perturbative procedure. In this case, the addition of a tensor
term to an existing parametrization leads to more drastic
changes. This is illustrated by the comparison between the
energy curves obtained with SLy5 and SLy5 + T. For the
latter, the deformed minimum is pulled down and becomes
degenerate with the spherical configuration. The situation is
opposite for SLy4 and SLy4T. The large gap obtained with
SLy4T for Z = N = 40 has a dramatic effect on the energy
curve, which shows a sharp spherical minimum. The large
reduction of the spin-orbit strength is making this nucleus
doubly magic and pushes the deformed minimum to a very
high energy, although the tensor interaction for SLy4T is more
attractive for deformed configurations. This effect is corrected
for by TZA. However, none of the parametrizations gives a
deformed ground state, a deficiency shared by many modern
Skyrme interactions [21].

The decomposition of the energy into its central and
spin-orbit + tensor components is given in Fig. 23 for the
interactions T22, T24, and T26, and Fig. 24 for SLy4,
SLy4Tmin, SLy5, and SLy5 + T. They confirm the result
found for 56Ni, the topography of the energy curves result
from subtle cancellations between the bulk contributions and
the terms containing gradients. Again, the comparison of

FIG. 22. (Color online) Same caption as Fig. 8 but for 80Zr.

different parametrizations indicates that the readjustment of
the parameters counteracts the self-consistency effects. The
results obtained using variational interactions are qualitatively
very similar. On the contrary, all components of the energy
calculated with perturbative interactions differ significantly
from those of the original interaction. A major qualitative
difference with 56Ni is that the bulk terms give coexisting
near-degenerate spherical and deformed minima in 80Zr and
that the compensation between the gradient, spin-orbit, and
tensor terms can tip the balance in one or the other direction.
A weak spin-orbit strength, such as for the SLy4T interaction,
now has the effect of favoring the spherical minimum much
too strongly, pushing the deformed minimum very high in
energy.

3. 96Zr

The 96Zr isotope combines spherical subshell closures at
N = 56 and Z = 40. Its low-energy spectrum exhibits several
unusual features. The systematics of masses in its immediate
vicinity, a first 2+ level with a large excitation energy and
one of the smallest B(E2) values known in heavy nuclei are
all consistent with the expectation that 96Zr is a rigid spherical
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FIG. 23. (Color online) Same caption as Fig. 3 but for 80Zr.

nucleus. Other observables indicate the fragility of both shells.
The B(E3) value of the 3−

1 → 0+
1 transition is among the

strongest known for a vibrational nucleus [68,69]; the charge
radius is enhanced compared to the droplet-model trend [70],
thereby pointing to substantial ground-state correlations; and
the g factors of the 2+

1 and 3−
1 hint at a complex superposition of

several neutron and proton excitations across subshell closures
[71]. It also shares with 90Zr and 98Zr the rare feature to have
a low-lying 0+ state as a first excited state [72]. As for many
of the light doubly magic nuclei studied above, this 0+ state is
interpreted as a deformed state resulting from the simultaneous
2p-2h excitation of protons and neutrons across the respective
gaps [73].

The single-particle spectra at spherical shape and the energy
curves of 96Zr are presented in Fig. 25. As in 90Zr, the neutrons

FIG. 24. (Color online) Same caption as Fig. 4 but for 80Zr, Z =
N = 40.

are spin unsaturated and the protons spin saturated. However,
in this case, two levels contribute to the neutron spin-current
density at sphericity, 1g9/2+ and 2d5/2+ ; hence, this density is
larger than in 90Zr. Thanks to that, the differences between the
interactions are amplified. In particular, the contribution from
the isovector tensor terms might become very large, as can be
seen in Fig. 26, and drastically change the distance and even
ordering of the single-particle levels; see Fig. 25. Compared to
T22, T26, and T44, the parametrization T62 gives much larger
N = 56 and Z = 40 gaps and also pushes up the 2d3/2+ and
1g7/2+ neutron levels, both located above the Fermi energy.
The SLy5 + T interaction has the same tendency but in a less
pronounced way. At least one of the tensor coupling constants
is negative for both interactions.
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FIG. 25. (Color online) Same caption as Fig. 8 but for 96Zr.

FIG. 26. (Color online) Same caption as Fig. 13 but for 96Zr.

The deformed minima obtained with the T26 and SLy5
interactions are at variance with data, as is the very stiff energy
surface obtained with T62.

4. 100Zr

A large set of experimental data (charge radii [70],
rotational bands [74], and B(E2) values [75]) demonstrate that
100Zr is located in a region of deformed nuclei. An excited band
built on a 0+ state coexisting with the ground-state band [74]
and the large E0 transition strength between the 0+ states [76]
indicate the coexistence of shapes with different deformations,
the state with the largest deformation being the ground
state.

The single-particle spectra at spherical shape, the defor-
mation energy curve and the variation of the tensor energy
are plotted against quadrupole deformation in Fig. 27. The
overall behavior of the tensor energy shows many similarities
with 96Zr. The results obtained with the T44 and T62
parametrizations indicate, however, a larger contribution from
the isovector tensor terms. The four additional neutrons shift

FIG. 27. (Color online) Same caption as Fig. 8 but for 100Zr,
Z = 40, N = 60.
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the neutron Fermi energy into a region of large level density
above the N = 56 subshell closure. The positions of the 2d3/2+

and 2g7/2+ are very much dependent on the sign and size of
the isovector coupling constant CJ

1 . For a positive value as
in T26, the 2d3/2+ level is close to the Fermi level and is
occupied in such a way that it partially cancels the contribution
from the 2d5/2+ orbital. The isovector tensor terms are in
this case strongly reduced. In contrast, for a negative CJ

1
coefficient as in T62, the 2d3/2+ level is pushed up and crosses
the 1h11/2− level, increasing the neutron spin-current density.
Results obtained with the SLy5 + T interaction, for which CJ

1
is also negative, are similar, although less pronounced. For
even larger negative values of the tensor coupling constants,
this feedback mechanism will ultimately generate an abnormal
level ordering for certain midshell nuclei, cf. Appendix B of
Article I. For SLy4T and SLy4Tself , this feedback mechanism
is suppressed by the reduced spin-orbit interaction, whereas
for TZA, it is present.

Most total deformation energy curves in Fig. 27 exhibit
spherical, prolate, and oblate minima. The inclusion of beyond
mean-field correlations should favor the prolate minima and
create a 0+ excitation exhibiting some amount of configuration
mixing. Such results are consistent with experiment. The
spherical minimum is too much below the deformed one to
expect that additional correlations from the projection of J = 0
states will make 100Zr deformed in its ground state. For T62,
the deformation energy curve looks like that of a doubly magic
nucleus. For SLy4T and SLy4Tself , it is the reduced spin-orbit
interaction that reinforces the proton Z = 40 shell closure. The
prolate minimum becomes a shoulder around 5 MeV, leading
to the coexistence of spherical and oblate minima.

5. 110Zr

The only experimental information available about the very
neutron-rich 110Zr is that it is a bound nucleus [77]. It presents
the particularity to combine two spin-saturated oscillator
shells, Z = 40 and N = 70. The corresponding gaps are still
large for parametrizations like SLy4T and SLy4Tself with a
reduced spin-orbit strength and 110Zr behaves like a doubly
magic nucleus, c.f. Fig. 28. For all other parametrizations,
but T62, weak subshell closures remain at both these nucleon
numbers. The gaps are too small to enforce a rigid spherical
shape but sufficient to prevent the existence of a clear-cut
unique deformed minimum to describe the ground state.
Instead, all interactions but SLy4T, SLy4Tself , and T62 predict
a complicated pattern of three coexisting spherical, prolate, and
oblate structures. For T62, there is no prolate minimum, and the
spherical configuration is favored because of the semimagic
character of this nucleus with a large Z = 40 shell closure. For
SLy4T and SLy4Tself , there is a single, very sharp, spherical
minimum typical of a doubly magic character.

F. Heavy semimagic nuclei

Let us conclude our survey with two selected heavy
semimagic nuclei.

FIG. 28. (Color online) Same caption as Fig. 8 but for 110Zr,
Z = 40, N = 70.

1. 120Sn

The stable semimagic 120Sn is the lightest of heavy tin
isotopes for which no coexisting deformed rotational band at
low excitation energy has been observed [78]. The neutron
number N = 70 of 120Sn corresponds to a magic number
for neutrons in a pure harmonic oscillator picture. This
simple picture is destroyed by the spin-orbit interaction that
pushes the 1h11/2− across the N = 70 gap, creating a shell
closure at N = 82. In fact, data suggest that this oscillator
shell does not survive even as a subshell closure, as the
empirical 11/2− intruder level is below the 3/2+ level and
degenerate with the 1/2+ state in 132Sn. As mentioned, it is
a well-known problem of virtually all energy functionals that
the 1h11/2− intruder level is predicted to lie slightly above
the gds shell [2]. This deficiency was related in Fig. 17 of
Article I to a too-high position of the centroid of the 1h

levels.
The energy surfaces obtained with the TIJ interactions are

presented on the left-hand side of Fig. 29, and the Nilsson
diagrams for four selected parametrizations are presented in
Fig. 30. The neutron contribution to the tensor energy is
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FIG. 29. (Color online) Same caption as Fig. 8 but for 120Sn,
Z = 50, N = 70. All panels share the same energy scale.

small at sphericity, as the neutrons are predicted to be spin
saturated (see Fig. 30) at variance with experiment. As soon as
deformation sets in, the tensor energy increases for the four TIJ
parametrizations. However, the total energy curves are much
closer than one would expect from the difference between the
tensor energies. The most significant difference is obtained for
deformations between the spherical minimum and the prolate
shoulder.

The energy curves calculated with the SLy4, SLy5, and
SLy5 + T interactions are nearly identical, except for a small
lowering of the prolate shoulder for the latter.

The situation is quite different for SLy4T. As a consequence
of its weak spin-orbit strength, the neutron intruder level is
halfway in the gap between the major shells. The energy gap
at N = 70 remains very large and significantly reduces the
neutron level density around the Fermi energy for deformations
up to β2 values around 0.1. The tensor energy decreases with
deformation but not sufficiently to compensate the effect of
the decrease of the spin-orbit strength. The net effect on the
energy curve is that it is much stiffer than with the original
SLy4 parameters, artificially making 120Sn a doubly magic
nucleus similar to 132Sn.

FIG. 30. (Color online) Proton and neutron Nilsson diagrams for
120Sn obtained with the parametrizations as indicated. Solid lines
denote levels of positive parity, dotted lines levels of negative parity,
and the red dashed lines denote the Fermi energy.

2. 186Pb

The heavy, neutron-deficient N = 104, Z = 82 Pb isotope,
186Pb, exhibits a triple shape coexistence of spherical, prolate,
and oblate shapes, with the unique feature that its two lowest
excited levels are 0+ states [79,80]. The deformation energy
curves obtained with all interactions tested here are plotted in
Fig. 31. They are compatible with the experimental data and
present a spherical minimum and excited oblate, prolate, and
often also superdeformed minima, in most cases all separated
by small barriers.

The tensor energy and the impact of the tensor terms
on the total energy are similar to those found for 120Sn.
The differences between the TIJ interactions are the largest
between the minima or shoulders; SLy5 + T slightly moves
the excitation energies of excited minima compared to SLy5,
and the deformation energy curves from SLy4T and SLy4Tself

are stiffer than the others, at least for prolate deformations. The
reduced spin-orbit strength for SLy4T and SLy4Tself pulls the
neutron 1i13/2+ intruder back toward the N = 126 gap. This
is inconsistent with the existence of a very low-lying isomeric
13/2+ states located at a few tens of keV excitation energy
in surrounding odd-A Pb isotopes. α-decay hindrance factors
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FIG. 31. (Color online) Same caption as Fig. 10 but for 186Pb,
Z = 82, N = 104.

suggest indeed that this state is well described by a neutron in
the 1i13/2+ level coupled to a spherical core [81].

Nuclei in this mass region are less affected by the tensor
terms, as hinted already in Article I by the analysis of the spin-
current density at spherical shape in the Pb isotopic chain. Still,
the tensor terms modify the balance between the excitation
energy of the coexisting minima. As the relative position of
the minima is sensitive to all terms of the EDF, this quantity
cannot be used to safely validate the tensor coupling constants.

V. SUMMARY AND CONCLUSIONS

We have studied the impact of tensor terms in the Skyrme
energy density functional on deformation properties of magic
and semimagic nuclei. This work is a continuation of a
previous study limited to spherical symmetry, as published
in Article I [6]. The study has been focused on a representative
sample of parametrizations introduced in Article I, which cov-
ers a wide range of values for the isoscalar and isovector tensor
coupling constants and allows us to disentangle their respective
role. These parametrizations are adjusted with a fit protocol
very similar to that of the successful SLyx parametrizations

[13,14]. We also considered two other recent families of energy
functionals also based on the SLyx ones but constructed
following very different strategies. For the parametrization
SLy5 + T [5] a tensor force was perturbatively added to SLy5
without any readjustment of the other parameters. For SLy4T
[8], the tensor and spin-orbit coupling constants were fixed
without any readjustment of the other parameters of SLy4.
The related parametrizations SLy4Tmin [8] and SLy4Tself and
TZA introduced here allow us to disentangle the origin of the
different results obtained with SLy4T and the TIJs as being
due to the perturbative fit, the change in the spin-orbit strength,
or the choice of tensor coupling constants.

A first result that we have obtained concerns the order of
magnitude of the different components of the tensor term.
In spherical coordinates, it can be decomposed in vector and
pseudotensor contributions. For all studied parametrizations
for which the coefficients of both terms have the same order
of magnitude, the pseudotensor contribution is at least one
order of magnitude lower than the vector one. This justifies the
common practice of neglecting the pseudovector contribution
to the energy.

The shell effects induced by the tensor interaction fluctuate
as a function of the filling of single-particle orbits. This effect
has motivated the introduction of the tensor force to explain
the evolution of the shell structure of spherical nuclei along
isotopic lines. Inevitably, it leads also to a pattern for the size
and deformation dependence of the contribution of the tensor
terms to the total energy that depends on the fillings of orbitals:

(i) For doubly spin-saturated nuclei at sphericity, such as
40Ca and 80Zr, the tensor energy is close to zero at
spherical shape and increases in absolute value with
deformation.

(ii) For doubly spin-unsaturated doubly magic nuclei such
as 56Ni, 78Ni, 100Sn, 132Sn, and 208Pb, the absolute value
of the tensor energy is the largest at sphericity and
decreases with deformation.

(iii) For doubly spin-unsaturated doubly magic N = Z nu-
clei like 56Ni and 100Sn, the tensor energy is obviously
dominated by the isoscalar part of the tensor interaction.
The same conclusion holds, however, also for the N �=
Z nuclei 78Ni, 132Sn, and 208Pb, in spite of their large
asymmetry N − Z. The reason for that is that the proton
and neutron spin-currents densities are very similar
in size, sign, and spatial distribution in these nuclei;
hence, they nearly cancel each others’ contribution to
the isovector spin-current at all deformations.

(iv) The isovector tensor contribution to the energy plays
a significant role only for doubly magic nuclei that
combine a spin-saturated configuration for one nucleon
species with a spin-unsaturated configuration for the
other, such as in 48Ca, 68Ni, and 90Zr.

(v) The behavior of nuclei without large shell or subshell
closures for at least one nucleon species does not
follow simple rules. These nuclei are most sensitive
to the values of the tensor coupling constants, at least
within the sample of nuclei studied here. In nuclei
with a large density of single-particle levels around
the Fermi surface, there are highly nonlinear feedback
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effects at play. For large absolute values of their
coupling constants, the tensor terms reduce or amplify
themselves through the reordering of levels around the
Fermi energy, as exemplified by 96Zr and 100Zr.

Self-consistency is implemented at two different levels in the
method that we have used: in the fitting procedure of the
interaction and in the solution of the mean-field equations.

(i) The perturbative addition of only a tensor term, like for
SLy5 + T, to an existing parametrization will modify
all contributions to the mean fields and the energy.

(ii) The self-consistency of the mean-field induces a
rearrangement of the single-particle wave functions
and consequently of all densities affecting at the end
all observables. This effect is exemplified by the
comparison between the results obtained with SLy5 and
SLy5 + T, which share all coupling constants except
those of the tensor terms.

(iii) Using a protocol mainly based on infinite nuclear
matter properties, binding energies and charge radii,
as the Saclay-Lyon protocol [13,14], the changes in
the coupling constants due to the self-consistency of
fits tend to counteract the self-consistency in the mean
field. This is exemplified by the comparison between
the results obtained with SLy4, SLy5, and SLy5 + T.
For most nuclei studied here and for most quantities
not directly affected by the tensor terms, the differences
between the predictions of the first two are on a much
smaller scale than the differences between the latter
two. A perturbative modification of a well-adjusted
parametrization might spoil its predictive power in
unexpected ways. Our results confirm the suspicion of
the authors of the perturbatively constructed SLy5 + T
[5], who indeed intend their interaction as a tool for
explorative studies only and state that “an ambitious
refitting program [...] should be [...] undertaken” for
more detailed studies.

(iv) Self-consistency of the fits and/or the calculations
has the consequence that the total deformation energy
obtained with different interactions varies in most cases
on a much smaller scale than the tensor contributions.
In some cases such as 80Zr, they even might go into
opposite directions.

(v) The tensor and spin-orbit contributions to the total en-
ergy and to the spin-orbit fields are tightly interwoven.
Constraining both too tightly in a small region of the
nuclear chart might be misleading when aiming at a
universal functional. This is exemplified by SLy4T with
its spin-orbit and tensor coupling constants fitted very
carefully to suitably chosen spin-orbit splittings in 40Ca,
48Ca, and 56Ni. The failure of SLy4T to extrapolate well
clearly points to missing physics, either in the form of
missing terms in the functional or missing correlations.

(vi) The strong reduction of the spin-orbit strength for
SLy4T improves the description of spin-orbit splittings
in light nuclei but amplifies the problems from the

wrong positioning of centroids. Also, the spin-orbit
splittings in heavy nuclei are much too small. The strong
reduction of the spin-orbit strength to about 2/3its
original value is specific to the SLy4-based interaction
constructed in Ref. [8]. For their SkP and SkO based
fits, the reduction is much more moderate.

The size and deformation dependence of the tensor energy is
correlated with the impact of the tensor terms on single-particle
spectra. In Article I, we analyzed how the tensor terms affect
the position and relative distance of single-particle energies
for spherical shapes. Concerning the dependence of Nilsson
diagrams on the tensor force, the following can be stated:

(i) Tensor terms modify the slope of the levels in the
Nilsson diagram. For the magic nuclei studied here
this happens in particular around sphericity, where the
tensor contribution to the spin-orbit field Wq,µν often
changes rapidly with deformation.

(ii) When comparing interactions with different values of
the tensor coupling constants that are otherwise com-
pletely refitted, the change in slope compensates at large
deformations to a large extent the differences between
single-particle spectra found at spherical shape. For
those interactions, the deformed single-particle spectra
around the Fermi energy are often nearly identical in
spite of the different tensor interactions. In such fit
protocol, the coupling constants of the tensor terms
control the balance between spherical and deformed
shell gaps.

(iii) In perturbative fits, in particular those where more than
one term is rescaled, deformed shell structure is affected
as well.

It can be expected that these finding are to a large extent
independent of remaining deficiencies of the central and spin-
orbit interactions and will be of great value for the construction
of future, improved energy functionals. We will address the
question of how the surface and surface symmetry energy
coefficients of the interactions change as a function of the
coupling constants of the tensor terms and how this correlates
with energy at large deformation in future work. A study of the
“time-odd terms” in the energy functional that originate from
a tensor force is underway as well. A point of special interest
will be the analysis of potential finite-size instabilities using
the technique of Refs. [82,83].
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