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Three-nucleon scattering equations with irreducible three-nucleon force are solved in momentum-space. The
Coulomb interaction between the two protons is included using the method of screening and renormalization. The
need for the renormalization of the scattering amplitudes is demonstrated numerically. The Coulomb and Urbana
IX three-nucleon force effects on the observables of elastic proton-deuteron scattering and breakup are studied.
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I. INTRODUCTION

Nucleon-deuteron scattering has been extensively studied
in the past with the aim of testing various nuclear interaction
models, that is, nucleon-nucleon (NN ) potentials and also
three-nucleon (3N ) forces. Though the theoretical description
of neutron-deuteron (nd) scattering is considerably simpler
and a number of highly sophisticated calculations [1–5] exist
with realistic NN potentials and 3N forces, the experimental
data are much more abundant and precise for proton-deuteron
(pd) reactions. In that case there are only few realistic calcu-
lations above the deuteron breakup threshold. Configuration-
space treatment based on the Kohn variational principle [6,7]
uses the local Argonne V18 (AV18) NN potential [8] and the
irreducible Urbana IX (UIX) 3N force [9] but is limited so
far to elastic scattering at energies below 50 MeV in the
center-of-mass (c.m.) system; only very recent work [10]
solving integral Faddeev equations in configuration space
provides pd breakup results at 13-MeV proton laboratory
energy. In contrast, the momentum-space treatment [11,12]
based on the screening and renormalization method [13,14]
has lead to pd elastic scattering and breakup results for
energies up to pion-production threshold; this method can be
used with nonlocal NN potentials as well, but so far only an
effective 3N force due to the virtual excitation of a nucleon to a
� isobar [3] has been included. The aim of the present work
is to overcome that limitation, that is, to extend the technique
of Refs. [11,12] to include also an irreducible 3N force.

In Sec. II we derive three-particle scattering equations
including the three-body force. In Sec. III we discuss the
inclusion of the Coulomb interaction using the method of
screening and renormalization and demonstrate its validity
numerically. Section IV presents some characteristic effects
of Coulomb and UIX 3N force in pd elastic scattering and
breakup. Section V gives our summary.

II. THREE-PARTICLE SCATTERING EQUATIONS
INCLUDING IRREDUCIBLE THREE-BODY FORCE

For the description of three-particle scattering interacting
via three pairwise potentials vα , α = 1, 2, 3, we used Alt,
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Grassberger, and Sandhas (AGS) equations [15]. In this section
we give a short derivation of the AGS equations including a
three-body force,

V(3) =
3∑

α=1

uα, (1)

which is decomposed into three terms uα that are symmetric
in the exchange of particles β �= α and γ �= α and can
be transformed into one another by a cyclic permutation;
these properties will be used later for the symmetrization of
equations. The full resolvent is

G =
(

E + i0 − H0 −
∑

γ

vγ −
∑

γ

uγ

)−1

, (2a)

G = Gβ + Gβ

∑
γ

(δ̄βγ vγ + uγ )G, (2b)

where δ̄βα = 1 − δβα , E is the available three-particle energy,
and H0 the three-particle kinetic energy operator, both in the
c.m. system, and the channel resolvents are

Gγ = (E + i0 − H0 − vγ )−1, (3a)

Gγ = G0 + G0Tγ G0. (3b)

Here G0 = (E + i0 − H0)−1 is the free resolvent and

Tγ = vγ + vγ G0Tγ (4)

the two-particle transition matrix.
The multichannel three-particle transition operators Uβα are

defined by the decomposition of the full resolvent into channel
resolvents according to

G = δβαGα + GβUβαGα. (5)

Inserting Eq. (5) with β = γ into Eq. (2b), comparing it back to
Eq. (5), and taking into account Eqs. (3a) and (4), we obtain an
integral equation for the multichannel three-particle transition
operators,

Uβα = δ̄βαG−1
0 + uα +

∑
γ

δ̄βγ Tγ G0Uγα

+
∑

γ

uγ G0(1 + Tγ G0)Uγα. (6)
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The on-shell matrix elements 〈φβ |Uβα|φα〉 are amplitudes (up
to a factor) for elastic (β = α), rearrangement (0 �= β �= α)
scattering, and breakup (β = 0). The channel states |φα〉 are the
eigenstates of the corresponding channel Hamiltonian Hα =
H0 + vα with the energy eigenvalue E, and |φ0〉 describes the
free relative motion of three particles; the dependence on the
Jacobi momenta and discrete quantum numbers is suppressed
in our notation.

For nucleon-deuteron scattering it is convenient to consider
nucleons as identical particles in the isospin formalism
where the symmetrized amplitudes are

∑
α〈φβ |Uβα|φα〉. The

symmetrized transition operator for elastic scattering is the
solution of the symmetrized AGS integral equation

U = PG−1
0 + (1 + P )u + PT G0U

+ (1 + P )uG0(1 + T G0)U. (7a)

We omit the spectator index that is not needed anymore.
The basis states are antisymmetric in the pair only, the full
antisymmetry is ensured by P = P12P23 + P13P23, where Pαβ

is the permutation operator of particles α and β. The breakup
operator is then obtained from the quadrature

U0 = (1 + P )
[
G−1

0 + u + T G0U + uG0(1 + T G0)U
]
.

(7b)

For the practical solution it is convenient to introduce the
transition operator

X = G−1
0 + u + T G0U + uG0(1 + T G0)U (8)

such that

U = [P + uG0(1 + P )]X, (9a)

U0 = (1 + P )X. (9b)

Operator X is obtained from the integral equation

X = G−1
0 + T G0PX + (1 + T G0)uG0(1 + P )X. (10)

The practical advantage of this equation is that all terms have
the same structure with respect to the relative momentum
of the interacting pair in the final state; this is convenient
for the interpolation that is needed to calculate PX at each
iteration step. The handling of the 3N force is discussed in the
Appendix A. Otherwise, the numerical technique for solving
Eq. (10) in momentum-space partial-wave representation
and calculating on-shell elements in Eqs. (9) is taken over
from Refs. [16,17]. There, two equally reliable interpolation
methods for the two-nucleon transition matrices were used.
However, in the presence of the irreducible 3N force we use
the one based on splines that is more convenient than the one
based on the Chebyshev expansion.

Finally, we note that in Refs. [1,2] nucleon-deuteron
scattering equations of similar form were solved. The relation
between our transition operator X and the operator T of
Refs. [1,2], not to be confused with the two-nucleon transition
matrix T in the equations above, reads X = G−1

0 + T .

III. INCLUSION OF THE COULOMB FORCE

To include the Coulomb interaction we use the method of
screening and renormalization [13,14] as described in detail

in Refs. [11,18,19] for pairwise interactions. The screened
Coulomb potential wγR , that in the configuration-space
representation has the form wγR(r) = (αe/r) exp[−(r/R)n],
αe ≈ 1/137 being the fine structure constant, is added to the
hadronic proton-proton (pp) potential vγ . The pp transition
matrix (4) is calculated with the full interaction vγ + wγR

and used to solve the AGS equations, yielding multichannel
transition operators U

(R)
βα [U (R) and U

(R)
0 in the symmetrized

version]; their dependence on the Coulomb screening radius
R is indicated. Following the strategy of Refs. [11,18,19] it
is straightforward to decompose the amplitudes into long-
range and Coulomb-distorted short-range parts also when
the 3N force is present. The only difference is that the
integral equations for the reduced short-range operators Ũ

(R)
βα

of Refs. [11,18,19] contain additional three-body force terms,
that is,

Ũ
(R)
βα = δ̄βα

(
G−1

αR + vα

) + uα + δβαWαR

+
∑

γ

(δ̄βγ vγ + uγ + δβγWβR)GγRŨ (R)
γα , (11a)

Ũ
(R)
0α = G−1

αR + vα + uα +
∑

γ

(vγ + uγ )GγRŨ (R)
γα , (11b)

where GαR and WαR are defined in Refs. [11,18,19]. Never-
theless, the relation of Ũ

(R)
βα to the full AGS operators U

(R)
βα

as well as the screened Coulomb contributions diverging in
the R → ∞ limit remain the same. Thus, the renormalization
prescription can be taken over from Refs. [11,18,19], where
the amplitudes for pd elastic scattering and breakup referring
to unscreened Coulomb are calculated as

〈φ′|U (C)|φ〉 = 〈φ′|T c.m.
C |φ〉 + lim

R→∞
{
Z−1

R (qi)〈φ′|
× [

U (R) − T c.m.
R

]|φ〉}, (12a)

〈φ0|U (C)
0 |φ〉 = lim

R→∞
{
z
− 1

2
R (pf )〈φ0|U (R)

0 |φ〉Z− 1
2

R (qi)
}
. (12b)

The long-range part of the screened elastic scattering
amplitude is given by the two-body on-shell transition
matrix 〈φ′|T c.m.

R |φ〉 derived from the screened Coulomb
potential between proton and the c.m. of the deuteron.
Renormalized by Z−1

R (qi) in the R → ∞ limit, it converges
(in general, as a distribution) to the well-known pure Coulomb
amplitude 〈φ′|T c.m.

C |φ〉. The Coulomb-distorted short-range
parts 〈φ′|[U (R) − T c.m.

R ]|φ〉 and 〈φ0|U (R)
0 |φ〉 are calculated

numerically at finite R because after the renormalization they
rapidly converge with R owing to their short-range nature;
we only have to make sure that R is large enough for the
desired accuracy. In Eqs. (12) qi is the magnitude of the initial
relative pd momentum and pf is the magnitude of the final
relative pp momentum. The renormalization factors ZR(qi)
and zR(pf ) are diverging phase factors defined in Ref. [13]
for a general screening and given in Refs. [11,18,19] for the
form of screening used there as well as in this work. We get
well-converged results for the observables when the Coulomb-
distorted short-range part of the amplitudes is calculated using
the screening function with n = 4 and R = 10 fm (30 fm) for
pd elastic scattering (breakup). With those values of R the
partial-wave expansion converges slower than in the nd case
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FIG. 1. (Color online) Real
and imaginary parts of nonrenor-
malized (left side) and renormal-
ized (right side) pd elastic scatter-
ing amplitudes (in arbitrary units)
at Ep = 9 MeV shown as functions
of the c.m. scattering angle. The
initial and final particle spin pro-
jection quantum numbers are mp =
1
2 , m′

p = − 1
2 , and md = m′

d = 1.
Results for the AV18 + UIX force
model obtained with the screening
radius R = 5 fm (dashed curves),
10 fm (dash-dotted curves), 15 fm
(dotted curves), and 20 fm (solid
curves) are compared.

but the AGS equations still can be solved in the partial-wave
basis. In our first calculations with Coulomb [11,18] high
two-baryon partial waves needed for the convergence were
included using the perturbative approach of Ref. [20] that was
confirmed to be highly reliable in later calculations where we
found an efficient method [21] to include the high partial waves
exactly. This latter method [21] is used in the present work
where we obtain fully converged results by taking into account
the hadronic interaction in two-nucleon partial waves with total
pair angular momentum I � 5 and the screened Coulomb
interaction in two-proton partial waves with pair orbital
angular momentum L � 14. The partial waves with total
3N angular momentum J � 59

2 are considered but it is fully
sufficient to include the 3N force only in those with J � 19

2 .
Of course, both total 3N isospin T = 1

2 and 3
2 states are

included.
Thus, the presence of the 3N force does not change the rate

of the R convergence for the observables whose detailed study
was given in Refs. [11,18] and will not be repeated here. How-
ever, a recent work [22] on an alternative Coulomb treatment in
pd scattering proposed a renormalization prescription that is
different from ours given in Eqs. (12). According to Ref. [22],
the pd elastic scattering amplitude calculated with screened
Coulomb does not need renormalization at all, that is, the
limit limR→∞〈φ′|U (R)|φ〉 should exist. The renormalization
for the breakup amplitude is needed but it is different from ours
given in Eq. (12b). However, numerical results of Ref. [22]
involve approximations that are not well under control:
the screened Coulomb transition matrix is approximated by
the screened Coulomb potential and, furthermore, particular
contributions to the pd scattering amplitudes that include
first-order terms in the screened Coulomb transition matrix
are neglected. Therefore, we feel the need to clarify the issue
of renormalization. We study the dependence on the screening
radius R for selected components of the nonrenormalized and
renormalized pd elastic scattering amplitudes, 〈φ′|U (R)|φ〉
and 〈φ′|U (C)|φ〉, calculated at proton laboratory energy Ep =
9 MeV; the AV18 NN potential [8] and the UIX 3N force [9]
are taken as the hadronic interaction. In Fig. 1 we show
spin-nondiagonal amplitudes that have only the Coulomb-

distorted short-range part. The nonrenormalized amplitude
〈φ′|U (R)|φ〉 shows a clear R dependence; in fact, its absolute
value becomes R-independent but the phase is proportional
to ln R. In contrast, the renormalized amplitude 〈φ′|U (C)|φ〉,
within the accuracy of the plot, becomes independent of R

for R � 10 fm. The renormalized spin-diagonal amplitude
that has also a long-range part becomes R-independent as
well, as Fig. 2 demonstrates. Thus, fully converged numerical
results without uncontrolled approximations clearly support
the standard screening and renormalization theory as given in
Eqs. (12) and not the one of Ref. [22].

IV. RESULTS

Numerical results of this article are derived from the AV18
NN potential [8] together with the UIX 3N force [9]; this
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FIG. 2. (Color online) Real and imaginary parts of the renormal-
ized pd elastic scattering amplitude. The initial and final particle spin
projection quantum numbers are mp = m′

p = 1
2 and md = m′

d = 1.
Curves are as in Fig. 1.
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FIG. 3. (Color online) Differential cross section and analyzing powers for pd elastic scattering at 9-MeV proton laboratory energy as
functions of the c.m. scattering angle. Results for AV18 (dashed-dotted curves) and AV18 + UIX (solid curves) force models, both including
Coulomb, and for AV18 + UIX without Coulomb (dotted curves) are compared with the experimental data from Ref. [23].

combination, AV18 + UIX, is one of the most widely used
NN + 3N force models. Hadronic charge dependence is fully
included; that is, pp and np potentials are used within the
isospin formalism. Point Coulomb interaction is added for
pp but the additional electromagnetic terms of AV18 are
not included. To isolate Coulomb and 3N force effects,
calculations without Coulomb or without the 3N force are
performed as well. Obviously, we have many more predictions
than is possible and wise to show. Therefore, we make a
judicious selection and present the most interesting cases.
Readers dissatisfied with our choices are welcome to obtain
from us the results for their favorite data.

In Fig. 3 we show results for the differential cross section
and analyzing powers of pd elastic scattering at 9-MeV proton
laboratory energy (18-MeV deuteron laboratory energy). The
Coulomb effect is important in the whole kinematical regime.
There are well-known discrepancies [6] around the maximum
of the vector analyzing powers Ay(N ) and iT11 and the first
minimum of T21. The 3N force effect is rather small; it is
mostly a scaling effect due to the change in the binding energies
of 3H and 3He that are calculated in Appendix B. In addition,
observables shown in Fig. 3 serve as a benchmark because
they already have been calculated in Ref. [6] using AV18 and
AV18 + UIX force models together with the Coulomb force.
The 3N Schrödinger equation was solved in configuration
space using the Kohn variational principle and explicitly
imposing the proper Coulomb boundary conditions. The pd

elastic scattering results obtained with the two methods for
including the pp Coulomb interaction, that is, our momentum-
space screening and renormalization method and the one of
Ref. [6], were compared in Ref. [24] taking the AV18 NN

potential as the hadronic interaction alone; a good agreement
over a wide range of energies for all studied observables was
found. Comparing Fig. 3 to the 9-MeV results of Ref. [6], it is
easy to see that the predicted 3N force effect is the same in both
cases. Thus, the agreement between the momentum-space
and configuration-space results including both the 3N force
and Coulomb is as good as without the 3N force.

In Fig. 4 we show the differential cross section and
analyzing powers for pd elastic scattering at 135-MeV proton
laboratory energy (270-MeV deuteron laboratory energy)
where the configuration-space calculations are not available
so far. As found in Ref. [11] and confirmed in the present
work, the Coulomb effect at this relatively high energy is large
only at forward angles. We therefore do not show it separately.
Instead, because the 3N force effect is quite significant, it
is interesting to compare two different 3N force models:
(a) UIX, based on the Fujita-Miyazawa force [27], that is,
the two-pion (2π ) exchange with an intermediate �-isobar
excitation and supplemented by a purely phenomenological
repulsive short-range part; (b) an effective 3N force due to
explicit �-isobar excitation that uses no static approximation
for the propagation of the �, includes beside the pion also
the exchange of heavier mesons ρ, ω, and σ , and has higher
order contributions, for example, three-meson ring diagrams;
all contributions are consistent with each other because
they are built from the same two-baryon coupled-channel
potential CD Bonn + � [3] that is as realistic as its purely
nucleonic reference potential CD Bonn [28]. The �-isobar
effect is isolated as the difference between predictions of the
CD Bonn + � and CD Bonn potentials. In most cases both
UIX and �-isobar effects are qualitatively similar, although the
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FIG. 4. (Color online) Differential cross section and analyzing powers for pd elastic scattering at 135-MeV proton laboratory energy.
Results for AV18 (dashed-dotted curves), AV18 + UIX (solid curves), CD Bonn (dotted curves), and CD Bonn + � (dashed curves) force
models, all including Coulomb, are compared with the experimental data from Ref. [25] (solid circles) and Ref. [26] (open squares).

former is usually larger, especially around the minimum of the
deuteron vector analyzing power Ay(d), where the predictions
of AV18 + UIX are considerably closer to the experimental
data. The reason why the �-isobar effect is smaller, at least
partially, is the NN dispersion that is generated by the explicit
�-isobar excitation and often competes with the effective
3N force [3]. The two 3N force models show qualitatively
different behavior around the first minimum of the deuteron
tensor analyzing power Axx , where the CD Bonn + � accounts
for the data better. Finally, we note that our AV18 + UIX
results without Coulomb (not shown here) are consistent with
the corresponding results of Ref. [1].

In Fig. 5 we show the fivefold differential cross section
for pd breakup at 13-MeV proton laboratory energy in few

special kinematical configurations that are characterized in
a standard way by the final-state polar angles of the two
detected protons and by the azimuthal angle between them,
(θ1, θ2, ϕ12 = ϕ2 − ϕ1). Though the inclusion of Coulomb
slightly improves the agreement with data in the space-star
configuration, the Coulomb effect is far too small to reproduce
the difference between the experimental pd and nd data and to
resolve the so-called space-star anomaly. Slightly larger and
beneficial Coulomb effects are seen in quasifree scattering
(QFS) and collinear configurations; the differential cross
section is decreased around the QFS peak and increased around
the collinear point (minimum) and np final-state interaction
(FSI) peaks. The remaining discrepancies around the np-FSI
peaks, at least to some extent, may be due to the finite geometry,
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FIG. 5. (Color online) Differential cross section for pd breakup at 13-MeV proton laboratory energy in space star (left), quasifree
scattering (middle), and collinear (right) configurations as function of the arclength S along the kinematical curve. Curves are as in Fig. 3 and
the experimental data are from Ref. [29] (solid circles). For the space-star configuration also the nd data from Refs. [30,31] (open and solid
squares) are shown.
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FIG. 6. (Color online) Differential cross section for pd breakup at 130-MeV deuteron laboratory energy in selected kinematical
configurations with small relative azimuthal angle. Curves are as in Fig. 3 and the experimental data are from Refs. [32,33].

not taken into account in our calculations owing to the lack
of information on experimental details. The 3N force effect is
very small except for the QFS configuration. All these findings
are consistent with our previous results [18] derived from the
CD Bonn + � and CD Bonn potentials.

Finally, we consider pd breakup at 130-MeV deuteron
laboratory energy that was measured recently in a variety
of kinematical configurations [32,33]. In some of them we
found sizable Coulomb effects for the differential cross section
[18,33] but very small �-isobar effects. In contrast, the
present calculations as well as those without Coulomb given in
Ref. [32] reveal visible effects of the UIX 3N force. Therefore,
a more extensive study of the interplay between the Coulomb
and the 3N force is needed. In Fig. 6 we show the fivefold

differential cross section for few kinematical configurations
with small relative azimuthal angle ϕ12. The central point
of the (13◦, 13◦, 20◦) configuration corresponds to very low
relative pp energy in the final state, Epp < 0.2 MeV, where
the differential cross section and also the 3N force effect
are strongly reduced by the Coulomb as a result of the pp

repulsion; the found Coulomb effect is well supported by
the experimental data. The relative pp energy in the final
state increases with the relative polar and azimuthal angles
of the protons and therefore the Coulomb effect decreases
in the remaining configurations of Fig. 6 but the 3N force
effect becomes more visible. The relative pp energy gets
larger at ϕ12 = 160◦ in Fig. 7, leading to an increase of
the differential cross section due to the Coulomb, especially
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FIG. 7. (Color online) Differential cross section for pd breakup at 130-MeV deuteron laboratory energy in selected kinematical
configurations with large relative azimuthal angle. Curves are as in Fig. 3 and the experimental data are from Ref. [32].
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FIG. 8. (Color online) Deuteron analyzing power Axx for pd breakup at 130-MeV deuteron laboratory energy in selected kinematical
configurations. Curves are as in Fig. 3.

in the configurations with smaller θi . Because the total
breakup cross section at this energy is almost unchanged by
Coulomb, as demonstrated in Ref. [18] and confirmed in the
present work, one may expect in particular configurations an
increase of the differential cross section due to Coulomb to
compensate for the strong decrease in the regions with low Epp .
The inclusion of the UIX 3N force, as in Fig. 6, increases
the differential cross section, especially in the configurations
where both θi are large. Thus, at smaller θi Coulomb
is dominating while at larger θi the UIX 3N force becomes
more significant. In some kinematical regimes, for example,
around the central peaks of the configurations 20◦ � θ1 � 30◦,
θ2 = 20◦, ϕ12 = 160◦, both are equally important, leading
to quite a satisfactory description of the data in all studied
configurations.

Deuteron analyzing powers were measured in the same
experiments [32,33]; however, the data analysis is not yet
completed. We therefore present only few examples in Fig. 8
demonstrating that for the spin observables like Axx Coulomb
and 3N force effects may take place in completely different
regions of the phase space compared to the differential cross
section. For example, Axx remains unaffected by the Coulomb
in the (13◦, 13◦, 20◦) configuration with very low Epp where
a strong decrease of the cross section was found in Fig. 6,
but shows a moderate Coulomb effect in the (25◦, 20◦, 40◦)
configuration where it was almost negligible in the case of
cross section. In contrast, the 3N force effect in the latter
configuration is significant only for the differential cross
section but not for Axx . The last configuration in Fig. 8 shows
moderate effects of both Coulomb and 3N force competing
with each other, unlike in the case of the differential cross
section in Fig. 7. A detailed study of deuteron analyzing powers
in more kinematical configurations is postponed until the
finalization of the experimental data that is expected soon [34].

V. SUMMARY

In this article we derive AGS integral equations for pd

scattering including an irreducible 3N force and solve them
in the momentum-space partial-wave representation. The
Coulomb interaction between the protons is included using
the screening and renormalization method whose validity is
confirmed by the numerical results for scattering amplitudes;
they are well converged with respect to the screening and with

respect to the quantum number cutoffs. AV18 NN potential
with the UIX 3N force are used as the hadronic interaction
model to calculate the observables of pd elastic scattering
and breakup. In the low-energy pd elastic scattering, where
configuration-space calculations [6] with the same dynamic
input are available, a good agreement between our results and
those of Ref. [6] is found. For pd elastic scattering at higher
energies and for pd breakup we provide first results for the
AV18 + UIX force model with Coulomb. In higher-energy
pd elastic scattering where the Coulomb effect is confined to
small scattering angles but the 3N force effect is significant, we
compared two models, UIX and the effective 3N force due to
explicit �-isobar excitation, and with few exceptions found a
qualitative agreement between them. In breakup, the Coulomb
effects are fully consistent with those found in our earlier
calculations [11,18] with different hadronic interactions. The
inclusion of Coulomb is unable to resolve the space-star
anomaly at low-energies, but clearly improves the description
of the experimental data at 130-MeV deuteron laboratory
energy where, depending on the kinematical configuration,
it may significantly decrease or increase the differential cross
section. A moderate Urbana IX 3N force effect that increases
the cross section is seen as well; the cross section is only
slightly underpredicted by the theory. A complicated interplay
of Coulomb and 3N force effects takes place in the spin
observables; they will be studied extensively in the future using
other 3N force models as well.
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APPENDIX A: URBANA IX 3N FORCE

The UIX 3N force has 2π -exchange and phenomenological
repulsive short-range terms,

V(3) =
∑

αβγ cyclic

(
A2π

{
Xπ

αβ,Xπ
βγ

}{τα · τβ, τβ · τγ }

+C2π

[
Xπ

αβ,Xπ
βγ

]
[τα · τβ, τβ · τγ ] + U0T

2
αβT 2

βγ

)
,

(A1)
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where curly and square brackets denote anticommutator and
commutator, respectively. The strength constants are A2π =
−0.0293 MeV, C2π = 1

4A2π , and U0 = 0.0048 MeV; the latter
should be not confused with the symmetrized breakup operator
U0 defined in Sec. II. τα is the isospin vector operator of
the nucleon α, and Xπ

αβ and Tαβ are local potential-like
two-nucleon operators depending on the relative coordinate
of the nucleons α and β and, in the case of Xπ

αβ , also
on their spins; the explicit expressions can be found in
Ref. [9]. The transformation of Xπ

αβ and T 2
αβ to the momentum

space using spherical Bessel functions is straightforward. For
decomposing (A1) into three symmetric parts, we follow
Ref. [35]; that is,

uγ = A2πXπ
αβ

{
Xπ

βγ

[
2τα · τγ − i

2
τα · (τβ × τγ )

]

+Xπ
γα

[
2τγ · τβ + i

2
τα · (τβ × τγ )

]}

+ 1

2
U0T

2
αβ

(
T 2

βγ + T 2
γα

)
, (A2)

αβγ being cyclic. In the 3N scattering and bound-state
equations [Eqs. (10) and (B3)], the 3N force component
[Eq. (A2)] always acts on a state |y〉 that is fully antisymmetric
because of (1 + P ). Furthermore, taking into account that Xπ

αβ ,
Tαβ , and uγ are symmetric under exchange of the nucleons α

and β, one can prove that certain terms in Eq. (A2) yield equal
contributions [35] and calculate the desired matrix elements
of the 3N force component as

γ 〈ν|uγ |y〉 = 2A2π

∑
ν1ν2ν3

γ 〈ν|Xπ
αβ |ν1〉γ γ 〈ν1|

[
2τα · τγ

− i

2
τα · (τβ × τγ )

]
|ν2〉αα〈ν2|Xπ

βγ |ν3〉αα〈ν3|y〉

+U0

∑
ν1ν2ν3

γ 〈ν|T 2
αβ |ν1〉γ γ 〈ν1|ν2〉α

× α〈ν2|T 2
βγ |ν3〉αα〈ν3|y〉, (A3)

where each of the intermediate states |νi〉α , with νi abbreviating
all continuous and discrete quantum numbers and α denoting
the spectator, is antisymmetric under the exchange of the
nucleons β and γ . The transformation from the basis with
the spectator α to the basis with the spectator γ is needed to
evaluate all the matrix elements of Xπ

αβ and T 2
αβ in their proper

bases. Because |y〉 is fully antisymmetric, α〈ν3|y〉 = γ 〈ν3|y〉.
Furthermore, γ 〈ν1|ν2〉α = 1

2 γ 〈ν1|P |ν2〉γ , and γ 〈ν1|[2τα · τγ −
i
2τα · (τβ × τγ )]|ν2〉α differs from γ 〈ν1|ν2〉α only by the isospin
factor that can be found in Ref. [35]. Thus, the calculation of
the 2π -exchange and short-range terms needs only one basis
transformation for each of them, and all intermediate states
are antisymmetric with respect to the pair. This constitutes
the advantage of the aforementioned method [35] for handling
the UIX 3N force over the one used in Refs. [1] that needed
two basis transformations for each term involving, in addition,
intermediate nonphysical symmetric states. Finally, we note
that for handling other types of 3N forces to be used in the

future calculations, the technique proposed in Ref. [36] seems
to be very promising.

APPENDIX B: THREE-NUCLEON BOUND STATE

Starting from the Schrödinger equation in the integral
form,

|�〉 = G0

∑
α

(vα + uα)|�〉, (B1)

decomposing the 3N bound-state wave function |�〉 =∑
α |ψα〉 into its Faddeev components |ψα〉 with α = 1, 2, 3,

and using the definition of the two-particle transition ma-
trix [Eq. (4)], it is straightforward to derive the Faddeev
equation,

|ψα〉 = G0Tα

∑
β

δ̄βα|ψβ〉 + (1 + G0Tα)G0uα

∑
β

|ψβ〉.

(B2)

The symmetrized version of it reads

|ψ〉 = G0T P |ψ〉 + (1 + G0T )G0u(1 + P )|ψ〉, (B3)

where the bound-state wave function is obtained as |�〉 =
(1 + P )|ψ〉. In practical calculations we solve the Faddeev
equation for |x〉 = G−1

0 |ψ〉 that has an advantage of having
exactly the same form of kernel as the scattering equation
[Eq. (10)]. In contrast to scattering calculations, we include
hadronic interaction in two-nucleon partial waves with total
pair angular momentum I � 6 and take into account all
electromagnetic terms of the AV18 NN potential. Our results
for binding energies and wave function probabilities of 3H and
3He nuclei with and without UIX 3N force are collected in
Table I; they are in good agreement with the results of other
groups [37,38].

TABLE I. Absolute value of binding energy, expectation value of
kinetic energy (both in MeV), and probabilities of the wave function
components (all in %) for 3H (top half) and 3He (bottom half) nuclei
calculated with AV18 and AV18 + UIX force models. Results of
Ref. [37] obtained using coordinate-space (r) and momentum-space
(p) frameworks are listed as well.

|EB | 〈H0〉 PS′ PP PD PT =3/2

AV18 7.621 46.72 1.292 0.066 8.509 0.0025
AV18 [37](r) 7.624 46.73 1.293 0.066 8.510 0.0025
AV18 [37](p) 7.621 46.73 1.291 0.066 8.510 0.0025
AV18 + UIX 8.478 51.28 1.055 0.135 9.302 0.0025
AV18 + UIX [37](r) 8.479 51.28 1.054 0.135 9.301 0.0025
AV18 + UIX [37](p) 8.476 51.28 1.052 0.135 9.302 0.0025

AV18 6.923 45.68 1.526 0.065 8.466 0.0081
AV18 [37](r) 6.925 45.69 1.530 0.065 8.467 0.0081
AV18 [37](p) 6.923 45.68 1.524 0.065 8.466 0.0081
AV18 + UIX 7.748 50.21 1.239 0.132 9.249 0.0075
AV18 + UIX [37](r) 7.750 50.21 1.242 0.132 9.248 0.0075
AV18 + UIX [37](p) 7.746 50.21 1.235 0.132 9.248 0.0075
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