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Search for three-nucleon force effects on the longitudinal response function of 4He
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A detailed study of the 4He longitudinal response function RL(ω, q) is performed at different kinematics,
with particular emphasis on the role of three-nucleon forces. The effects reported are the results of an ab initio
calculation where the full four-body continuum dynamics is considered via the Lorentz integral transform
method. The contributions of the various multipoles to the longitudinal response function are analyzed, and
integral properties of the response are discussed as well. The Argonne V18 nucleon-nucleon interaction and
two three-nucleon force models (Urbana IX and Tucson-Melbourne′) are used. At lower momentum transfers
(q � 200 MeV/c) three-nucleon forces play an important role. One even finds a dependence of RL on the
three-nucleon force model itself, with differences of up to 10%. Thus a Rosenbluth separation of the inclusive
electron scattering cross section of 4He at low momentum transfers would be of great value for differentiating
among force models.
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I. INTRODUCTION

An aspect of nuclear dynamics that has attracted a lot of
interest in recent years is the importance of multinucleon
forces and, in particular, of the three-nucleon force (3NF).
The nuclear potential clearly has an effective nature; therefore
it is, in principle, a many-body operator. However, for several
decades the debate has concentrated mainly on its two-nucleon
part. This debate has taken place among the advocates of
three different approaches based on: meson theory, pure
phenomenology, and, more recently, effective field theory.
Realistic potentials have been obtained within the three frame-
works, relying on fits to thousands of N -N scattering data. It
is well known that such realistic potentials do not explain the
triton binding energy and thus 3NFs are necessary. Today,
because of effective field theory approaches, a new debate is
taking place regarding the 3NF. However, for the determination
of a realistic three-body potential or the discrimination among
different models one needs to find A � 3 observables that
are 3NF sensitive. Significant effort in this direction has taken
place in recent years, with accurate calculations of bound-state
properties of nuclei of increasing mass number A [1,2].

We follow a complementary approach and direct our
attention, instead, toward electromagnetic reactions in the con-
tinuum. In fact many years of electron scattering experiments
have demonstrated the power of electronuclear reactions, in
particular, of inelastic ones, to provide important information
on nuclear dynamics. The possibility to vary the energy ω

and momentum q transferred by the electron to the nucleus
allows one to focus on different dynamic aspects. In fact one
might find regions where the searched three-nucleon effects are
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sizable. The choice of the 4He target is particularly appropriate
because of the following considerations. (i) The ratio of the
number of triplets to the number of pairs goes as (A − 2)/3, and
therefore is doubling from 3He to 4He. (ii) Theoretical results
on hadronic scattering observables involving four nucleons
have already shown that three-body effects are rather large
[3,4]. (iii) Because 4He has quite a high average density and its
binding energy per particle is similar to that of heavier systems,
it can serve as a guideline to investigate heavier nuclei.
(iv) Various inclusive 4He (e, e′) experiments have been
performed in the past [5], in which Rosenbluth separations
have been carried out. Because of the low atomic number
it is possible to study longitudinal and transverse responses
separately, without the ambiguities created by the Coulomb
distortions affecting heavier systems. (v) The Lorentz integral
transform (LIT) method [6,7] allows extension of investiga-
tions beyond the three- and four-body breakup thresholds.

In this work we concentrate on the longitudinal response
function RL(ω, q) at constant momentum transfers q �
500 MeV/c. Because the longitudinal response RL is much
less sensitive to meson exchange effects than the transverse
response RT , the use of a simple one-body density operator
allows us to concentrate on the nuclear dynamics generated
by the potential. In fact, for low q, two-body operators in
RL are only of fourth order in effective field theory counting
(at next-to-next-to-next-to leading order, N3LO) [8], and their
contribution is negligible up to q ≈ 300 MeV/c; see Sec. V.

Besides presenting new results, this work gives a more
detailed analysis of those published in a previous Letter [9].
The paper is organized as follows. In Sec. II we give the
definition of RL and explain the theoretical framework that
allows its calculation. In Sec. III we present the results for
different kinematics and compare our results with existing
data. In Sec. IV we analyze our results as obtained from a
multipole decomposition of the response function. In Sec. V
we discuss integral properties of the longitudinal response and
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compare them with some of the results in the literature. Finally,
conclusions are drawn in Sec. VI.

II. THEORETICAL FRAMEWORK

In the one-photon-exchange approximation, the inclusive
cross section for electron scattering off a nucleus is given in
terms of two response functions, that is,

d2σ

d�dω
= σM

[
Q4

q4
RL(ω, q) +

(
Q2

2q2
+ tan2 θ

2

)
RT (ω, q)

]
,

(1)

where σM denotes the Mott cross section; Q2 = −q2
µ = q2 −

ω2, the squared four-momentum transfer with ω and q the
energy and three-momentum transfers, respectively; and θ is
the electron scattering angle. The longitudinal and transverse
response functions RL(ω, q) and RT (ω, q) are determined by
the transition matrix elements of the Fourier transforms of the
charge and the transverse current density operators. In this
work we focus on the longitudinal response, which is given by

RL(ω, q) =
∫∑
f

|〈�f |ρ̂(q)|�0〉|2δ
(
Ef + q2

2M
− E0 − ω

)
,

(2)

where M is the target mass and |�0/f 〉 and E0/f denote initial-
and final-state wave functions and energies, respectively. The
charge density operator ρ is defined as

ρ̂(q) = e

2

∑
k

(
1 + τ 3

k

)
exp [iq · rk] , (3)

where e is the proton charge and τ 3
k is the isospin third

component of nucleon k. The δ function ensures energy
conservation.

As will become clear in Sec. III it is useful to consider the
charge density operator as being decomposed into isoscalar
(S) and isovector (V) contributions:

ρ̂(q) = e

2

∑
k

exp [iq · rk] + e

2

∑
k

τ 3
k exp [iq · rk]

≡ ρ̂S(q) + ρ̂V (q). (4)

Each of them can be further decomposed into Coulomb
multipoles [10],

ρ̂X(q) = 4π
∑
Jµ

ĈJ,X
µ (q) Y J

µ (q̂)∗, (5)

where the Coulomb multipole operators ĈJ,X
µ (q) are defined

by

ĈJ,X
µ (q) ≡ 1

4π

∫
dq̂ ′ρ̂X(q′)Y J

µ (q̂ ′), (6)

with X = S, V and Y J
µ (q̂) denotes the spherical harmonics.

From Eq. (2) it is evident that, in principle, knowledge of
all possible final states excited by the electromagnetic probe,
including, of course, states in the continuum, is required. Thus,
in a straightforward evaluation both bound and continuum
states would have to be calculated. The latter constitute

the major obstacle for a many-body system, as complete
many-body scattering wave functions are not yet accessible for
A > 3. In the LIT method [6,7] this difficulty is circumvented
by considering, instead of RL(ω, q), the integral transform
LL(σ, q) with a Lorentzian kernel defined for a complex
parameter σ = σR + i σI by

LL(σ, q) =
∫

dω
RL(ω, q)

(ω − σR)2 + σ 2
I

= 〈
�̃ρ

σ,q

∣∣�̃ρ
σ,q

〉
. (7)

The parameter σI determines the resolution of the transform
and is kept at a constant finite value (σI �= 0). The basic idea
of considering LL lies in the fact that it can be evaluated from
the norm of a function �̃

ρ
σ,q , which is the unique solution of

the inhomogeneous equation

(Ĥ − E0 − σ )
∣∣�̃ρ

σ,q

〉 = ρ̂(q)|�0〉. (8)

Here Ĥ denotes the nuclear Hamiltonian. The existence of the
integral in Eq. (7) implies that �̃

ρ
σ,q has asymptotic boundary

conditions similar to those of a bound state. Thus, bound-state
techniques can be applied for its solution. Here we use the
effective interaction hyperspherical harmonics (EIHH) method
[11–13].

The response function RL(ω, q = const) is then obtained
by inverting the integral transform (7). For the inversion of the
LIT, various methods have been devised [14,15]. In particular,
the issue of the inversion of the LIT is discussed extensively
in Ref. [16].

Finally, we should mention that the expression of the charge
density in Eq. (3) describes point particles. To compare our
results with experimental data, after inversion the isoscalar
and isovector parts of RL have to be multiplied by the proper
nucleon form factors,

1
2

(
1 + τ 3

k

) → GS
E(Q2) + τ 3

k GV
E(Q2), (9)

where GS
E and GV

E are the isoscalar and isovector form factors:

GS
E = 1

2

(
G

p

E + Gn
E

)
, (10)

GV
E = 1

2

(
G

p

E − Gn
E

)
. (11)

For on-shell particles, these form factors depend on the squared
four-momentum transfer Q2 alone. In principle, this is no
longer true for the off-shell situation. However, in view of
the fact that little is known about the off-shell continuation
and, furthermore, for the moderate energy and momentum
transfers considered in this work, neglecting such effects
is justified. Therefore the results reported in Sec. III all
include the proton electric form factor with the usual dipole
parametrization

G
p

E(Q2) = GD(Q2) = 1(
1 + Q2




)2 (12)

(
 = 18.43 fm−2). For the neutron electric form factor we use
the parametrization from Ref. [17],

Gn
E(Q2) = − µn

Q2

4m2

1 + 5.6 Q2

4m2

G
p

E(Q2), (13)

with µn = −1.911829µN and m being the nucleon mass.

064001-2



SEARCH FOR THREE-NUCLEON FORCE EFFECTS ON THE . . . PHYSICAL REVIEW C 80, 064001 (2009)

III. RESULTS OF THE LORENTZ INTEGRAL
TRANSFORM CALCULATION

In this section we present results on RL, focusing on the evo-
lution of dynamic effects as the momentum transfer decreases.
Figure 1 shows RL at constant q = 200 and 100 MeV/c,
calculated with the Argonne V18 (AV18) potential [19], with
the AV18 augmented by the Urbana IX (UIX) [20] 3NF,
and with the Malfliet-Tjon (MT) potential [21]. As shown
in Ref. [9] there is a large quenching effect owing to the
3NF, which is strongest at lower q. Note that this effect
is not simply correlated with the underbinding of the AV18
potential (binding energy EB = 24.35 MeV in the present LIT
calculation; with higher EIHH precision, EB = 24.27 MeV
[22]). In fact, if this were the case, the results with the MT
potential, which gives a slight overbinding of 4He (EB =
30.56 MeV), would lie even below those obtained with the
AV18 + UIX (EB = 28.40 MeV). In contrast, the MT curve
is situated between the curve with and the curve without the
3NF.

We do not give results for the threshold region, where there
is a 0+ resonance [23]. In our present calculations we are not
able to resolve this narrow resonance; therefore we subtract its
contribution before inversion as we do for the elastic peak [7].
This procedure of course does not affect the results above the
resonance.

Given the large 3NF effect at lower q it is of interest to
determine whether there is a dependence of the results on the
3NF model itself. To this end we also performed the calculation
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FIG. 1. (Color online) Longitudinal response function for
q = 200 and 100 MeV/c with the AV18 (dashed line), AV18 + UIX
(solid line), and MT (dashed-dotted line) potentials. Data at
q 	 200 MeV/c are from Ref. [18].
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FIG. 2. (Color online) Longitudinal response function for
q = 200, 150, 100, and 50 MeV/c with the AV18 two-nucleon force
only (dashed line) and with the addition of the UIX (solid line) or the
TM′ (dashed-dotted line) three-nucleon force.

using the Tucson-Melbourne′ (TM′) [24] three-nucleon force.
Whereas the UIX force contains a two-pion exchange and a
short-range phenomenological term, with two 3NF parameters
fitted on the triton binding energy and on the nuclear matter
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FIG. 3. (Color online) RL(ω, q) for 250 � q � 500 MeV/c: calculations with the AV18 (dashed line) and the AV18 + UIX (solid line).
Data are from Ref. [28] (squares), Ref. [29] (circles), Ref. [5] (downward-pointing triangles), and Ref. [18] (upward-pointing triangles).

density (in conjunction with the AV18 two-nucleon potential),
the TM′ force is not adjusted in this way. It includes two pion
exchange terms where the coupling constants are taken from
pion-nucleon scattering data consistent with chiral symmetry.

Our results with the TM′ force are obtained using the same
model space as for the UIX potential, and the accuracy of
the convergence for the LIT is found to be at a percentage
level in analogy with that of the UIX as described in Ref. [9].
The cutoff of the TM′ force has been adjusted to describe
the triton binding energy when used in conjunction with the
AV18 N -N force. With a cutoff 
 = 4.77mπ , where mπ is the
pion mass, we obtain the binding energies 8.47 MeV (3H) and
28.46 MeV (4He). We emphasize that the 4He binding energy
is practically the same as that for the AV18 + UIX case (as
found in Ref. [25]).

In addition to what was reported in our recent Letter [9],
here we also investigate other low q values. Figure 2 shows

that the increase in 3NF effects with decreasing q is confirmed.
Moreover, it becomes evident that the difference between the
results obtained with the two 3NF models also increases with
decreasing q. One actually finds that the shift of the peak to
higher energies in the case of the UIX generates a difference
in RL of up to about 10% on the low-energy sides of the
peaks. This is a very interesting result. It represents the first
case of an electromagnetic observable that is considerably
dependent on the choice of the 3NF. In the light of these results
it would be very interesting to repeat the calculation with
effective field theory two- and three-body potentials [26,27].
At the same time it would be highly desirable to obtain precise
measurements of RL at low q. This could serve either to fix
the low-energy constants of the effective field theory 3NF or,
possibly, to discriminate among different nuclear force models.

Figure 3 gives an overview of the results obtained for higher
q, as well as a comparison with existing experimental data. The

064001-4



SEARCH FOR THREE-NUCLEON FORCE EFFECTS ON THE . . . PHYSICAL REVIEW C 80, 064001 (2009)

3NF results are closer to the data; this is particularly evident
at q = 300 MeV/c. However, the 3NF effect is generally not
as large as for the lower momentum transfers shown in Figs. 2
and 3. In some cases the quenching of the strength due to the
3NF is comparable to the size of the error bars, particularly
for the data from Ref. [28]. The largest discrepancies with
the data are found at q = 450 and 500 MeV/c. Whereas the
height of the peak is reproduced well by the result with the
3NF, the width of the experimental peak seems to be somewhat
narrower than the theoretical one. However, it must be borne
in mind that relativistic effects are not completely negligible
at q � 450 MeV/c. They probably play a role similar to that
found in the electrodisintegration of three-nucleon systems
(see, e.g., Ref. [30]). In the case of q = 250 MeV/c the
experimental results are not sufficiently precise to draw a
conclusion.

IV. MULTIPOLE ANALYSIS

It is interesting to analyze the results of RL in terms of its
multipole contributions. Using Eq. (5) on the right-hand-side
of Eq. (8),LL(σ, q) can be decomposed into a sum of multipole
contributions LJ,X(σ, q). We have calculated each of them
separately, solving the corresponding equations (8). After
inversion of the transform we obtain the various multipole
responses. By multiplying them by the isoscalar and isovector
nucleon form factors, we generate the multipole contributions
to the longitudinal response function R

J,X
L (ω, q). Figure 4

shows how the isoscalar and isovector parts of RL are built up
from their multipole contributions at a higher (500 MeV/c) and
a lower (100 MeV/c) value of q. As expected, the higher the

momentum transfer, the larger the number of multipoles that
must be considered to reach convergence. For q = 500 MeV/c

up to seven multipoles are considered, whereas for q =
100 MeV/c, only three multipoles are required for a converged
result. Careful readers may notice that the isoscalar response
at q = 100 MeV/c does not seem to show a convergence
in the multipole decomposition. As already mentioned, the
isoscalar dipole is negligible (explaining why the curve labeled
“0” overlaps the “+1” curve), and a similarly negligible
strength is found for the multipoles higher than the quadrupole.
Regarding the strength distribution among the multipoles two
facts are evident: (i) At higher q the strength is almost equally
distributed among the first isovector multipoles, whereas
in the isoscalar channel the quadrupole makes the largest
contribution, and (ii) at low q, as expected, the response
is dominated by the isovector dipole contribution. Whereas
the isoscalar dipole is completely negligible, the isoscalar
quadrupole contributes a few percent. These facts are also
illustrated in Fig. 5, where the total strength of the various
multipoles, defined as

mJ,X =
∫ ∞

ωth

dωR
J,X
L (ω, q), (14)

is shown for q = 100, 300, and 500 MeV/c. At q =
100 MeV/c the J = 1 and J = 3 multipoles of the isoscalar
response are tiny. The J > 3 multipoles are neglected in
Figs. 1, 2, and 4 for the q � 100 MeV/c kinematics. We
must point out that the total strengths presented in Fig. 5 do
not contain the nucleon form factors. The strengths can be
obtained by integrating in energy (up to infinity) the inversion
ofLJ,X(σ, q) (non-energy-weighted sum rule) or just by taking
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FIG. 4. Response functions of
the lowest isovector (upper panel)
and isoscalar (lower panel)
Coulomb multipoles, starting with
the monopole and consecutively
adding higher multipoles up to
Jmax = 7 for q = 500 MeV/c (left)
and Jmax = 2 for q = 100 MeV/c

(right) in the case of the
AV18 + UIX potential.
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FIG. 5. (Color online) Isovector (left panels) and isoscalar (right panels) multipole strength distribution of RL at q = 500, 300, and
100 MeV/c in the case of the AV18 and AV18 + UIX potentials. The sum of all isovector and all isoscalar multipoles for the two potentials is
also shown in the legend.

the norm of the right-hand-side of Eq. (8) for each multipole,
that is, the norm of ĈJ,X(q)|�0〉.

In Fig. 5, 3NF effects are also illustrated. The three q

values shown give an idea of the evolution of the effect
from the short-range to the long-range regime. At the highest
q value the three strongest contributions are given by the
isovector dipole and the isoscalar and isovector quadrupoles.
They are enhanced by the 3NF, whereas all other multipoles
are decreased, resulting in a net small quenching effect.
At q = 300 MeV/c there is a kind of transition situation
where only the still dominating isovector dipole strength
is increased by the 3NF, whereas all other multipoles are
quenched. At q = 100 MeV/c the strength of all multipoles is
decreased by the 3NF, resulting in an overall sizable quenching
effect.

In Fig. 6, the effect just described shows up more clearly in
the energy distribution of the dominant multipole contributions

(isovector dipole and isoscalar quadrupole) at q = 500 and
100 MeV/c. In particular, at q = 500 MeV/c the increase in
the strength due to the 3NF in the isovector dipole channel is
found mainly in the high-energy tail, whereas in the isoscalar
quadrupole the increase is found around the peak. At q =
100 MeV/c the situation is different in that the quenching of
the strength due to the 3NF is concentrated in the peak region,
for both multipoles. The net result of this mechanism is the
increase in the 3NF quenching effect with decreasing q that is
evident in Fig. 2.

Here we would like to comment on the fact that the large
contribution of the 3NF at low q seems at variance with the
smaller contribution to the photoabsorption cross section [22],
also dominated by the isovector dipole. The reason is twofold.
It has to do, on the one hand, with the correct use of the Siegert
theorem and, on the other hand, with the common procedure
of letting theoretical cross sections start from the experimental

064001-6



SEARCH FOR THREE-NUCLEON FORCE EFFECTS ON THE . . . PHYSICAL REVIEW C 80, 064001 (2009)

50 100 150 200 250 300 350
ω [MeV]

0.1

0.2

0.3

0.4

0.5

R
L
 [

10
-3

M
eV

-1
]

AV18
AV18+UIX

q=500 MeV/c

(a)

ISOVECTOR DIPOLE

20 30 40 50 60 70 80
ω [MeV]

2

4

6

8

R
L
 [

10
-3

M
eV

-1
]

q=100 MeV/c

(b)

ISOVECTOR DIPOLE

50 100 150 200 250 300 350
ω [MeV]

0

0.2

0.4

0.6

0.8

1

1.2

R
L
 [

10
-3

M
eV

-1
]

q=500 MeV/c

(c)

ISOSCALAR QUADRUPOLE

20 30 40 50 60 70 80
ω [MeV]

0

0.2

0.4

0.6

0.8

1

R
L
 [

10
-3

M
eV

-1
]

q=100 MeV/c

(d)

ISOSCALAR QUADRUPOLE

FIG. 6. (Color online) Response functions of the isovector dipole and isoscalar quadrupole for q = 500 MeV/c and q = 100 MeV/c with
the AV18 (dashed line) and AV18 + UIX (solid line) potentials.

threshold, also when the binding energies do not reproduce
the experimental values. A detailed explanation is in order
here. Because of charge conservation the relation (Siegert
theorem) between the charge dipole matrix element (C1,V )
considered here and the electric dipole matrix element (E1)
considered in the photon case implies the factor (En − E0) (see
also Ref. [31]). The binding energy (−E0) of 4He, however, is
about 15% lower for the AV18 than it is for the AV18 + UIX.
The following consequences occur. In the AV18 + UIX case in
Ref. [22] the result of the squared matrix element is multiplied
by [En − E0(AV18 + UIX)], which is equal to ωγ , whereas in
the AV18 case multiplication by [En − E0(AV18)] implies a
smaller multiplicative factor. Therefore the quenching three-
body effect is smaller. Only thereafter is the AV18 4He total
photoabsorption cross section shifted to the experimental
threshold.

The procedure of shifting the theoretical cross sections
to the experimental threshold might seem questionable, but
without such a shift all 3NF effects would be greatly amplified
in the photoabsorption cross section and even in the present
response function results. However, in this case they are, in a
way, “trivial binding effects.”

V. INTEGRAL PROPERTIES OF RL

There are many examples in different fields of physics
where a certain observable cannot be accessed, but only some
of its integral properties. Sum rules (nth moments of the energy
distribution) [32] are well-known examples. They contain

some often very useful, although limited, information about
the observable. The more sum rules one knows, the larger the
amount of information at one’s disposal. Integral transforms
can also be viewed as a special form of sum rules. Whereas
sum rules map an energy-dependent observable into a set of n

discrete values, integral transforms map the same observable
into a continuous set of parameters.

Reconstructing the searched observable from its integral
properties can be very difficult, as very often only a limited
number of moments are known or, in the case of integral
transforms, the result of the mapping does not resemble the
observable of interest at all. This is not the case for the
LIT. An example is illustrated in Fig. 7(a), where RL(ω, q =
300 MeV/c) for the AV18 + UIX potential [as in Fig. 3(e)]
is compared with the corresponding LIT, LL(σ, q), calculated
using a typical value of σI (20 MeV). The similarity between
the shape of the response function and that of its integral
transform is apparent. This similarity is due to the fact that the
Lorentz kernel is a representation of the δ function. It is this
property that makes the inversion of the integral transform [34]
reliable and sufficiently accurate for the Lorentz kernel. This
situation must be confronted with the Laplace transform. The
Laplace transform of RL, called the Euclidean response, is
given by [33]

E(τ, q) =
∫ ∞

ωth

dω exp

[
−τ

(
ω − q2

2m

)]
RL(ω, q)

Z
∣∣Gp

E(Q2)
∣∣2 .

(15)
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FIG. 7. (Color online) (a) Longitudinal response function RL

(solid line) at q = 300 MeV/c with its Lorentz integral transform
(LIT; dashed line) for the AV18 + UIX potential. The LIT has
been multiplied by σI /π to normalize the integral kernel with
respect to Eq. (7). (b) Euclidean longitudinal response for the same
momentum transfer: Comparison of the GFMC calculation [33] for
the AV8 + UVIII potential (band between thin lines) and the result
of this work with the AV18 (dashed line) and the AV18 + UIX (solid
line).

Figure 7(b) shows that E(τ, q) exhibits a completely different
form than RL(ω, q) does. It is interesting that, even in τ space,
the Euclidean response obtained using only the two-body
potential gives a result much different from that obtained
with the 3NF included. However, what is not evident from
E(τ, q) is in which energy region the contribution of the 3NF
is important.

Figure 7(b) also shows a comparison of our results with
those from Ref. [33] obtained with the Monte Carlo method.
The comparison is of interest, even if the potentials used in the
two cases are slightly different. (In Ref. [33] the older versions
of the Argonne and Urbana, AV8 and UVIII, were used.)
At τ larger than 0.02, our result with the AV18 + UIX lies
within the error band of the Monte Carlo numerical noise. At
smaller τ , in particular, at τ = 0, Fig. 7(b) shows a discrepancy
between the present E(τ, q) and that in Ref. [33]. This is
certainly caused by the different potentials used. The E(0, q)
value corresponds to the zeroth moment of RL(ω, q). This is
a classical integral property of RL(ω, q) that has been much
discussed in the literature under the name of Coulomb sum rule
(CSR). (For a review see Refs. [32] and [35].) The sum rule
consists in connecting the integral of the inelastic longitudinal
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FIG. 8. (Color online) (a) fpp(q) in the CSR [Eq. (16)] with AV18
(dashed) and AV18 + UIX (solid line) potentials. Circles show results
from Ref. [5] with the one-body density operator in Eq. (3), and
triangles are the results from Ref. [5] with the two-body density
operator. (b) Percentage difference between the curves in (a).

response to the number of protons and to the Fourier transform
of the proton-proton correlation function ρpp(s), that is, the
probability of finding two protons at a distance s. In fact for the
charge density operator in Eq. (3) (and neglecting the neutron
charge form factor), one has

CSR(q) ≡
∫ ∞

ωth

dω
RL(ω, q)∣∣Gp

E(Q2)
∣∣2

=Z + Z(Z − 1)fpp(q) − Z2|F (q)|2, (16)

where fpp(q) is the Fourier transform of ρpp(s) and F (q) is the
nuclear elastic form factor. The main feature of interest in the
CSR(q) to date has been its very simple, model-independent
high-q limit, that is, the number of protons. Deviations
of the “experimental” CSR from Z have been ascribed
to relativistic corrections, exchange current contributions,
in-medium nucleon form factors, and so on. Instead we
concentrate on fpp(q), because it contains interesting physical
information about the proton-proton correlation function.
[Another interesting sum rule concerning the second moment
〈s2〉 of ρpp(s), i.e., the low-q limit of fpp(q), was considered
in Ref. [36], where it was found that 〈s2〉 = 5.67 fm2 for
AV18 + UIX.]

In Fig. 8, fpp(q) is shown in comparison with the results
from Ref. [5] obtained with the same potential, including,
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TABLE I. Theoretical CSR for low q with the AV18 + UIX
potential in comparison with I th

γ = ∫ ω=q

ωth
dωR

exp
L (q, ω)/|Gp

E(Q2)|2.
The percentage contribution of the timelike response is also listed.

q (MeV/c) CSR(q) I th
γ % timelike

50 3.88 3.86 0.5
100 3.57 3.55 0.6
150 3.17 3.14 0.9
200 2.79 2.74 1.5

in addition, the lowest order relativistic corrections as well
as exchange operators, neglected here. We can make the
following observations. (i) The perfect agreement of the two
results when the operator in Eq. (3) is used shows the high
accuracy of the two calculations. (ii) The contributions of
exchange currents become negligible below q = 300 MeV.
This means that at low q physical interpretation of fpp(q)
as the Fourier transform of ρpp(s) is safe. Therefore, in
principle, the comparison of theory versus experiment would
allow microscopic study of the largely unknown long-range
correlations. (iii) As shown in Fig. 8(b) the effect of the
3NF on fpp(q) is up to 15% in the “safe” region below q =
300 MeV/c. This gives an idea of the required experimental
accuracy.

Unfortunately, obtaining the “experimental” CSR(q) [as
well as E(0, q)] is a nontrivial task, owing to the necessity
of extrapolating data up to infinite energies, even crossing
the photon point, where (e, e′) measurements do not have
access. Different extrapolation functions have been proposed.
They were also used recently in Ref. [18]. Our results can
help to determine these tail contributions. They can in fact be
obtained by subtracting from CSR(q) the experimental sum
of the data up to the last measured point at ωmax. From the
Saclay data [29] at q = 300 and 350 MeV/c we estimated
this high-energy contribution to be about 7% of the CSR. The
effect becomes twice as large for higher q values. However,
although this procedure would be safe enough at low q, at
high q this estimate could be inaccurate because of the neglect
of relativistic effects, two-body operators, and the role of the
neutron form factor. In general it would be desirable for the
tail contribution not to overcome the 3NF effect. Therefore
accurate data should be taken as far in energy as possible. Of
course they cannot overcome the photon point; therefore it
is of interest to calculate the contribution of the tail beyond
it. Table I reports that for q values up to 200 MeV/c the
contribution of the timelike region remains very low, reaching
at most 1.5%.

The present discussion, besides being interesting from
a purely theoretical point of view, may help to access
information about the proton-proton correlation function from
experimental data.

VI. CONCLUSIONS

In this paper we have analyzed 3NF effects on the
electron scattering longitudinal response function at several
kinematics. The most interesting results regard momentum
transfers between 50 and 250 MeV/c. Large effects of
3NFs are found for two three-body potentials (Urbana IX
and Tucson-Melbourne′), starting from an AV18 two-body
potential. We also observe that the 3NF effects differ by
nonnegligible amounts for the two three-body force models.
Because the difference between the two results increases
with decreasing momentum transfer, it can be ascribed to the
rather different long-range correlations generated by the two
forces. This observation suggests that discriminating between
phenomenological and effective field theory potentials might
also be possible, if precise experimental data were available at
these kinematics.

Three-body force effects have been analyzed separately in
the various multipoles contributing to the response. Below
q = 300 MeV/c a cooperative quenching effect was found in
all multipoles.

Integral properties of the longitudinal response function
have also been addressed. In particular, the possibility of
extracting information about the long-range behavior of the
proton-proton correlation function has been discussed. In rela-
tion to this it has been emphasized how the present results can
be used in determining the energy tail contributions to the CSR.

In general it has been emphasized that, unlike the search
for short-range correlations, the study of long-range ones is
not affected by complications owing to relativistic and two-
body contributions. Therefore a Rosenbluth separation of the
inclusive electron scattering cross section of 4He at momen-
tum transfer q � 200 MeV/c would be of great value for more
accurate determination of three-body forces and, in general, of
the long-range dynamics of this system.
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