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Nonperturbative relativistic approach to pion form factors: Predictions for
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Some predictions concerning possible results of the future experiments at the Thomas Jefferson National
Accelerator Facility (JLab) on the pion form factor Fπ (Q2) are made. The calculations exploit the method
proposed previously by the authors and based on the instant-form Poincaré invariant approach to pions, considered
as quark-antiquark systems. This model has predicted with surprising accuracy the values of Fπ (Q2), which were
measured later in JLab experiments. The results are almost independent from the form of wave function. The
pion mean square radius 〈r2

π 〉 and the decay constant fπ also agree with experimental values. The model gives
powerlike asymptotic behavior of Fπ (Q2) at high momentum transfer in agreement with QCD predictions.
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I. INTRODUCTION

The recent highly accurate experiments on the measurement
of the pion form factor in the range of Q2 up to 2.45 GeV2

[1,2] (Q2 = −q2, where q is momentum transfer) and fu-
ture Thomas Jefferson National Accelerator Facility (JLab)
experiments up to Q2 ≈ 6 GeV2 [3,4] enhanced the interest in
theoretical descriptions of pions at high Q2.

It is usually believed that these future experiments will
provide a meaningful test of the transition between perturbative
and nonperturbative regions, which is expected at much lower
Q2 in the case of pions than of other hadrons, in particular,
nucleons. At the present time, different theoretical approaches
to the pion form factor Fπ (Q2) exist. They are partly listed
and described in Ref. [2] (Sec. IV) (see also Ref. [5]). In the
frameworks of some of these models, a certain agreement with
existing experimental data is obtained for soft Fπ (Q2). For
the region of high momentum transfer, the theoretical results
differ from one another to a great extent. It seems us that one
has almost no hope of finding the appearance of perturbative
degrees of freedom in future JLab experiments on Fπ (Q2). It
is difficult to imagine that in the wide band of nonperturbative
theoretical curves there would not be any one that agrees with
the experimental data. The large variety of nonperturbative
predictions for future data for Fπ (Q2) makes it necessary to
formulate the problem of detecting of perturbative effects in a
slightly different way than it is usually done. We propose to
accept one of the theories that describes correctly the existing
data and continue the calculations for higher Q2. If future data
would require to adjust the calculations, beginning from some
values, by introducing the quark mass dependence on Q2 to
agree the future data, then we would identify these values with
the appearance of perturbative effects. In the present article, we
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use our own approach [6] as an example for the demonstration
of the proposed scenario.

The reasons for this choice are as follows. Our approach
has already demonstrated its predictive power: without any
additional tuning of parameters, we predicted in Ref. [6] the
values of Fπ (Q2) obtained later in experiments [7–9]. At the
same time, the approach gives the correct values of the mean
square radius (MSR), the decay constant fπ , and the powerlike
asymptotic behavior. Certainly, other criteria of discrimination
of the approach may exist. For example, one can consider as
“correct” an approach that gives a consistent treatment of the
pion form factor in spacelike and timelike regions.

In the present article, we use the approach to the pion form
factor Fπ (Q2) proposed in our papers of about 10 years ago [6].
Our approach presents one of the versions of the constituent
quark model (CQM). The method is based on the dispersion
approach to the instant form of Poincaré invariant quantum
mechanics [10] (see also the detailed version [11] and the
review [12]).

Based on this approach and on the experimental data of the
measurement of Fπ (Q2) in the range of Q2 up to 0.26 (GeV)2

[13], in 1998 we obtained the model function for the pion
form factor for the extended range of higher momentum
transfers [6]. The experimental data obtained later [7–9] (see
also the review of all experimental results in Ref. [2] and
references therein) for the range of Q2 larger by an order
of magnitude coincide precisely with our theoretical curve of
1998 [6] with no additional fitting. This means that it is possible
to consider our calculations [6] as an accurate prediction of the
present experimental data for the pion form factor. The model
describes correctly the pion MSR and the decay constant fπ .
It is important to notice that the dependence of our results
for Fπ (Q2) on the form of wave functions is very weak [6].
Moreover, our approach gives the correct powerlike asymptotic
behavior of Fπ (Q2) at Q2 → ∞, so the model works well at
high as well as low values of Q2.

Taking into account these advantages of our approach, we
hope that the model will continue to give a good description
of experimental data at higher momentum transfers, in
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particular for future JLab measurements in the range
2.45 � Q2 � 6 (GeV)2 (after having withstood the test of
10-fold increases of Q2 range, it may withstand another
much smaller increase). If the experimental data will not
follow our theoretical curve, then we shall adjust the theory
by taking into account the quark-mass dependence on Q2.
Within our approach, this dependence is a manifestation of
the appearance of perturbative degrees of freedom.

The article is organized in the following way. We start in
Sec. II with a brief review of the basic theoretical formalism of
our approach. The results of calculations and the comparison
with the experimental data and other theoretical models are
given in Sec. III. In Sec. IV, the asymptotic behavior of the
form factor is considered. Finally, our conclusions are given
in Sec. V.

II. THE MODEL

Our method is a version of the instant form of the Poincaré
invariant constituent-quark model (PICQM), formulated on
the base of a dispersion approach (see, e.g., Refs. [6,10]).
As is well known, the dispersion approach is based on the
general properties of space and time and therefore is to a certain
extent “model independent.” That is why the calculation of
electromagnetic form factors using the dispersion approach
are distinguished from other approaches. This advantage of
our method is emphasized in Ref. [14].1

The main point of our approach is the construction of the
operator of electromagnetic current, which preserves Lorentz
covariance and conservation laws in the relativistic invariant
impulse approximation (the so-called modified impulse ap-
proximation, MIA) [10]. This approximation is constructed
using dispersion-relation integrals over composite-particle
mass, that is, over the Mandelstam variables s, s ′ [11]. This
variant of dispersion approach was developed in Refs. [15–21]
and was fruitfully used to investigate the structure of composite
systems.

Let us recall some principal points of our approach [6,10].
In our variant of PICQM, pion electromagnetic form factor in
MIA has the form

Fπ (Q2) =
∫

d
√

s d
√

s ′ ϕ(k) g0(s,Q2, s ′) ϕ(k′). (1)

Here, ϕ(k) is the pion wave function in the sense of PICQM
and g0(s,Q2, s ′) is the free two-particle form factor. It may be
obtained explicitly by the methods of relativistic kinematics
and is a relativistic invariant function.

The wave function in Eq. (1) has the following structure:

ϕ(k) = 4
√

s u(k)k, s = 4(k2 + M2).

Here M is the mass of the constituent quark. For the function
u(k), we use some phenomenological wave functions.

1However, our free form factor differs from the free form factor
of Ref. [14] because in Ref. [14] the normalizations of one-particle
wave vectors and two-particle wave vectors are inconsistent in the
basis where of the two-particle center of mass is separated.

The function g0(s,Q2, s ′) is written in terms of the quark
electromagnetic form factors in the form

g0(s,Q2, s ′) = (s + s ′ + Q2)Q2

2
√

(s − 4M2)(s ′ − 4M2)

θ (s,Q2, s ′)

[λ(s, − Q2, s ′)]3/2

× 1√
1 + Q2/4M2

{
(s + s ′ + Q2)

[
G

q

E(Q2)

+G
q̄

E(Q2)
]

cos (ω1 + ω2) + 1

M
ξ (s,Q2, s ′)

× [
G

q

M (Q2) + G
q̄

M (Q2)
]

sin(ω1 + ω2)

}
.

(2)

Here, λ(a, b, c) = a2 + b2 + c2 − 2(ab + ac + bc),

ξ =
√

ss ′Q2 − M2λ(s,−Q2, s ′),

ω1 and ω2 are the Wigner rotation parameters

ω1 = arctan
ξ (s,Q2, s ′)

M[(
√

s + √
s ′)2 + Q2] + √

ss ′(
√

s + √
s ′)

,

ω2 = arctan
α(s, s ′)ξ (s,Q2, s ′)

M(s + s ′ + Q2)α(s, s ′) + √
ss ′(4M2 + Q2)

,

α(s, s ′) = 2M + √
s + √

s ′, θ (s,Q2, s ′) = ϑ(s ′ − s1) − ϑ(s ′ −
s2), ϑ is the step function, and

s1,2 = 2M2 + 1

2M2
(2M2 + Q2)(s − 2M2)

∓ 1

2M2

√
Q2(Q2 + 4M2)s(s − 4M2).

Note that the magnetic form factor contribution to Eq. (2) is
due to the spin rotation effect only [22]. Here, G

u,d̄
E,M (Q2) are

electric and magnetic form factors of quarks, respectively.
Let us note that we introduce electromagnetic quark form

factors, in particular, to obtain a description of the maximal
set of experimental data on pions, including the MSR and
the decay constant simultaneously, at the same values of the
parameters of the model [23].

We use the following explicit forms of the quark form
factors:

G
q

E(Q2) = eqfq(Q2),

G
q

M (Q2) = (eq + κq)fq(Q2),

where eq are quark charges and κq are anomalous magnetic
moments that enter our equations through the sum sq = κu +
κd̄ . We use

fq(Q2) = 1

1 + ln
(
1 + 〈

r2
q

〉
Q2

/
6
) , (3)

where 〈r2
q 〉 is the quark MSR.

Let us discuss in brief the motivation for choosing the
explicit form in Eq. (3). One of the features of our approach
is that the form factor asymptotic behavior at Q2 → ∞,
M → 0 does not depend on the choice of the wave function in
Eq. (1) and is defined by the relativistic kinematics of the two-
quark system only [6]. In the pointlike quark approximation
(κq = 0, 〈r2

q 〉 = 0), the asymptotic behavior coincides with
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that described by quark counting laws [24,25] (see also
the recent discussion in Ref. [26]): Fπ (Q2) ∼ Q−2. The
asymptotic behavior of the pion form factor was considered
in Refs. [27,28] (see also Ref. [29]). The form in Eq. (3)
gives logarithmic corrections to the power-law asymptotics,
obtained in QCD. So, in our approach, the form in Eq. (3) for
the quark form factor gives the same asymptotics as predicted
by QCD. Let us note that another choice of the form of quark
form factor, for example, the monopole form [30], changes
essentially the pion form factor asymptotic behavior so that it
does not correspond to QCD asymptotics anymore.

To calculate the pion form factor, we use wave functions
of different forms: harmonic oscillator wave functions (anal-
ogous to those used in the seminal Ref. [31] and continued
recently in Ref. [32]), power-law-type wave functions with the
explicit form motivated by perturbative QCD calculations at
high Q2 [33–35], and wave functions with linear confinement
and Coulomb-like behavior at small distances [36]. These
functions are of the form

u(k) = NHO exp(−k2/2b2), NHO =
√

4√
π b3

, (4)

u(k) = NPL (k2/b2 + 1)−n, n = 3,
(5)

NPL = 16

√
2

7 π b3
,

u(r) = NT exp(−αr3/2 − βr),

α = 2

3

√
2 Mr a, β = Mr b, NT = 3

√
2 α√

N (α , β)
,

N (α , β) = 9 α
3
√

2α �

(
5

3

)
1F1

(
5

6
,

2

3
, t

)

− 2
3
√

4 α2 β �

(
1

3

)
1F1

(
7

6
,

4

3
, t

)

+ 6 β 2
2F2

(
1,

3

2
,

4

3
,

5

3
, t

)
, t = − 8 β3

27 α2
,

(6)

where a , b are the parameters of linear and Coulomb parts
of potential, respectively; Mr is the reduced mass of the two-
particle system; b = (4/3) αs , αs = 0.59 on the scale of the
light meson mass; pFq are hypergeometric functions; and �(x)
is the Euler � function.

The parameters of the model are the same as in Ref. [6]
where the motivation of the choice is described in detail. Let
us note that for the constituent-quark mass M = 0.22 GeV,
the values of parameters (4)–(6) were chosen in such a way
as to ensure the pion MSR within experimental uncertainties
〈r2

π 〉1/2
exp = 0.657 ± 0.012 fm [13] as well as the best description

of the decay constant fπ exp = 0.1317 ± 0.0002 GeV [37].
The sum of the quark anomalous magnetic moments is
sq = 0.0268, and the quark MSR is 〈r2

q 〉 
 0.3/M2. The
values of other parameters are the following: in model (4),
b = 0.3500 GeV (the decay constant is fπ = 127.4 MeV); in
model (5), n = 3, b = 0.6131 GeV (fπ = 131.7 MeV); and in
model (6), a = 0.1331 GeV2fπ = 131.7 MeV). An interesting
feature of our results is that at the fixed constituent quark
mass, the dependence of the pion form factor on the choice
of the models (4)–(6) is rather weak. The curves calculated

with different wave functions but one and the same quark
mass form groups [6]. From the theoretical point of view,
this weak dependence of our calculations on the model is the
consequence of the dispersion-relation base of the approach.

III. RESULTS OF THE CALCULATIONS

The results of the calculation of the charge pion form
factor using the wave functions given by Eqs. (4), (5), and (6)
and the value of constituent-quark mass M = 0.22 GeV (this
parameter was fixed as early as 1998 [6] from the data at
Q2 � 0.26 (GeV)2 [13]) are shown in Figs. 1 and 2.

Let us note that our relativistic CQM describes well the
experimental data for the pion form factor, including the recent
points [2]. Our upper curve corresponds to the model (4), and
the lower curve corresponds to the models (5), with n = 3,
and (6), which lie close to one another.

Let us emphasize that the parameters used in our calcu-
lations were obtained from the fitting to the experimental
data up to Q2 
 0.26 GeV2 [13]. At that time, the data for
higher Q2 were not correlated in different experiments and had
significant uncertainties. The later data for pion form factor in
JLab experiments up to Q2 = 2.45 GeV2 were obtained with
rather good accuracy. All experimental points obtained in JLab
so far agree very well with our prediction from 1998.
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FIG. 1. (Color online) Our predictions for the pion form factor
given in 1998 [6] are compared with data and with some other
models. Our 1998 predictions are shown as full red (top) lines; the
upper line is wave functions from Eq. (4) and the lower line is wave
functions from Eqs. (5), with n = 3, and (6). The left (green) crosses
represent data points of Amendolia et al. [13]. Other data points (all
taken from Ref. [2]) are reanalyzed points of Ackerman et al. [38]
(full circles); reanalyzed points of Brauel et al. [39] (full triangles);
JLab results (full diamonds and squares). Other theoretical curves
are the QCD approximation of Maris and Tandy [40] (dotted line),
perturbative QCD (leading and next-to-leading order) of Bakulev
et al. [41] (the lowest solid, green) and Nesterenko and Radyushkin
[42] (dash-dotted, magenta), dispersion approach of Donoghue and
Na [43] (dashed, blue), and the holographic approach of Grigoryan
and Radyushkin [44] (thick, grey) (see also [51]).
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FIG. 2. (Color online) Comparison of our predictions with other
CQMs. Data and our curves are the same as in Fig. 1. Other theoretical
curves are those by C.-W. Hwang [45] (dashed, blue), Cardarelli et al.
[30] and (precisely coinciding with it) instant-form predictions [46]
(dash-dotted, magenta), and Ref. [47] (dotted, green). Predictions of
an upgraded version of a paper [31] (Ref. [32], Fig. 5, mq = 0.22)
coincide precisely with our upper curve.

Let us discuss briefly the basic moments that provide
good results for the pion form factor in our approach. First,
throughout the calculation, the condition of Lorentz covariance
and the conservation laws for the operator of electromagnetic
current were satisfied. Second, the accurate description of
the pion MSR constrains the behavior of the wave functions
in momentum representation Eqs. (4), (5) at small relative
momentum of quarks or of the wave function in coordinate
representation Eq. (6) at large distances because of special
properties of the integral representation Eq. (1). Third, the
best description of the decay constant defines constraints
for the wave function at large relative momenta because the
contribution of small relative momenta to the decay constant
is suppressed, as can be seen from the relativistic formula (see,
e.g. [6,48]):

fπ = M
√

3

π

∫
k2 dk

(k2 + M2)3/4
u(k).

So, our way of fixing the model parameters effectively
constrains the behavior of wave functions both at small and at
large relative momenta. The structure of our relativistic integral
representation, Eq. (1), is so that the form factor behavior in the
region of small momentum transfers is determined by the wave
function at small relative momenta and the behavior of the form
factor in the region of high momentum transfer is determined
by the wave function at large relative momenta. The constraints
for the wave functions provide the limitations for the form
factor, and this is seen in the results of the calculation.

IV. ASYMPTOTIC BEHAVIOR

It is worth considering the form factor asymptotic form
behavior at Q2 → ∞ in particular. In our article, Ref. [49], we

show that in our approach the pion form factor asymptotic form
at Q2 → ∞ and M → 0 does not depend on the choice of a
wave function but is defined by the relativistic kinematics only.
We consider the fact that the asymptotic behavior obtained in
our nonperturbative approach does coincide with that predicted
by QCD as very significant. Our approach is consistent with
the asymptotic freedom, and this feature surely distinguishes
it from other nonperturbative approaches.

It is obvious that at very high momentum transfers, the
quark mass decreases as it goes to zero at infinity. Our approach
permits to take into account the dependence M(Q2) beginning
from the range where this becomes necessary to correspond
to experimental data. It is possible that this will take place at
values of Q2 less than 6 GeV2.

The correct asymptotics is the consequence of the fact that
the relativism is an intrinsic property of our approach. To
demonstrate how it works, let us consider the simple example
of pointlike quarks and model wave functions given by Eq. (4).
In this case, in Eqs. (1) and (2),

Gu
E(Q2) + Gd̄

E(Q2) = Gu
M (Q2) + Gd̄

M (Q2) = 1.

For the model (4), it is easy to obtain the nonrelativistic integral
representation of the form factor as the corresponding limit of
the Eq. (1). Now the integration can be performed analytically,
and the following form for the nonrelativistic pion form factor
can be derived:

Fπ (Q2) = exp

(
− Q2

16 b2

)
.

One can see that in the nonrelativistic case, the form factor
does not depend on the mass of constituents and its asymptotics
cannot agree with those of QCD. The correct asymptotic
behavior is provided by relativistic effects.

In the relativistic case, the results for the integrals cannot
be obtained analytically. To derive the asymptotic behavior in
question, it is possible to use the asymptotic series for double
integrals obtained in Ref. [50]. The first two terms give

Fπ (Q2) ∼ 25/2M

Q
e−(QM/4b2)

(
1 + 7b2

2MQ

)
. (7)

Let us take in relation (7) the limit at M/b → 0. This means
that the parameters of the model are such that M/b � 1.
The physical meaning of this limit is that the increase of the
momentum transfer is followed by the “undressing” of the
constituent quarks and its transformation into current quark of
pQCD. In this limit, from Eq. (7) up to logarithmic prefactors,
we obtain the powerlike behavior coinciding with that of
pQCD [6]:

Fπ (Q2) ∼ 14
√

2b2

Q2
,

V. SUMMARY

To conclude, we make some predictions about the results
of the future JLab experiments on the pion form factor based
on the method proposed in our previous papers. The method
is a variant of composite quark model in the instant form
of Poincaré invariant quantum mechanics. Our approach has
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certain advantages as compared with other CQM calculations.
From a theoretical point of view, these advantages are the
consequence of the fact that our approach has dispersion-
relation-motivated foundations. This provides, in particular,
weak model dependence of the results of calculations. The
approach has demonstrated earlier its predictive power in
describing all the data on the pion form factor obtained later in
JLab experiments. Our calculations also give accurate values
of the pion MSR and of the decay constant fπ and the correct
asymptotic behavior at Q2 → ∞.

We hope that our model will provide a good description
of the results of future JLab experiments on the measurement
of the pion form factor in the range of momentum transfers

up to Q2 ≈ 6 (GeV)2. If one needs to adjust the calculations
beginning from some values by introducing the quark mass
dependence on Q2 to agree the data, then we propose to
identify the effect with the appearance of perturbative effects.
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