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Deeply bound K− pp state in the 3He(in-flight K−,n) spectrum, and its moving
pole near the π�N threshold
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The formation of a deeply bound K−pp state with I = 1/2, J π = 0−, by the 3He(in-flight K−,n) reaction
is theoretically investigated in a distorted-wave impulse approximation using the Green’s function method.
The expected inclusive and semiexclusive spectra at pK− = 1.0 GeV/c and θlab = 0◦ are calculated for the
forthcoming J-PARC E15 experiment. We demonstrate these spectra with several phenomenological K−-“pp”
optical potentials U opt(E) that have an energy-dependent imaginary part multiplied by a phase space suppression
factor, fitting to recent theoretical predictions or experimental candidates of the K−pp bound state. The results
show that a cusplike peak at the π�N threshold is a unique signal for the K−pp bound state in the spectrum
including the [K−pp] → Y + N decay process from two-nucleon K− absorption, as well as a distinct peak of
the K−pp bound state. The shape of the spectrum is explained by the trajectory of a moving pole of the K−pp

bound state in the complex energy plane. The importance of the [K−pp] → Y + N spectrum to extract clear
evidence of the K−pp bound state is emphasized.
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I. INTRODUCTION

The antikaon-nucleon (K̄N) interaction in nuclei is very
important to elucidate the nature of high density nuclear
matter [1]. Because the K̄NI = 0 interaction is believed to be
strongly attractive, one would expect the existence of deeply
bound K̄ nuclear states [2]. In particular, a three-body K̄NN
(unstable) bound state with a [K̄ ⊗ {NN}I=1]I=1/2, Jπ = 0−,
configuration, which is called “K−pp” here, is suggested to
be the lightest and most fundamental K̄ nucleus.

In 1963, Nogami [3] first discussed the possible existence
of the K−pp bound state using a rather crude calculation.
About 40 years later, Yamazaki and Akaishi [4] resumed
the study of the structure of the K−pp bound state based
on a quantitative few-body calculation with a phenomeno-
logical K̄N interaction that reproduces the mass and width
of �(1405) as a K̄-N quasibound state. They predicted
that the binding energy and width for the K−pp state are
B.E. = 48 MeV and � = 61 MeV, respectively. Many other
theoretical works [5–12] have also supported the existence
of the K−pp bound state, but the predicted binding energies
and widths do not converge (see Fig. 2). Shevchenko, Gal, and
Mareš [5] performed a K̄NN -π�N coupled-channel Faddeev
calculation using phenomenological K̄N -π� interactions,
leading to B.E. = 55–70 MeV and � = 95–110 MeV. Ikeda
and Sato [6] also obtained B.E. = 79 MeV and � = 74 MeV
in a similar Faddeev calculation with a chiral SU(3)-based
K̄N -πY interaction. On the other hand, some authors claimed
B.E. � 20 MeV [7,11] with K̄N interactions based on the
chiral unitary approach [13,14], which are less attractive than
the phenomenological K̄N interactions in the bound-state
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region. The discrepancy among theoretical results perhaps
stems from the ambiguity of the K̄N interaction, together
with the different procedures for three-body calculations
involving decay processes. Further theoretical investigations
are apparently needed.

Recently, several experimental observations of the K−pp

state have been reported. Data from the FINUDA Collabora-
tion at DA�NE [15] suggested evidence of a deeply bound
K−pp state in invariant-mass spectroscopy from stopped
K− reactions on 6Li, 7Li, and 12C. Their measured energy
and width are B.E. = 115 ± 9 MeV and � = 67+16

−14 MeV,
respectively. However, Magas et al. [16] claimed that the
FINUDA data can be explained without postulating the
existence of the K−pp bound state. The OBELIX experiment
at LEAR-CERN [17] also suggested observation of the K−pp

state in invariant-mass spectroscopy from stopped p̄ reactions
on 4He. Very recently, Yamazaki et al. [18] found new experi-
mental evidence of the K−pp state in p + p → K+ + � + p

reactions in a reanalysis of old DISTO experimental data
at SATURNE-Saclay. However, these experimental results
also leave room for other interpretations and therefore more
experimental data are required to confirm whether or not the
K−pp system has a deeply bound state.

Iwasaki et al. [19] have proposed a new experiment search-
ing for the deeply bound K−pp state at J-PARC using the
missing-mass spectrum of the 3He(in-flight K−,n) reaction,
together with invariant-mass spectra detecting all particles via
decay processes from the K−pp bound state (J-PARC E15
experiment). Moreover, a measurement of the K−pp state in
p + p collisions has been planned by the FOPI Collaboration
at GSI [20], as proposed by Yamazaki and Akaishi [21].
A search for light K̄ nuclear systems involving the K−pp

state in stopped K− reactions on 3He/4He targets has also
been planned by the AMADEUS Collaboration at DA�NE
[22].
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Our purpose is to theoretically clarify the expected inclusive
and semiexclusive spectra for the 3He(in-flight K−,n) reaction
for the forthcoming J-PARC E15 experiment. In a previous
work [23], we examined these spectra of the 3He(in-flight
K−,n) reaction within a distorted-wave impulse approxima-
tion (DWIA) employing the Green’s function method [24],
which well describes unstable hadron systems [25]. It has
been shown that the 3He(in-flight K−,n) reaction provides
a promising spectrum that contains an s-wave dominance in
the K− bound region, where a strong nuclear distortion for
K− is reduced [23]. This is a major advantage of the use of
an s-shell nuclear target such as 3He. A similar calculation
for the 3He target is also presented by Yamagata et al. [11]
using the chiral unitary approach. Investigations of heavier
targets within a similar framework have been reported in
several publications [26–29]. In the case of p-shell targets
of 12C and 16O [26], signals of K̄ nuclear states would not be
extracted owing to their broad widths even if the bound states
exist [27,28].

In this paper, we theoretically investigate the formation
and decay of a deeply bound K−pp state by the 3He(in-flight
K−,n) reaction at incident K− momentum pK− = 1.0 GeV/c

and forward direction θlab = 0◦ within a DWIA. To search
for a signal of the deeply bound K−pp state, we examine
the inclusive and semiexclusive spectra including one-nucleon
K− absorption processes,

[K−pp] → “K−p” + p → π + Y + N, (1)

and two-nucleon K− absorption processes,

[K−pp] → K− + “pp” → Y + N, (2)

near the π�N decay threshold, where Y = {�,�}. Because
many predictions of the B.E. and � for the K−pp state
exist at present, we demonstrate typical spectra by using
the K−-“pp” optical potential, which reproduces the values
of each B.E. and � phenomenologically. Here we employ
the phenomenological K−-“pp” optical potentials having
an energy dependence owing to the phase space factors of
processes (1) and (2). If the B.E. is higher than about 100 MeV,
a decay channel via process (1) with Y = � is kinematically
closed, so the decay width of the K−pp bound state would
be very small. Indeed, recent Faddeev calculations [5,6] and
several experimental observations [15,18] have suggested that
the B.E. is close to the energy at the π�N decay threshold.
To deal with this threshold effect, we must take into account
the energy dependence of the K−-“pp” optical potential.
This is a natural extension of previous work [23], where we
mainly discussed spectra with an energy-independent optical
potential. A preliminary result on this subject is partially
reported in Ref. [30].

The outline of this paper is as follows. In Sec. II, we
present our DWIA framework using the Green’s function
method for the 3He(in-flight K−,n) reaction, and we introduce
several phenomenological energy-dependent K−-“pp” optical
potentials, whose parameters are determined to reproduce
the values of B.E. and � obtained from recent few-body
calculations [4,5,7] or experimental candidates [15,17,18]. In
Sec. III, we report the calculated inclusive and semiexclusive
spectra for each optical potential. We find a distinct peak

structure or cusplike structure at the π�N threshold in the
spectrum, depending on the potential parameters; the shape
behavior of the spectrum is governed by a pole trajectory
for the K−pp state in the complex energy plane. In Sec. IV,
we discuss the dependence of the spectral shape on the
potential parameters and the branching ratio of K− absorptions
systematically, to clarify the appearance of the cusplike
spectrum. A summary and conclusion are given in Sec. V.

II. FRAMEWORK

A. Distorted-wave impulse approximation

In the DWIA framework [31], the inclusive double-
differential cross section of the 3He(in-flight K−,n) reaction
in the forward direction θlab = 0◦ in the laboratory system is
written [32] as

d2σ

dEnd�n

= β(0◦)

〈
dσ

d�n

(0◦)

〉K−N→NK̄

lab

S(E), (3)

where S(E) is a strength function of the K−pp system as
a function of the energy E, and 〈dσ/d�n(0◦)〉K−N→NK̄

lab is a
Fermi-averaged cross section of the elementary K− + N →
N + K̄ forward scattering, which is equivalent to the backward
K̄ + N elastic scattering in the laboratory system [33]. The
laboratory cross section for the non-spin-flip K− + n →
n + K− (K− + p → n + K̄0) process amounts to 24.5 mb/sr
(13.1 mb/sr) in free space [33,34] and is reduced to 13.9 mb/sr
(7.5 mb/sr) with Fermi averaging [28,35]. Both the K− +
n → n + K− elastic scattering and the K− + p → n + K̄0

charge exchange reaction can contribute to the formation of
the K−pp I = 1/2 state through coupling between K−pp and
K̄0pn channels. Thus an incoherent sum of contributions from
these K− + n → n + K− and K− + p → n + K̄0 processes,
as used in Ref. [11], may be unsuitable for the K−pp

bound region. On the K̄0/K− charge basis, a coupled-channel
calculation would be needed.

Here we consider the cross section of Eq. (3) on the isospin
basis because total isospin I = 1/2 is expected to be an
almost-good quantum number in the K−pp bound state. The
contribution from elementary processes is approximately esti-
mated by the isoscalar 
I = 0 transition amplitude f
I=0 =
−

√
2
3 (fK−n→nK− + 1

2fK−p→nK̄0 ) including a spectroscopic

factor for the K−pp I = 1/2 state formed on 3He [28]. If
we use the amplitude f
I=0 with Fermi averaging at pK− =
1.0 GeV/c and θlab = 0◦, the Fermi-averaged cross section
〈dσ/d�N (0◦)〉
I=0

lab = |〈f
I=0〉|2 is found to be 16.4 mb/sr,
whereas this value is 1.2 mb/sr for the isovector 
I =
1 transition [28]. In our calculations, therefore, we adopt
16.4 mb/sr as the value of 〈dσ/d�n(0◦)〉K−N→NK̄

lab in Eq. (3).
The kinematic factor β(0◦) [28,32] in Eq. (3) expresses the

translation from the two-body K−-n laboratory system to the
K−-3He laboratory system at θlab = 0◦ [36], and it is defined
as

β(0◦) =
[

1 − E(0)
n

E
(0)
K−

pK− − p(0)
n

p
(0)
n

]
pnEn

p
(0)
n E

(0)
n

, (4)
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where pK− and pn (EK− and En) are momenta of the incident
K− and the emitting n (energies of the residual K− and the
emitting n in the final state) in the many-body K− + 3He →
n + [K−pp] reaction, respectively, and the quantities with
a (0) superscript are in the two-body K− + n → n + K−
reaction. Note that the momentum transfer of this reaction
becomes negative; q(0◦) ≡ pK− − pn < 0. For negative mo-
mentum transfer, β(0◦) enhances the spectrum of Eq. (3) by a
factor of 1–2 , depending on pn and EK− [28].

The strength function of the K−pp system, S(E), in Eq. (3)
can be given as a function of the energy E measured from the
K− + p + p threshold:

E = MK−pp − (MK− + Mp + Mp), (5)

where MK−pp, MK− , and Mp are the masses of the K−pp

bound state, the K−, and the proton, respectively. In this
calculation, we assumed a “pp” pair to be a rigid core
with a 1S0 state. This assumption is suitable for qualitatively
describing the structure of the K−pp state, as long as we
consider the deeply bound region. A simple (1s)3 harmonic
oscillator model is used for the 3He wave function, in which
the relative 2N -N wave function has the form φ2N-N (r) ∝
exp(−r2/2a2), where a = bN

√
3
2 . The size parameter bN is

taken to be 1.30 fm, which reproduces the experimental root
mean square charge radius of 3He,

√
〈r2〉 = 1.94 fm [37].

B. Green’s function method

Here we consider Green’s function for the K−pp system. It
is obtained by solving the Klein-Gordon equation numerically:

{[E − VCoul(r)]2 + ∇2 − µ2 − 2µU opt(E; r)}G(E; r, r ′)
= δ3(r − r ′), (6)

where µ is the reduced mass between the K− and the “pp”
core nucleus, and VCoul is the Coulomb potential with the finite
nuclear size effect. U opt(E) is an energy-dependent K−-“pp”
optical potential between the K− and the “pp” core nucleus,
which is assumed to be the Lorentz scalar type.

According to the Green’s function method [24], we can
write S(E) as

S(E) = − 1

π
Im

[ ∑
α,α′

∫
d rd r ′f †

α (r)Gα,α′ (E; r, r ′)fα′(r ′)

]
,

(7)

with

fα(r) = χ (−)∗
(

pn,
MC

MK−pp

r
)

×χ (+)

(
pK− ,

MC

MA
r
)

〈α|ψn(r)|i〉, (8)

where Gα,α′ (E) is the complete Green’s function for the K−pp

system, and 〈α|ψn(r)|i〉 is the 2N -N wave function for a struck
neutron in the target, where α denotes the complete set of
eigenstates for the system. χ (+) and χ (−) are distorted waves
of the incoming K−, with momentum pK− , and the outgoing
n, with momentum pn, respectively. The factors MC/MK−pp

and MC/MA in Eq. (8) take into account the recoil effects,
where MC and MA are the masses of the “pp” core nucleus
and the 3He target, respectively. The recoil effects have to
moderate the whole shape of the spectrum. Indeed, if the recoil
factors are omitted, the cross section of a peak in the bound
region is reduced by about 50%; the yield in the quasifree
(QF) region increases; and the QF peak is shifted upward
to the higher-energy side, and its width is broader. Here we
actually use the factor MC/MK−pp not only in χ (−) but also in
χ (+) for simplicity. If we use the alternative factor MC/M̄AK ,
where M̄AK is the mean mass of MA and MK−pp, instead of
MC/MK−pp, we find that the cross section of the peak in the
bound region is enhanced by less than 10%.

Using the Green’s function technique, the strength function
S(E) for the inclusive spectrum can easily be decomposed into
two parts [23,24]:

S(E) = Scon(E) + Sesc(E), (9)

where Scon(E) denotes the K− conversion processes including
the decay modes of [K−pp] → π + Y + N and [K−pp] →
Y + N , which come from the one- and two-nucleon K−
absorptions in Eqs. (1) and (2), respectively; and Sesc(E)
denotes the K− escape processes, where the K− leaves
from the core nucleus as [K−pp] → K−+ “pp” above the
K− + p + p threshold (E > 0). Using abbreviated notation
for G(E), U opt(E), and f , instead of that in Eq. (7), we have

Scon(E) = − 1

π
〈f †G†(E){Im U opt(E)}G(E)f 〉, (10)

Sesc(E) = − 1

π
〈f †[1 + G†(E)U opt†(E)]

×{Im G0(E)}[1 + U opt(E)G(E)]f 〉, (11)

where G0(E) is the free Green’s function.
With the help of the eikonal approximation, we express the

distorted waves in Eq. (8) as

χ (−)∗( pn, r) = exp

[
−i pn · r − i

vn

∫ +∞

z

Un(b, z′)dz′
]

,

(12)

χ (+)( pK− , r) = exp

[
+i pK− · r − i

vK−

∫ z

−∞
UK−(b, z′)dz′

]
,

(13)

with the impact parameter coordinate b and the optical
potential for λ = K− or n,

Uλ(r) = −i
vλ

2
σ̄ tot

λN (1 − iαλN )ρ(r), (14)

where ρ(r) is the nuclear density distribution, and σ̄ tot
λN and αλN

denote the isospin-averaged total cross section and the ratio
of the real to the imaginary parts of the forward amplitude
for λ + N scattering, respectively. At pK− = 1.0 GeV/c, the
total cross sections of σ tot

K−p and σ tot
K−n amount to ∼50 and

∼40 mb, respectively, and σ tot
np varies within 30–40 mb in

the corresponding momenta pn = 1.1–1.4 MeV/c [38]. We
confirm that the absolute values of the formation cross section
in Eq. (3) are enhanced or reduced by up to about 20% when
the values of σ̄ tot

λN are changed within 30–50 mb, but the whole
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shape of the spectrum is hardly modified. Thus we use σ̄ tot
K−N =

σ̄ tot
nN = 40 mb [33,39] for simplicity. Because the formation

cross section is rather insensitive to the values of αλN [40], we
use αK−N = αnN = 0 [33,39]. This fact implies that distortion
effects are not very important in our calculation, because of
the small nuclear size of the 3He target. It has been shown that
the distortion factor for the (in-flight K−,n) reaction on 3He is
estimated as Ddis = 0.47 for the 1sp → 1sK− transition [23];
this value is about five times as large as the Ddis = 0.095 for
the 1pp → 1sK− transition on a 12C target [39]. This is also
an advantage of the use of s-shell nuclear targets such as 3He.

C. Optical potentials for the K−-“ pp” system

In a previous paper [23], we evaluated spectra with an
energy-independent K−-“pp” optical potential, which repro-
duced the results for the binding energy (B.E.) and width
(�) obtained by Yamazaki and Akaishi [4] or by Shevchenko
et al. [5]. On the other hand, Mareš, Friedman, and Gal [41]
introduced the phase space suppression factors f Y

1 (E) and
f Y

2 (E), which denote, for the one- and two-nucleon K−
absorption processes, respectively,

f Y
1 (E) = M3

1 (0)

M3
1 (E)

×
√[

M2
1 (E) − (MY + Mπ )2

][
M2

1 (E) − (MY − Mπ )2
]

[
M2

1 (0) − (MY + Mπ )2
][

M2
1 (0) − (MY − Mπ )2

]
×�[M1(E) − MY − Mπ ], (15)

f Y
2 (E) = M3

2 (0)

M3
2 (E)

×
√[

M2
2 (E) − (MY + MN )2

][
M2

2 (E) − (MY − MN )2
]

[
M2

2 (0) − (MY + MN )2
][

M2
2 (0) − (MY − MN )2

]
×�[M2(E) − MY − MN ], (16)

with M1(E) = MK̄ + MN + E and M2(E) = MK̄ + 2MN +
E, where MK̄ , MN , MY , and Mπ denote the masses of the K̄ ,
nucleon, hyperon (Y = � or �), and π , respectively; �(x) =
1 for x � 0 and 0 for x < 0. Figure 1 displays these phase
space suppression factors as a function of E. f �

1 (E) vanishes
below the π�N threshold of Eth(π�N ) = −101 MeV, and
f �

1 (E) vanishes below the π�N threshold of Eth(π�N ) =
−181 MeV. f Y

2 (E) vanishes below the YN threshold, for
example, Eth(�N ) = −239 MeV or Eth(�N ) = −319 MeV.
As attempted in Refs. [26] and [27], we take into account the
energy dependence of the imaginary part multiplied by f Y

1 (E)
or f Y

2 (E) in the optical potential. Thus we employ the energy-
dependent K−-“pp” optical potential, which is parametr-
ized in Gaussian form, with a range parameter b, as

U opt(E; r) = [V0 + iW0f (E)] exp[−(r/b)2], (17)

with

f (E) = B
(π�N)
1 f �

1 (E) + B
(π�N)
1 f �

1 (E) + B
(YN)
2 f Y

2 (E),

(18)

where V0 and W0 are adjusted parameters whose values are
determined to reproduce the results for the binding energy

FIG. 1. Phase space suppression factors introduced by Mareš
et al. [41], as a function of E. Dashed and dash-dotted curves
denote the phase space factors f �

1 (E) for the [K−pp] → π + � + N

process and f �
1 (E) for the [K−pp] → π + � + N process, respec-

tively, from one-nucleon K− absorption. The dash-dot-dotted curve
denotes f Y

2 (E) for the [K−pp] → Y + N process from two-nucleon
K− absorption. The solid curve denotes the total phase space
factor f (E) = B

(π�N)
1 f �

1 (E) + B
(π�N)
1 f �

1 (E) + B
(YN)
2 f Y

2 (E), where
[B (π�N)

1 , B
(π�N)
1 , B

(YN)
2 ] = (0.7, 0.1, 0.2) is assumed. The vertical

lines at E � −100, −180, and −240 MeV indicate the π + � + N ,
π + � + N , and Y + N decay threshold energies, respectively.

and width of the K−pp state in theoretical predictions or
experimental data, as we mention later. B(π�N)

1 and B
(π�N)
1 are

branching rates to [K−pp] → π + � + N and [K−pp] →
π + � + N decay channels from one-nucleon K− absorption,
respectively, and B

(YN)
2 is the branching rate to the [K−pp] →

Y + N decay channel from two-nucleon K− absorption. Here
we assumed [27,41,42]

B
(π�N)
1 = 0.7, B

(π�N)
1 = 0.1, B

(YN)
2 = 0.2, (19)

where we take that the [K−pp] → Y + N process acts
effectively in the � + N and � + N decay channels because
these channels similarly affect the spectrum within the present
framework (see also Fig. 1). Then we can rewrite the imaginary
part of U opt(E) in Eq. (17) as

Im U opt(E; r) = W�
1 (E; r) + W�

1 (E; r) + WY
2 (E; r), (20)

where WY
1 (E; r) and WY

2 (E; r) correspond to the absorp-
tive potentials for one- and two-nucleon K− absorptions,
respectively:

WY
1 (E; r) = B

(πYN)
1 W0f

Y
1 (E) exp[−(r/b)2], (21)

WY
2 (E; r) = B

(YN)
2 W0f

Y
2 (E) exp[−(r/b)2]. (22)
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In the Green’s function method, Scon(E) in Eq. (10) can be
further decomposed [23] as

Scon(E) = Scon
π�N (E) + Scon

π�N (E) + Scon
YN (E), (23)

with

Scon
πYN (E) = − 1

π

〈
f †G†(E)WY

1 (E)G(E)f
〉
, (24)

Scon
YN (E) = − 1

π

〈
f †G†(E)WY

2 (E)G(E)f
〉
, (25)

where Scon
πYN (E) and Scon

YN (E) express components of the
strength functions for the π + Y + N decay process from
one-nucleon K− absorption and for the Y + N decay process
from two-nucleon K− absorption, respectively, in the K−
conversion spectra. Therefore, the semiexclusive spectra in
the 3He(in-flight K−,n) reaction,

K− + 3He → n + [K−pp] → n + Y + X, (26)

can be evaluated in our calculations, where Y = {�,�} and
X = {π + N,N}.

The binding energies B.E. and widths � of the K−pp

bound state with I = 1/2, Jπ = 0−, have been predicted
in many calculations [5–12] and also reported in several
experiments [15,17,18]. In Fig. 2, we summarize the values of

FIG. 2. Summary of binding energies and widths of the K−pp

bound state. Theoretical calculations for the I = 1/2, J π = 0−,
state were predicted by YA (Yamazaki and Akaishi) [4], SGM
(Shevchenko, Gal, and Mareš) [5], IS (Ikeda and Sato) [6], DHW
(Doté, Hyodo, and Weise) [7], IKMW (Ivanov et al.) [8], NK
(Nishikawa and Kondo) [9], YJNH (Yamagata et al.) [11], and WG
(Wycech and Green) [12]; calculations for the I = 1/2, J π = 1−

state by AYO (Arai, Oka, and Yasui) [10]. Data were taken from
the FINUDA [15], OBELIX [17], and DISTO [18] experiments.
The vertical line at B.E. � 100 MeV indicates the π�N decay
threshold.

B.E. and � taken from theoretical predictions and experimental
candidates. By taking these results for B.E. and � as a guide, we
attempt to construct the K−-“pp” optical potentials U opt(E).
We solve the Klein-Gordon equation self-consistently in the
complex energy plane:

{[ω(E) − VCoul(r)]2 + ∇2 − µ2 − 2µU opt(E; r)}�(E; r) = 0,

(27)

where �(E; r) is a relative wave function between the K−
and the “pp” core nucleus, and ω(E) is a complex eigenvalue,
as a function of E, which is a real number. If we find that E

satisfies

Re ω(E) = E, (28)

we can obtain Re ω(E) = −B.E. and Im ω(E) = −�/2 as the
Klein-Gordon complex energy. Thus we determine the strength
parameters (V0, W0) in Eq. (17) by fitting to the prediction of
or candidate for B.E. and �. Here we introduce four K−-“pp”
optical potentials U opt(E) as follows:

(i) Potential A was determined by fitting to B.E. � 20 MeV
and a maximum � � 70 MeV in a variational three-
body calculation based on the chiral unitary approach
of Doté, Hyodo, and Weise [7].

(ii) Potential B, which is equivalent to the energy-
independent optical potential obtained in the variational
three-body calculation by Yamazaki and Akaishi [4],
was determined by fitting to B.E. = 48 MeV and � =
61 MeV.

(iii) Potential C was determined by fitting to B.E. � 70 MeV
and � � 110 MeV in the K̄NN -π�N coupled-channel
Faddeev calculation of Shevchenko et al. [5]. These
values correspond to the maximum B.E. and �, respec-
tively, within the uncertainty of their results.

(iv) Potential D is a series of the potentials we determined by
fitting to the experimental observations for B.E. and �:
D1, D2, and D3 indicate the potentials for the DISTO
[18], FINUDA [15], and OBELIX [17] experiments,
respectively.

For the range parameter for U opt(E) in Eq. (17), here we
used b = 1.09 fm, a value derived from the results of three-
body calculations by Yamazaki and Akaishi [4]. A slight
dependence of the spectrum on the range parameter b is seen
in the QF region; for example, when b is changed within
+0.12 fm (−0.12 fm) in potential C, the cross section
of the QF peak is reduced (enhanced) by less than 10%
and its peak position is shifted within −5 MeV (+5 MeV),
whereas the bound-state spectrum is almost unchanged. Note
that the values of � that we considered in (i)–(iii) were
obtained by microscopic three-body calculations with only
π + Y + N decay processes in one-nucleon K− absorption
[4,5,7]. Because the K−-“pp” optical potential has to describe
not only one-nucleon, but also two-nucleon, K− absorption
processes, we employ the parameters (V0,W0) for potentials
A, B, and C by fitting to the values of B.E. and � without B(YN)

2

in Eq. (18), that is, [B(π�N)
1 , B

(π�N)
1 , B

(YN)
2 ] = (0.7, 0.1, 0.0).

For potential D, we took the parameters with B
(YN)
2 . In Table I,

we list the parameter sets of (V0, W0) for U opt(E), together
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TABLE I. Parameters of the real and imaginary strengths, V0 and W0, of the K−-“pp” optical potentials U opt(E; r) for
the I = 1/2, J π = 0−, bound state in Eq. (17). The range parameter is b = 1.09 fm. Branching rates of the one-nucleon K−

absorption process are taken to be B
(π�N)
1 = 0.7 and B

(π�N)
1 = 0.1, respectively, and the branching rate of the two-nucleon

K− absorption process is B
(YN)
2 = 0.2. Values in parentheses are for the imaginary parts of the energy-independent

potentials U
opt
0 (r). All values are in MeV.

Potential V0 W0 Without B
(YN)
2 With B

(YN)
2 Ref.

B.E.a �b B.E.a �c

A −237 −128(−120) 21 70 15 92 DHW [7]
B −292 −107(−86) 48 61 45 82 YA [4]
C −344 −203(−147) 70 110 59 164 SGM [5]
D1 −399 −372(−86) 114 34 105 118 DISTO [18]
D2 −404 −213(−47) 118 19 115 67 FINUDA [15]
D3 −458 −82(−13) 162 5 161 24 OBELIX [17]

aBinding energy of the K−pp bound state measured from the K− + p + p threshold.
bWidth of one-nucleon K− absorption processes.
cTotal width of one- and two-nucleon K− absorption processes.

with their calculated binding energies B.E. and widths � for
the K−pp bound state. We find that when B

(YN)
2 is switched

on, the values of B.E. decrease and those of � increase.
In Fig. 3, we display the real and imaginary parts of the K−-

“pp” optical potentials U opt(E) as a function of the distance
between the K− and the center of the “pp” core nucleus. If
we neglect the energy dependence of U opt(E) in Eq. (17) by
replacing f (E) with 1, we find the energy-independent optical
potentials U

opt
0 , as used in our previous calculations [23]. It

should be noted that the values of W0 in U
opt
0 differ from

FIG. 3. Real and imaginary parts of the K−-“pp” optical poten-
tials U opt(E; r) for potentials (a) A, (b) B, (c) C, and (d) D2, as
a function of the distance between K− and the center of the “pp”
core nucleus. Solid curves denote the real parts, and dashed curves
the imaginary parts, at E = 0, −50, and −100 MeV. Dotted curves
denote the imaginary parts for the energy-independent K−-“pp”
optical potentials U

opt
0 (r).

those in U opt(E), as reported in Table I, whereas we have
Im U

opt
0 = Im U opt(E) at E = −B.E.

III. NUMERICAL RESULTS

A. Inclusive spectrum for the 3He(in-flight K−,n) reaction

Let us consider the 3He(in-flight K−,n) reaction at pK− =
1.0 GeV/c and θlab = 0◦ for the J-PARC E15 experiment [19].
To find possible evidence of the K−pp bound state, we
evaluate the inclusive and semiexclusive spectra of the 3He(in-
flight K−,n) reaction numerically using Eqs. (3), (9)–(11),
and (23)–(25).

In Fig. 4, we display the calculated results for the inclusive
spectra with the optical potentials U opt(E) listed in Table I.
In Fig. 4(c), we show the calculated inclusive spectrum for
potential C, where the binding energy and width of the
K−pp bound state were obtained as B.E. = 59 MeV and � =
164 MeV, respectively. The inclusive spectrum with U opt(E) is
qualitatively different from that with the energy-independent
U

opt
0 . The former has a cusp that appears at the π�N threshold

in the L = 0 component of the spectrum, whereas the latter
has no peak because of the large width of the K−pp state [23].
This cusplike structure originates from the energy dependence
of the imaginary part of U opt(E), and its mechanism can be
understood by the behavior of a pole trajectory of the K−pp

state in the complex energy plane, as discussed in Sec. III C.
In Fig. 4(b), we show the inclusive spectrum for potential

B, which gives B.E. = 45 MeV and � = 82 MeV. A clear
peak of the K−pp state appears in both the spectrum with
U opt(E) and that with U

opt
0 , but the peak position for U opt(E)

is shifted slightly, from E = −45 MeV to E = −50 MeV,
because of its energy dependence. Because this state is away
from the branching point of the π�N threshold, the peak in
the spectrum is scarcely influenced by the threshold, so that its
shape approximately indicates a standard Breit-Wigner (BW)
form [28]. As the π�N phase space is taken into account,
the spectrum for U opt(E) is suppressed below the π�N decay
threshold of Eth(π�N ) � −100 MeV, in contrast to that for
U

opt
0 [23].
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FIG. 4. Calculated inclusive spectra for the 3He(in-flight K−,n)
reaction at pK− = 1.0 GeV/c and θlab = 0◦ as a function of the energy
E of the K−pp system measured from the K− + p + p threshold for
potentials (a) A, (b) B, (c) C, and (d) D2. Solid and dashed curves
denote the inclusive spectra for the energy-dependent U opt(E) and
energy-independent U

opt
0 potentials, respectively. The dotted curve

denotes the L = 0 component in the inclusive spectrum for U opt(E).
The vertical line at E = 0 MeV indicates the K− + p + p threshold,
and the left- and right-hand sides of this line are the K− bound and
quasifree scattering regions, respectively.

Figure 4(a) shows that the peak of the K−pp bound state is
not clear in the inclusive spectrum with potential A, because
of the relatively low binding energy of 15 MeV and the large
width of 92 MeV. The energy dependence of the spectrum
for U opt(E) seems to be similar to that with potential B.
Yamagata et al. [11] performed a similar calculation using
the energy-dependent K−-“pp” optical potential based on the
chiral unitary model. The shape of their inclusive spectrum is
different from that of ours because of the different contribution
of the partial-wave components and their different widths; they
found the K−pp L = 0 bound state with B.E. � 20 MeV and
� � 40 MeV, and other L = 1, 2 bound states with B.E. �
10 MeV [11]. However, it is not understood that the K−pp

system has nuclear bound states with L � 1, considering its
small nuclear size such as for 3He.1

We consider potential D2 to be a typical example of
the potential D series. In Fig. 4(d), we show the inclusive
spectrum with potential D2 by fits to the experimental values,
B.E. = 115 MeV and � = 67 MeV, which were obtained from
the invariant-mass spectrum in the FINUDA experiment [15].
If the interpretation of the FINIDA candidate as a K−pp

bound state is true, a clear peak should appear below the π�N

1In the Note Added in Proof in Ref. [11], it is commented that bound
states with L � 1 should not be interpreted as the three-body K−pp

state but could be �(1405) formed by the two-body K−p state.

threshold in the missing-mass spectrum. It would be easy to
observe such a peak structure experimentally. The spectra with
U opt(E) and U

opt
0 are quite similar in shape below the π�N

threshold, whereas they differ considerably above the π�N

threshold. For potentials D1 and D3, which were determined
by fits to the DISTO [18] and OBELIX [17] data, respectively,
we also see that a clear peak in the spectra appears below the
π�N threshold (see also Fig. 10). We find that the shape of the
peak in the spectrum with D1 is similar to that in the spectrum
with D2, as shown in Fig. 4(d), whereas the spectrum with
D3 has a very prominent peak because of the small width of
� = 24 MeV.

Therefore, we recognize that the inclusive spectrum of the
3He(in-flight K−,n) reaction at pK− = 1.0 GeV/c and θlab =
0◦ is expected to have a signal for clear evidence of the
K−pp bound state. The calculated spectrum predominantly
has a bound state with I = 1/2, Jπ = 0−, and an orbital
angular momentum L = 0 in the K−pp bound region below
the K− + p + p threshold, whereas continuum states with
L � 1 occur in the QF region. We stress that the (in-flight K−,
n) reaction on an s-shell nuclear target such as 3He provides an
advantage in producing a deeply bound K− nuclear state with
L = 0. These results also indicate the importance of energy
dependence of the K−-“pp” optical potentials, particularly
in the case of potentials C, D1, and D2. We realize the
limit for applying the energy-independent optical potential
to calculations of the spectrum; this potential can be justified
only for potential A, involving shallow potentials [7,11], and it
works approximately for potential B around the K−pp peak.
The strength of |V0| in U

opt
0 must be shallower than 300 MeV,

which corresponds to B.E. < 50 MeV.

B. Contribution of one- and two-nucleon K− absorption
processes in K− conversion spectra

It should be noted that the calculated K− conversion spectra
can be directly compared with the experimental data from
the J-PARC E15 experiment, which is planned to measure
(in-flight K−,n) spectra and decaying particles from the K−pp

system simultaneously [19]; no K− escape spectrum will be
measured in this experiment. To search for a better signal
of the K−pp bound state, we focus on the K− conversion
spectra that express semiexclusive K− + 3He → n + Y + X

processes in the deeply bound region, where Y = {�,�} and
X = {π + N,N}. By Eqs. (24) and (25), we can calculate
the strength functions for K− conversion processes, which are
effectively described by the imaginary potential Im U opt(E) in
Eq. (20), within the optical models. For K− escape processes,
we can calculate the strength function in Eq. (11), which is
probably underestimated because it is described as K− + “pp”
continuum states above the K− + pp threshold, where “pp”
should actually break up into p + p.

In Fig. 5, we illustrate partial contributions in the 3He(in-
flight K−,n) spectrum at pK− = 1.0 GeV/c and θlab = 0◦,
for example, the [K−pp] → π + � + N decay process and
[K−pp] → π + � + N decay process from one-nucleon K−
absorption and the [K−pp] → Y + N decay process from
two-nucleon K− absorption. Figure 5(c) shows that the
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FIG. 5. Calculated semiexclusive spectra for the 3He(in-flight
K−,n) reaction at pK− = 1.0 GeV/c and θlab = 0◦, for potentials
(a) A, (b) B, (c) C, and (d) D2. Solid and dot-dashed curves denote
the [K−pp] → π + � + N and π + � + N decay processes from
one-nucleon K− absorption, respectively. Dashed curves denote the
[K−pp] → Y + N decay process from two-nucleon K− absorption.
Dotted curves denote the spectra of the K− escape process. See also
the caption to Fig. 4.

cusplike peak at the π�N threshold originates from the
π + � + N and Y + N decay channels in the spectrum for
potential C, rather than the π + � + N decay channel, which
is suppressed below the π�N threshold because its decay
channel is closed there. This cusplike peak is clear evidence
of formation of the K−pp bound state. Because the observed
peak position and width do not directly correspond to the actual
binding energy and width, respectively, we need a comparison
between the theoretical and the experimental spectra to extract
the binding energy and width of the K−pp bound state from
the cusplike peak.

In Fig. 5(d), it is also interesting to see the clear peak in the
π + � + N and Y + N decay spectra with potential D2, which
is more attractive than potential C. Its shape is asymmetric
because it must be sharply cut by the phase space suppression
factor above the π�N threshold. Moreover, we confirm that
the π + � + N decay spectrum gives no peak for the K−pp

bound state, nor does the spectrum with potential C.
Figure 5(b) shows partial contributions in the calculated

spectrum with potential B. We find that the shapes of the
spectra with π + � + N , π + � + N , and Y + N decay pro-
cesses are essentially the same, but the peak positions of these
spectra differ slightly because of the energy dependence of the
potential. A clear signal would be observed in the spectrum
with [K−pp] → Y + N from two-nucleon K− absorption, as
well as the inclusive spectrum shown in Fig. 4(b).

On the other hand, we confirm that there is no peak in any
partial contributions with potential A even though the K−pp

bound state exists, as shown in Fig. 5(a). This state exists
close to the K− + p + p threshold owing to the low binding
energy, B.E. = 15 MeV, and the large width, � = 92 MeV. For
a more quantitative estimation, we must examine the whole
shape of the spectrum, including the effects of the K− + p + p

threshold [24,28].
We recognize that a detailed comparison between the

theoretical and the experimental spectra is required to extract
the binding energy and width of the K−pp bound state from
the spectra. The shape behavior of the [K−pp] → π + � + N

decay spectrum is quite similar to that of the [K−pp] →
Y + N spectrum with all of our potentials. This similarity
is understood from the fact that the energy dependence of the
phase space factor f �

1 (E) for π + � + N decay processes
resembles that of f Y

2 (E) for Y + N decay processes near the
π�N threshold.

C. Pole trajectory for the deeply bound K− pp state

1. A moving pole in the complex energy plane

It is important to understand the mechanism of the peak
structure near the π�N threshold in the spectrum, so as
to identify the nature of the K−pp bound state from the
experimental data. Quantum mechanically, a peak structure in
the energy spectrum is associated with a pole in the scattering
amplitude or the complete Green’s function. The pole position
corresponds to a complex eigenvalue of a Hamiltonian on the
complex energy plane. The shape of the spectrum must be
modified by the threshold effects if the pole is located near the
branch point of the threshold. To understand the shape behavior
of the [K−pp] → Y + N decay spectrum, we investigate the
pole position of the K−pp state in the complex energy plane.
We can obtain the pole position as a complex eigenvalue of
ω(E) in Eq. (27), as a function of E, because of the energy
dependence of U opt(E).

The shape of the inclusive spectrum in the K− bound region
may perhaps be written in the following form:

S(pole)(E) = − 1

π

Im ω(E)

D2(E)
, (29)

where

D(E) ≡
√

[E − Re ω(E)]2 + [Im ω(E)]2 (30)

denotes the distance between point (E, 0) of the physical state
on the real axis and the pole at point [Re ω(E), Im ω(E)] in
the complex energy plane, as illustrated in Fig. 6. If the
energy dependence of ω(E) is negligible, the shape of
S(pole)(E) is equivalent to the BW resonance form. Because
Im ω(E) is approximately proportional to the phase space
suppression factor f (E), the shape of the inclusive spectrum
is roughly denoted f (E)/D2(E). Functions f Y

1 (E)/D2(E)
and f Y

2 (E)/D2(E) can simulate the shapes of the one- and
two-nucleon K− absorption spectra, respectively. It is apparent
that Scon

π�N (E) is suppressed below the π�N threshold owing to
the behavior of the function f Y

1 (E). On the contrary, Scon
π�N (E)

and Scon
YN (E) are approximately equivalent to 1/D2(E) because

f �
1 (E) and f Y

2 (E) can be regarded as constants around the
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FIG. 6. Distance D(E) between point (E, 0) on the real axis and
the pole at [Re ω(E), Im ω(E)] for the K−pp state in the complex
energy plane. The pole moves on the trajectory as a function of the
real energy E. Some examples are illustrated at E = Ei (i = 1, 2, 3).

π�N threshold. For instance, we have

Scon
YN (E) ≈ const. × 1

D2(E)
(31)

for the Y + N decay spectrum.
Now we consider the peak structure in the [K−pp] →

Y + N decay spectrum obtained with V0 = −292 MeV and
W0 = −107 MeV for potential B. Figure 7 illustrates the pole
trajectory ω(E) as a function of E, together with D(E) and
1/D2(E). When E is changed from 0 to −100 MeV, the pole
moves slowly from the point (−42 MeV, −51 MeV) to the
point (−51 MeV, −15 MeV), so that D(E) works as an almost-
smooth function with a minimum value at E � −60 MeV. In
this case, therefore, a clear peak in 1/D2(E) is observed around
E � −60 MeV. This peak is in good agreement with that of the
Y + N decay spectrum in Fig. 5(b). The shape of the spectrum
deviates from the standard BW form owing to the nature of the
energy dependence of D(E), whereas the position of this peak
does not coincide with the point at E = −B.E. = −45 MeV.

Figure 5(c), on the contrary, shows a cusplike peak at the
π�N threshold in the [K−pp] → Y + N decay spectrum
with potential C. To understand the appearance of this
cusplike structure, we obtain a moving pole at ω(E) with
V0 = −344 MeV and W0 = −203 MeV for potential C, as
a function of E. In Fig. 8 we illustrate the pole trajectory
of its ω(E), D(E), and 1/D2(E). We find that the pole of
ω(E) moves widely in the complex energy plane; when E

is changed from 0 to −100 MeV, the pole of ω(E) moves
from the point (−43 MeV, −110 MeV) to the point (−76 MeV,
−34 MeV). For E < Eth(π�N ), its pole remains around
the point (−77 MeV, −25 MeV). It should be noted that the
minimum of D(E) is realized at E = Eth(π�N ), where
dD(E)/dE is singular. In this case, therefore, a cusplike
peak in 1/D2(E) is observed at the π�N threshold. This
shape agrees with that of the spectrum shown in Fig. 5(c).
To see the effects of W0, we also obtain the trajectory of
a moving pole with V0 = −344 MeV and W0 = −47 MeV,
which corresponds to the specific case with an artificially

E = -100 MeV

E = -90 MeV

E = 0 MeV

FIG. 7. Pole trajectory of the K−pp state (bottom) and D(E)
(top) in the complex energy plane, in the case of potential B (V0 =
−292 MeV and W0 = −107 MeV). Circles denote pole positions at
ω(E), which are drawn from E = −110 MeV to E = 0 MeV, in
steps of 10 MeV. The dashed curve denotes 1/D2(E), which roughly
represents the contribution of the pole in the spectrum.

narrow width. We confirm that the shape of its spectrum is
identified as the BW form, as shown in Fig. 9.

Consequently, we recognize that the cusplike structure can
be described as the behavior of the pole trajectory, which is
governed by the energy dependence of U opt(E), as well as a
clear peak with the BW form. The path of the trajectory for the
moving pole in the complex energy plane is determined by the
values of V0, and its moving range on the trajectory depends
on the values of W0.

2. Pole trajectories for K−-“ pp” optical potentials

Figure 10 shows the pole trajectories of the K−pp bound
state for potentials A, B, C, D1, D2, and D3 in the complex
energy plane. The strength parameters (V0, W0) characterize
the shape structure of the K−pp state in the spectrum with the
[K−pp] → Y + N decay from two-nucleon K− absorption.
For potential C, a cusp at the π�N threshold appears clearly in
the spectrum, as shown in Fig. 5(c), because the value of D(E)
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E = -100 MeV

E = -90 MeV

E = 0 MeV

FIG. 8. Pole trajectory of the K−pp state and D(E) in the
complex energy plane, in the case of potential C (V0 = −344 MeV
and W0 = −203 MeV). See also the caption to Fig. 7.

at E = Eth(π�N ) is much smaller than that of �/2, which is
equivalent to the distance from the pole at point (−B.E., −�/2)
to the real axis. For potential D2, a steep step is observed at
the π�N threshold, as shown in Fig. 5(d); its yield is sharply
decreased because its pole moves rapidly above the π�N

threshold.
It should be noted that our K−-“pp” optical potentials,

U opt(E), are not derived from microscopic calculations but are
introduced phenomenologically. To examine whether or not a
potential has the appropriate energy dependence, we evaluate
the pole trajectory of point (−B.E.,−�/2) in the complex
energy plane when we change the value of V0 in U opt(E).

Figure 11 shows the energy dependence of the pole trajec-
tories on decay channels with V0 = (−300) to (−420) MeV,
when we switch on/off each B

(π�N)
1 and B

(YN)
2 , with B

(π�N)
1 =

0.7 and W0 = −203 MeV, which corresponds to the imaginary
part of potential C. If we consider only B

(π�N)
1 , its width

becomes smaller when −B.E. is close to Eth(π�N ), and it
finally becomes 0 when −B.E. is located below Eth(π�N ).
This behavior seems to be qualitatively consistent with the
result obtained from a K̄NN -π�N coupled-channel Faddeev
calculation by Ikeda and Sato [43]. Even if B

(π�N)
1 and/or

E = -100 MeV

E = 0 MeV

FIG. 9. Pole trajectory of the K−pp state and D(E) in the
complex energy plane, in the case of potential C modified with an
artificially narrow width (V0 = −344 MeV and W0 = −47 MeV). See
also the caption to Fig. 7.

B
(YN)
2 is switched on, the pole trajectory of the point

(−B.E., −�/2) is not much changed quantitatively, except
for additional width. But the pole trajectory for the energy-
independent potential U opt

0 differs from that for U opt(E); −�/2
is almost proportional to −B.E. Therefore, we believe that our
K−-“pp” optical potential U opt(E) has the desirable energy
dependence, which is expected from the coupled-channel
Faddeev calculation, and that it is enough for us to discuss
the shape of the spectrum with the [K−pp] → Y + N decay
process. For a more quantitative argument, one should obtain
the K̄NN single-channel effective potential, in which the
π�N channel is eliminated in the K̄NN -π�N coupled-
channel scheme [44], and compare it with our optical potential.
Investigation along this line will be discussed in future work.

IV. DISCUSSION

A. Cusplike structure in the spectrum near the π�N threshold

Recently, Akaishi et al. [45] discussed a cusplike structure
in the spectrum of the (in-flight K−,n) reaction on a deuteron
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 -110 MeV

 -100 MeV

 - 90 MeV

 - 80 MeV

 - 70 MeV

 - 60 MeV

 -110 MeV

 -100 MeV

 - 90 MeV

FIG. 10. Pole trajectories of the K−pp state for potentials A,
B, C, D1, D2, and D3 in the complex energy plane. Circles denote
pole positions at ω(E), which are drawn from E = −110 MeV to
E = 0 MeV, in steps of 10 MeV. Crosses denote positions at (−B.E.,
−�/2) whose values are given in Table I for these potentials.

-300 MeV-320
-340
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-380-400-420

-420 -400

-380
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-340

-320 -300 MeV

-320
-340

-360
-380

-400
-420 E-independent 

potential

(0.1, 0.2)
(0.1, 0.0)
(0.0, 0.0)

(πΛN) (YN)(B1      , B2     )

FIG. 11. Behavior of the moving pole at (−B.E., −�/2) when the
value of V0 for the energy-dependent potential U opt(E) is changed.
Diamonds, squares, and circles denote the cases of [B (π�N

1 , B (YN)
2 ] =

(0.0, 0.0), (0.1, 0.0), and (0.1, 0.2) in U opt(E) with B
(π�N)
1 = 0.7

and W0 = −203 MeV, respectively. Crosses denote the case of the
energy-independent potential U

opt
0 with W0 = −179 MeV. Numbers

by the symbols give the corresponding values of V0.

target, using a coupled-channel model with a separable
potential. They showed that the cusplike structure at the
π� threshold can also be observed in the [K−p] → π + �

spectrum from one-nucleon K− absorption. In Sec. III, we
found a cusplike structure at the π�N threshold in spectra
with [K−pp] → π + � + N and [K−pp] → Y + N decay
processes when using potential C. The shape and magnitude
of these spectra depend strongly on the pole trajectory of
the K−pp bound state and are characterized by the strength
parameters (V0, W0). It is worth examining the conditions
for (V0, W0) that gives the cusplike structure at the π�N

threshold within our optical potential U opt(E).
In this section, we focus on spectra with [K−pp] →

π + � + N and [K−pp] → Y + N decays, by artificially
changing (V0, W0) in the following two cases: (i) [B(π�N)

1 ,
B

(YN)
2 ] = (0.7, 0.0), which means only the [K−pp] → π +

� + N decay process; and (ii) [B(π�N)
1 , B

(YN)
2 ] = (0.7, 0.2).

Here we omit B
(π�N)
1 for the [K−pp] → π + � + N decay

process for simplicity, because B
(π�N)
1 operates similarly to

B
(YN)
2 in the spectrum, as discussed in Sec. III B.

Figure 12 shows the behaviors of S(E) in spectra with
[K−pp] → π + � + N and [K−pp] → Y + N decays at

FIG. 12. Behavior of the strength function S(E) at W0 =
−107 MeV when the value of V0 is changed: V0 = (a) −340 MeV,
(b) −360 MeV, (c) −380 MeV, and (d) −400 MeV in (left) the
case of [B (π�N)

1 , B
(YN)
2 ] = (0.7, 0.0) and (right) the case of [B (π�N)

1 ,
B

(YN)
2 ] = (0.7, 0.2). Solid and dashed curves denote Scon

π�N (E) and
Scon

YN (E), respectively.
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−W0 = 107 MeV, which corresponds to the imaginary part of
potential B, by changing −V0 = 340–400 MeV. For case (i), as
shown in Fig. 12 (left), the magnitude of the peak in Scon

π�N (E)
increases at the π�N threshold with increasing −V0. When
−V0 � 380 MeV, the magnitude is at its maximum around
−B.E. � Eth(π�N ). When −V0 > 380 MeV, the K−pp state
must be bound below the π�N threshold and its peak is located
at E = −B.E. This cusplike peak in Scon

π�N (E) is quite similar
to that obtained by Akaishi et al. [45].

For case (ii), we show the behaviors of Scon
YN (E) and

Scon
π�N (E) with B

(YN)
2 = 0.2 in Fig. 12 (right). We find that there

is a cusplike structure in Scon
YN (E) at −V0 � 340–380 MeV, and

an asymmetric peak, which is cut off sharply above the π�N

threshold, appears in Scon
YN (E) when −V0 > 380 MeV, whereas

there is no (cusplike) peak in Scon
π�N (E). Thus, we recognize that

the cusplike structure is observed in the [K−pp] → Y + N

decay spectrum rather than the [K−pp] → π + � + N decay
spectrum because of the existence of the Y + N decay channel.

In Fig. 13, we examine the behaviors of S(E) in spectra
with [K−pp] → π + � + N and [K−pp] → Y + N decays
at −V0 = 344 MeV, which corresponds to the real part of
potential C, by changing −W0 = 60–200 MeV. In case (i),
we see that the clear peak near E � −80 MeV in Scon

π�N (E)
becomes broad as −W0 increases, as shown in Fig. 13 (left).
In case (ii), we also find that a clear peak is located near

FIG. 13. Behavior of the strength function S(E) at V0 =
−344 MeV when the value of W0 is changed: W0 = (a) −60 MeV,
(b) −100 MeV, (c) −140 MeV, and (d) −200 MeV. See also the
caption to Fig. 12.

E � −80 MeV in both Scon
π�N (E) and Scon

YN (E) at −W0 =
60 MeV, as shown in Fig. 13 (right). As −W0 increases,
Scon

π�N (E) gradually decreases, but Scon
YN (E) gradually increases

just at the π�N threshold. Thus it increases up to a threshold
cusp in the spectrum.

Therefore, we see the cusplike structure in the spectrum
under the conditions that −B.E. is close to and above the
π�N threshold energy and � is very large. The correspond-
ing strength parameters are roughly estimated as −V0 =
330–380 MeV and −W0 � 100–120 MeV, which are found
for potential C, given in Table I. The cusplike structure is the
unique signal for evidence of the deeply bound K−pp state in
the [K−pp] → Y + N decay spectrum.

B. Dependence of the spectrum on the branching rate B(Y N)
2

The shape of the semiexclusive K− conversion spectrum
including the [K−pp] → Y + N decay process is very im-
portant for extracting the structure of the K−pp state, for
example, the potential strengths (V0, W0), rather than that
of the spectrum including the [K−pp] → π + � + N decay
process. In our calculations, we assumed the branching rate
B

(YN)
2 = 0.2 in K−pp decay processes. This value has often

been used in previous work on heavier targets [26,27,41,42]
but it is experimentally unknown for K− absorption on
3He in flight. In terms of K− absorption on 4He at rest,
early data from a helium bubble chamber experiment [46]
suggested that the ratio of two-nucleon K− absorption to
all K− absorption processes amounts to 16%, whereas its
value depends on atomic orbits where K− is absorbed through
atomic cascade processes [27,47]. A recent analysis of K−
absorption on 4He at rest [48] also calls for re-examination of
B

(YN)
2 experimentally. To determine the value of B

(YN)
2 in K−

absorption in flight, we need more investigations on B
(YN)
2 ,

experimentally and theoretically.
As the first step toward these investigations, we attempted

to calculate the strength function S(E) for potential C, to
check the sensitivity of semiexclusive spectra to the value of
B

(YN)
2 . Figure 14 demonstrates the dependence of the spectra

on the values of B
(YN)
2 when changing B

(YN)
2 = 0.1–0.3.

For the [K−pp] → π + � + N and [K−pp] → π + � + N

decay spectra, each magnitude is reduced as B
(YN)
2 increases,

as shown in Figs. 14(a) and 14(b). On the contrary, the
[K−pp] → Y + N decay spectrum is enhanced as B

(YN)
2

increases, as shown in Fig. 14(c). The shape of these spectra
is scarcely modified by a small change in B

(YN)
2 . Thus, the

detailed values of the branching rates have an influence only
on the relative magnitude of each decay spectrum, and do not
change the nature of the K−pp formation signal. We stress that
it is important to compare the shapes of calculated spectra with
those of measured spectra. This detailed comparison provides
valuable information on B

(π�N)
2 , B

(π�N)
2 , and B

(YN)
2 , as well

as on the binding energy and width of the K−pp state.

C. The spectrum near the K− + p + p threshold

Figure 5(a) shows the partial contributions in the spectra
with potential A. The spectra have no clear peak because
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FIG. 14. Behavior of the calculated strength functions S(E)
for (a) [K−pp] → π + � + N , (b) [K−pp] → π + � + N , and
(c) [K−pp] → Y + N decay processes. Here potential C with
B

(π�N)
1 = 0.1 is used. Dotted, dashed, and solid curves denote the

spectra for [B (π�N)
1 , B

(YN)
2 ] = (0.8, 0.1), (0.7, 0.2), and (0.6, 0.3),

respectively.

the pole for potential A has a large width and is located
near the K− + p + p threshold. To extract information on
the K−-“pp” potential from the spectral shapes, one must
consider the effect of the K− + p + p threshold beyond the
“pp” core assumption. If “pp” → p + p degrees of freedom
is taken into account, a QF �(1405) formation via [K−pp] →
“K−p” + p → �(1405) + p would be important, rather than
[K−pp] → K− + p + p breakup processes. The spectrum of
such a QF �(1405) formation stands up from E � (−10) to
(−20) MeV below the K− + p + p threshold, which depends
on the �(1405) mass as a K̄-N quasibound state. In the case
of B.E. � 20 MeV obtained for potential A, therefore, it may
be necessary to estimate the contribution of the QF �(1405)
spectrum, which contaminates the K−pp formation spectrum
near the K− + p + p threshold.

V. SUMMARY AND CONCLUSION

We have examined inclusive and semiexclusive spectra in
the 3He(in-flight K−,n) reaction at pK− = 1.0 GeV/c and
θlab = 0◦ for the forthcoming J-PARC E15 experiment. We
have discussed these spectra with energy-dependent K−-“pp”

optical potentials U opt(E), based on the results for binding
energies and widths of K−pp (unstable) bound states in several
predictions or candidates. To understand the peak structure
in the spectrum, we have investigated the trajectory of a
moving pole of the K−pp bound state in the complex energy
plane and the behavior of the corresponding strength function
by changing the strength parameters (V0, W0) of U opt(E)
systematically. The calculated spectrum predominantly has a
bound state with I = 1/2, Jπ = 0−, and L = 0 in the K−pp

bound region below the K− + p + p threshold, whereas
continuum states with L � 1 occur in the QF region. We have
shown that the (in-flight K−,n) reaction on s-shell nuclear
targets such as 3He provides the advantage of producing a
deeply bound K− nuclear state with L = 0. The results can be
summarized as follows:

(i) A clear peak appears below the π�N threshold in
the spectrum with [K−pp] → Y + N decay from two-
nucleon K− absorption as evidence of the K−pp

bound state, within −V0 > 380 MeV, as in the case of
potential D.

(ii) A cusplike structure appears at the π�N threshold in
the [K−pp] → Y + N decay spectrum within −V0 �
330–380 MeV and −W0 > ∼110 MeV, rather than in
the [K−pp] → π + � + N decay spectrum, as in the
case of potential C.

(iii) A distinct peak in the [K−pp] → Y + N and
[K−pp] → π + � + N decay spectra is observed as
clear evidence of the K−pp bound state within −V0 �
200–330 MeV and −W0 <∼110 MeV, such as for
potential B, whereas no clear peak is observed in these
spectra even if the K−pp bound state exists within
−V0 � 200–330 MeV and −W0 >∼110 MeV, such as
for potential A.

In conclusion, the 3He(in-flight K−,n) spectrum including
the [K−pp] → Y + N decay process from two-nucleon K−
absorption provides evidence of the K−pp bound state to
identify itself as the appropriate K−-“pp” potential with the
help of the trajectory of its moving pole in the complex energy
plane. If any of the experimental observations of DISTO [18],
FINUDA [15], and OBELIX [17] indicate evidence of the
K−pp bound state, its corresponding peak should appear
below the π�N threshold in the J-PARC E15 spectrum. Other-
wise, all these experimental data may be incorrect. Moreover, a
cusplike structure is the unique signal of the K−pp formation,
as well as the peak structure. This phenomenology suggests
the possibility of observing a cusplike structure obtained by a
deep potential with strong absorption (−V0 = 330–380 MeV,
−W0 > 110 MeV), as predicted by Shevchenko et al. [5]. If a
cusplike structure is observed, a precise comparison between
theoretical and experimental spectra is required to extract
the binding energy and width of the K−pp state, as well as
analysis of the spectrum in which the clear peak is observed.
To obtain more quantitative results on the cusplike or peak
structure, a full microscopic calculation between K̄NN and
πYN channels would be required beyond our optical potential
models. Nevertheless, we believe that our calculations lead to
good insight for qualitative understanding of the spectrum of
the deeply bound K−pp state.
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