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Pion-nucleon scattering in Kadyshevsky formalism. II. Baryon exchange sector
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In this article, which is the second part in a series of two, we construct tree-level baryon exchange and resonance
amplitudes for w N /M B scattering in the framework of the Kadyshevsky formalism. We use this formalism to
formally implement absolute pair suppression, where we make use of the method of Takahashi and Umezawa.
The resulting amplitudes are Lorentz invariant and causal. We continue studying the frame dependence of the
Kadyshevsky integral equation using the method of Gross and Jackiw. The invariant amplitudes, including those

for meson exchange, are linked to the phase shifts using the partial-wave basis.
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I. INTRODUCTION

In the previous article, referred to as article I [1], we
have given a motivation for constructing a pion-nucleon (7 N)
scattering, or more generally a meson-baryon (M B) scattering,
model. We have given the main ingredients of the model and,
besides others, the (theoretical) results for meson exchange
processes. In this article, referred to as article I, we present the
results in the baryon sector. We construct tree-level amplitudes
for baryon exchange and resonance or, to put it in other
words, u- and s-channel baryon exchange diagrams in the
Kadyshevsky formalism [2-5].

The Kadyshevsky formalism is equivalent to the Feynman
formalism, because it can be derived using the same S-matrix
formula. The main features for exploiting the Kadyshevsky
formalism is that all particles are on the mass shell at the cost
of an extra quasiparticle, which carries four-momentum only.
A three-dimensional Lippmann-Schwinger type of integral
equation comes about naturally, without any approximations
as, for instance, in Ref. [6,7]. Especially at second order,
this formalism provides a covariant, though frame dependent,’
separation of positive- and negative-energy contributions. In
this way it is a natural basis for implementing pair suppression,
which may also be interesting for relativistic many-body
theories.

Our motivation for studying pair suppression is threefold:
(i) In pion-nucleon scattering the Weinberg [8] theorem
concerning the smallness of some scattering lengths is a
consequence of chiral symmetry. This can be realized in, for
example, the linear ¢ model. However, this implies a strict
relation between g,yny and g,yy to bring about an almost
complete cancellation between the Z graph and the o exchange
graph. This is “unnatural.” Therefore, the nonlinear o model
is an attractive alternative and is preferred nowadays. Here, the
Z graphs are much smaller. So, the use of the pseudovector
v.ys coupling for the pseudoscalar mesons seems to be
superior to the pseudoscalar ys coupling. Now in this particular
case the degree of pair suppression is fixed by the use of
the pseudovector coupling. (ii) Both baryon-baryon [9] and
pion-nucleon [6] models with (absolute) pair suppression are
phenomenologically very successful. (iii) Large N, SU(N)

By “frame dependent” we mean dependent on a vector n*.
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theory gives phenomenologically a rather satisfactory picture
of hadron dynamics and supports the idea of pair suppression
in hadron processes [10]. Considering the possibility that
pair suppression is a general dynamical phenomenon at low
energies, it is desirable to have a Lorentz-invariant description
that enables one to have pair suppression to any degree. Such
a description is provided in this article.

In Ref. [6] pair suppression is assumed by considering
positive states in the integral equation only. Here we implement
pair suppression formally and, to our knowledge for the first
time, in a covariant and frame-independent way. This is done
by using a method based on the Takahashi-Umezawa (TU)
method [11-13]; see also article I. In article I we studied the n
dependence of the integral equation using the method of Gross
and Jackiw (GJ) [14]. We continue this here.

In Sec. II we start with introducing the concept of pair
suppression. After discussing how it can be implemented
formally we apply it to 7N system. The amplitudes are
calculated in Sec. III. In Sec. IV we use the helicity basis and
make a partial-wave expansion to introduce the phase shifts.
We show how the amplitudes are related to these phase shifts.
This is done for the entire model.

II. PAIR SUPPRESSION FORMALISM

To understand the idea of pair suppression at low energy,
picture a general meson-baryon (M B) vertex in terms of their
constituent quarks (see Fig. 1). As stated in Ref. [15] every
time a quark-antiquark (gg) pair is created from the vacuum
the vertex is damped. This idea is supported by results in
Ref. [10], where that author considers a vertex creating a
baryon-antibaryon (B B) pair in a large N, SU(N) theory.”
Such a vertex is comparable to that in Fig. 1(b), butnow N — 1
pairs need to be created. It is claimed in Ref. [10] that such
vertices are indeed suppressed. Although it is questionable
whether N = 3 isreally large, we assume that pair suppression
holds for SU(r)(3) theories at low energy.

Now, one could imagine that this principle should also
apply for the creation of a meson-antimeson (M M) pair and

’In a SU(N) theory a baryon is represented as a g" state, whereas
a meson is always a ¢gg state, independent of N.

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevC.80.055205

J. W. WAGENAAR AND T. A. RIJKEN

(a) (b)

FIG. 1. (a) MMM (M BB) vertex and (b) M BB vertex.

therefore pair suppression should be implemented in the meson
exchange sector (article I). For the reason why we have not
done this one should look again at Fig. 1 and consider the large
N, SU(N) theory again. For the creation of a MM pair at the
vertex only one extra gg pair needs to be created instead of the
N — 1 pairs in the B B case and it is therefore much likelier to
happen. Going back to the real SUr)(3) the difference is only
one ¢g pair, nevertheless we assume that a M M pair creation
is not suppressed.

Also from physical point of view it is nonsense to imply
pair suppression in the meson sector. To see this one has to
realize that an antimeson is also a meson. So, assuming pair
suppression in the meson sector means that a triple meson
(MM M) vertex is suppressed, which makes it impossible to
consider meson exchange in meson-baryon scattering as we
did in article I. From Fig. 1(a) we see that the M M M vertex
is of the same order [in number of g4 creations, as compared
to Fig. 1(b)] as the meson-baryon-baryon (M B B) vertex in
SU(r)(3). So, suppressing the MMM vertex means that we
should also suppress the M BB vertex and no description of
M B scattering in terms of M B vertices is possible at all!

This does not mean, however, that there is no pair
suppression what so ever in the meson sector. As can be seen
from the amplitudes in article I we only considered M BB
vertices, whereas in principle also M BB vertices could have
been included. The latter vertices are not considered using
the argument of pair suppression as discussed above. We will
come back to this later.

Because we suppressed the M BB vertex it means that
pair suppression should also be active in the vector-meson
dominance (VMD) [16] model describing nucleon Compton
scattering (y N — y N). From electron Compton scattering it
is well known that the Thomson limit is exclusively due to the
negative-energy electron states (see, for instance, section 3-9
of Ref. [17]). However, because the nucleon is composite it
may well be that the negative-energy contribution is produced
by only one of the constituents [18] and it is not necessary to
create an entire antibaryon.

The suppression of negative-energy states may harm the
causality and Lorentz invariance condition. Therefore, the
question may arise whether it is possible to include pair
suppression and still maintain causality and Lorentz invari-
ance. The following example shows that it should in principle
be possible: Imagine an infinitely dense medium where all
antinucleon states are filled, i.e., the Fermi energy of the
antinucleons pr = oo, and that for nucleons pr = 0. An
example would be an antineutron star of infinite density. Then,
in such a medium pair production in 7 N scattering is Pauli
blocked, because all antinucleon states are filled. Denoting the
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ground state by |2), one has (see, e.g., Ref. [19]),
Sr(x —y) = ={(QIT[Y ()P (M]IKQ)

which gives in momentum space [19]
p+M
2E,
A =nar(p)
po+ E, —i¢

nr(p)
po—E, —ie
iip(p) }
po+E,+ie)’

At zero temperature 7 = O the noninteracting fermion func-
tions np, iy are defined by

1 —np(p)
po— E, +ie

Sr(p; pr, PF) =

an{l’ Ipl < pr ﬁp—{l’ Ipl < pr

0, Ipl > pr ~10, Ipl > pr -

In the medium sketched above, clearly ng(p) = Oandip(p) =
1, which leads to a propagator Si(p; 0, 00). This propagator is
causal and Lorentz invariant. The above (academic) example
may perhaps convince a sceptical reader that a perfect
relativistic model with “absolute pair suppression” is feasible
indeed.

As far as our results are concerned we refer to Sec. I1I, where
we will see that intermediate baryon states are represented
by retarded(-like) propagators, which have the nice feature
of being causal and n independent. We, therefore, have a
theory that is relativistic and yet it does contain (absolute)
pair suppression.

A. Equations of motion

Consider a Lagrangian containing not only the free fermion
part but also a (simple) coupling between fermions and a scalar

L= Efree '+ El )
- l l -
=w<ﬁ—§‘a‘—M)w+gww-¢ (1)
The Euler-Lagrange equation for the fermion part reads

(i =My =—gl'y - ¢ 2)

To incorporate pair suppression we pose that the transitions
between positive- and negative-energy fermion states vanish in
the interaction part of (1), i.e., YTy = yOTyH = 0.
So, we impose absolute pair suppression. From now on,
when we speak of pair suppression we mean absolute pair
suppression, unless it is mentioned otherwise. Of course it is in
principle possible to allow for some pair production. This can
be done, for instance, by not eliminating the terms ()T )
and YO Ty in Eq. (1) but allowing them with some small
coupling g’ « g. This, however, makes the situation much
more complicated and it is not worked out here.

Because half of the term on the right-hand side of Eq. (2)
finds its origin in such vanished terms, it is reduced by a
factor of 2 by the pair suppression condition. Making the split
up ¥ = ¥ + ), which is invariant under orthochronous
Lorentz transformations, in Eq. (2) we assume both parts are
independent, so we have

8

iy — My = —Erx/ﬂ” -9, (3a)
i — My = —%rw 9. (3b)
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One might wonder why we did not consider independent
positive- and negative-energy fields from the start in Eq. (1).
Although this would not cause any trouble in the interaction
part (L) it will in the free part. The quantum condition in such
a situation would be {¢®(x), 7 (y)} = i83(x — y). This is
in conflict with the important relations between the positive-
and negative-energy components

D), yO)) = (i + MAT(x —y)
(WO, yOW)) = —Gf + M)A~ (x — y)

that we do need. Therefore we do not make the split up in the
Lagrangian but in the equations of motion.

The assumption that both parts ") and =) are indepen-
dent means that in addition to the anticommutation relations
in Eq. (4) all others are zero.

To incorporate pair suppression in the meson sector (see
article I) the only thing to do is to exclude the transitions
YT Y and Oy @) in the interaction Lagrangians. By
doing so, only u and i spinors will contribute. Therefore, only
these spinors are present in the results for meson exchange
(article I). For baryon exchange and resonance diagrams the
implications for pair suppression are less trivial. We, therefore,
discuss how pair suppression can be implemented in these
situations in the following subsections.

“)

B. Takahashi-Umezawa scheme for pair suppression

To obtain the interaction Hamiltonian in case of pair
suppression we set up the theory very similar to the TU
scheme [11-13] introduced and applied in article 1. Because
we only make the split-up in the fermion fields, the scalar fields
are unaffected and therefore not included in this subsection.

We start with defining the currents

' AL, 0L,
+) =\ v . i
Ty .a(0) < 0y D (x) 8(8u¢(*>>(X>> ¥

Solutions to the equations of motion resulting from a general
(interaction) Lagrangian are Yang-Feldman (YF) [20] types of
equations

1
v = yP ) + 3 / d*y D,(y)(i + M)On(x — y)]
X A(x - y) : J.Wiha()’)o (6)

Here, we have chosen to use the retarded Green functions again
to be close to the treatment of article 1.
Furthermore, we introduce the auxiliary fields

Y (x,0) = yFx) Fi f ’ d*yD,(»)(ij + M)

XA =) fyw o). (7
Combining these two equations [(6) and (7)] we get

1
Y = o)+ / A YD i§ + M), €(x — y)]

XA =) Jyw ()£ % / d*y 0n(x — y)]

X Da(ig + M)AV (x — ) jye,(0).  (8)
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The factor 1/2 in Eq. (6) is essential. This becomes clear when
we decompose AT(x —y) = FAGx —y) + 1AV (x — y) in
Eq. (7). The first part (A) combines with Eq. (6) to the second
term on the right-hand side of Eq. (8) and the second part
[A(M] gives a new contribution to ¥ as compared to ¥ in
the original treatment. We see that if we add ¥") and ¢
we get back the ¥ in the original treatment again. This makes
the factor 1/2 difference in the first part of Eq. (8) easier to
understand.

Similar to the treatment in Appendix C of article I, it
can be shown that ¥®(x) and P (x, o) satisfy the same
commutation relation and that the unitary operator connecting
the two is related to the S matrix. Following similar steps the
defining equation for the interaction Hamiltonian is

[ B (x), Hi(y;n)] = U o 1[D (L) § + M)
X AF(x = y) - jyw MIULG]. (9

Having discussed the formalism to implement pair suppres-
sion, now we are going to apply it.

C. (Pseudo-)scalar coupling

In the (pseudo-)scalar sector of the theory including
pair suppression we start with the following interaction
Lagrangian®

L =gp Iy ™ ¢ +eyOry ¢, (10)

where I' = 1 or ' = iy>. We will not use the specific forms
for I" until the discussion of the amplitudes in Sec. III. This is
to be as general as possible.

From Eq. (10) we deduce the currents according to Eq. (5)

Jyora = (—gT¥™ - ¢,0)
Joa = (—gyITY® —gyOTyO 0). (1D

The fields in the Heisenberg representation (HR) can be
expressed in terms of fields in the interaction representation
(IR) using (8)

v ) =y P /o) F % / d*y 0[n(x — YIGF + M)

x AV — )Y@ (y) - ¢(y) (12a)
1
60) = B(x/0) + / d*y[Da(y), €(x — )]
X AX =) fga¥)
= ¢(x/0). (12b)

Equation (12a) was found by assuming that the coupling
constant is small and considering only contributions up to
order g, just as in article I.

With the expressions (12a) and (12b) and the definition of
the commutator of the (fermion) fields with the interaction

3We note that this interaction Lagrangian (10) is charge invariant.
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Hamiltonian (9) we get

[y D), Hi(y;n)]
= —g(if + M)AT(x — )TY () - ¢(y)
)
+ S+ M)A )
X /d4zF6[n(y =21, + M)AV (y — 2)

x Ty P (2) - () (y),
[y ), Hi(y;n)]

= g(if + M)A~ (x — )Ty ) - ()
)
+ S+ M)A~ y)

x [d4zF9[n(y - 91Gg, + AV (y —2)

x Ty (@) - p(2)p(y). (13)

Here, we have not included the commutator of the scalar
field ¢ with the interaction Hamiltonian, because (13) already
contains enough information to get the interaction Hamiltonian
Hi(x;n)
= =gy Ty ™ ¢ —gyOTy -9

2 _
N % [ d*y[y DTl 0[n(x — YEF, + M)
x AV — YTyl
. D -
. % / d*y[yOT ¢l 0[n(x — y)]

x (if, + M)AD(x — Ty Tel,. (14)

In Eq. (14) we see that the interaction Hamiltonian con-
tains terms proportional to A)(x — y) which are of order
O(g?). These terms will be essential to get covariant and
n-independent S matrix elements and amplitudes at order
0(g”).

If we would include external quasifields in interaction
Lagrangian (10), then the terms of order g2 in the interaction
Hamiltonian (14) would be quartic in the quasifield. Two
quasifields can be contracted

X)X @) xMx(y) = x0)0[n(x — y)]x(y)- 15)
1

So the terms of order g2 get an additional factor 8[n(x — y)].
However, because these terms already contain such a factor, we
make the identification O[n(x — y)10[n(x — y)] — O[n(x —
¥)1. Therefore, all relevant 7 N terms in Eq. (14) are quadratic
in the external quasifield, just as we want. This argument is
valid for all couplings.

D. (Pseudo-)vector coupling

Here, we repeat the steps of the previous subsection
(Sec. IIC) but now in the case of (pseudo-)vector coupling.
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The interaction Lagrangian reads

L 5T, . gt + L3O, 60 ang. (16)

I =
My My

L

where I'), = y,, or I’y = y5y,,. From Eq. (16) we deduce the
currents

J'g/,m,a = <_i1‘*ﬂ¢(i) LY 0)
My

f

My

. f =5
Joa= <0’ _ ¢(+)F/t'/’(+) _

My

FFM‘)) . an

The fields in the HR are expressed in terms of fields in the IR
as follows

vE ) = vF /o) F
2m
x AOx — LY B(y) - 94¢(y)
d(x) = ¢(x/0)
all«¢(x) = [al}'(b(x, 0)]x/a - mi n”W(x)n . F'(p(Jr)(x)

L YO on - Ty x).
My

1

f d*y0ln(x — »IGF + M)

(18a)
(18b)

(18¢)

The commutators of the different fields with the interaction
Hamiltonian are

[P (x), Hi(y;n)]

= mi(ia + M)AT(x — y) [—FM“ ke
+ i n. Flﬁ“”W” . Fw(-‘r) + i n- F¢(+)
— _ if?
x yOn - Ty ):| + 5 (f + M)AT(x —y)
y  2mg

x / d*2T,00n(y — D17, + MAD(y — T,y

x (2) - 3"p(2)" p(y)
[y (), Hi(y; )]

= —mi(iﬁ + M)A™(x —y) [—F,ﬂ//() -0"¢
+ L. Ty Oy@n - Ty + mi n-Ty)

e
x YOn - w“] - Zlfz (i + M)A~ (x —y)

y

m
« / 42,0000 — DI, + M)AV (y — 2)

x Ty (2) - 8" $(2)0" (y) (19)

and from these equations we deduce the interaction
Hamiltonian

Hi(x;n)
_ f WF 1//(Jr) M f YO ) . gr
i " : ¢_m_,,1// W %e
+ L@ ryop 4 L g ryop
2m2 2m2
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2
+ L @ Ty OO -ty
m

/g

LY > f d*y[Y DT, " ¢1.0[n(x — y)]
2m7T
x (if + M)AD(x — )T,y Pavel,
- 2’f - f d*y[YOT, 8" ¢1.0[n(x — y)]
mﬂ
x (if + M)AD(x — )T,y 3 ¢],. (20)

As in Eq. (14) there are also terms proportional to ADx —y)
quadratic in the coupling constant. Also, Eq. (20) contains
contact terms, but they do not contribute to w N scattering.

E. n N Aj; coupling

At this point we deviated from Ref. [6] as far as the
interaction Lagrangian is concerned. For the description of
the coupling of the Ajz3, which is a spin-3/2 field, to 7 N
we follow [21,22] by using the gauge-invariant interaction
Lagrangian

L = g€ P (3,9 D)ysy, WD (350)
+ 8 € P YDy (9,9 )(3p)
+ 2 € P (0,9 ) sy, YO (350)
+ 8 P Y O ysra (@, 9N pd). (21

Here, W, represents the spin-3/2 Ass field. As is mentioned
in Ref. [21] the W, field contains not only contain spin-3/2
components but also spin-1/2 components. By using the
interaction Lagrangian as in Eq. (21) it is assured that only
the spin-3/2 components of the A33 field couple.

From Eq. (21) we deduce the currents

Jo.a®) =0, —goi " P (@, ¥ P )ysy, ¥ — ggie Py
X V5¥a(0,W57) — goie" P (0,9 ) ysya ¥
- ggieuvaﬁ 'ﬁ(f))/s Va(au‘l’i_)))
Jyora(®) = (—gei€" P ys7u (3, ¥ 7)(3p), 0)
Ju® o) = (0, —ggi " Pysy ¥ (0p9)). (22)

To avoid lengthy equations we express the commutators of
the various fields with the interaction Hamiltonian in terms of
fields in the HR (9)

[¢(x), Hi(y;n)]
= U@)i AGx — )] [~ €™ 0,9 D yysy
- 8gi€”WﬁWV5Va(3u‘I’(v+))
— g€ P @, sy ¥ — g
x ¥ ys7(0, %)L, U (o)
[V (x), Hi(ys )]
= U@)(E)if, + M)A (x —y)
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x [—gei€" P ysya ¥ P (3p), U (0)
x [V (x), Hi(y;n)]

1
= U(o)( )i, + Ma)(—) <g,w BEYRL

29,9, 1 , , N
M - M(Vulav - la/tyv)) AT (x — Y)éj
x (—gei € P ysy, W (95¢)),U ' (0), (23)

where the fields in the HR are expressed in terms of fields in
the IR using (8)

P )
=¥ x/o) & 5 / d*y 0ln(x — YIGJ + M)
x AV — y)ggi € P ysyul (3, W) (0p)]y
0,$(x)
= [0,6(x, )]/ — 2ei€" P, (3,0
X Y5¥a¥ g — g€,y Dysy, (8, WD)
X g — g€, (3, WS ysvay Ong
— 8 €1, U O ysya (3,9 )ng
¥ (x)
= 0,9, o + LG+ Man,n,
+#(idony, +n,id,) — 2n,n,n - id]

1
x (g,w — gmu) " Pysy, P (3p¢)
iggi 4 .
> d*yO[n(x — y)]id, + My)
X _! 3,0, AV (x —
8uv = ZVu¥v | Opdy (x—y)

x [€”"P sy, ¥y P (5], 24)

Here, we have already used that Bp\IIE?(X) always appears in

combination with e”“*#  Therefore, we have eliminated terms
that are symmetric in p and p.

With these ingredients we can construct the interaction
Hamiltonian. Because it contains a lot of terms we only focus
on those terms that contribute to w N scattering

Hi(x;n)
= —gg PO,y P (3p0)
— 8i " PYDysya(3, U D50)
— gai €09 )57 O (959)
— 8ai " PYOysya(3, ) Dp0)

2
8si uvaB—T :
= ey Dysy, @, + M

+(idyn,y +n,idy) — 2n,n,en 0]

1 ol B
X <gvv’ - 5)/\)]/1)’) etve b ySya’w(+)(8ﬂ’¢)
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2
8si uvaB—T :
— YTy OB, + Moy

+(idn,y + nyidy) — 2in,nen - io]
1 o8 _
x (gw/ - 5)/\;%/) " ysye v (@ d)

2

1
x O[n(x — )IEg, + M) (gvu’ - g%%ﬂ)

+ f d*y[e" Py Dy, (95)],

x 8,0, AV (x — Y ysy D@ )],

02
L8i vaB (),
- Tg / d*y[e"" P YO ysyy ()] 0[n(x — y)]
1
X (lax + My) (gvv’ - 5%%/) a,uau/
x AV — WP ysyuy D (Bpd)],. (25)

III. S-MATRIX ELEMENTS AND AMPLITUDES

Because the Kadyshevsky rules as presented in
Appendix A of article I do not contain pair suppression, we
are going to derive the amplitudes from the S matrix. We
have constructed the basic ingredients, namely the interaction
Hamiltonians, in the previous subsection (Secs. IIC, 11D,
and II E) for different couplings. As in article I we also consider
here equal initial and final states, i.e., ¥ N (M B) scattering.
For the results for general M B initial and final states we refer
to Appendix A.

A. (Pseudo-)scalar coupling

For the pseudoscalar coupling case we collect all g2
contributions to the § matrix [see (14)]

@ = (—i)? / d*xd*y0[n(x — y)TH;(xYH;(y)
= —g2 f d4xd4y0[n(x — y)][WF(ﬁ]x

x (i + M)At (x — )Ty Pel,

S = (i) / d*xH;(x)

2
= % / d*xd*y[YOT1,0[n(x — )]
x (if, + M)AD(x — )Ty e, (26)
which need to be added

S 4 50 = —% / d*xd*y[y DT $l0[n(x — y)]

x (i + M)A(x — )Ty Pel,. (27)

We see here that indeed the AV(x — y) propagator in the
interaction Hamiltonian (14) is crucial, because it combines
with the A®)(x — y) propagator (26) to form a A(x — y)
propagator (27). Together with the [n(x — y)] in Eq. (27) we
recognize the causal retarded(-like) character as we mentioned
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in Sec. II. The S-matrix element is therefore covariant and if
we analyze its n dependence using the GJ method [14] as in
article I we would see that it is n independent (for vanishing
external quasi momenta, of course).

Also we notice that the initial and final states are still
positive-energy states. We started with a separation of positive-
and negative-energy states in Sec. II and after the whole
procedure this is still valid for the end states. However,
we have to notice that inside an amplitude, negative energy
propagates via the A(x — y) propagator, but this is also the
case in our example of the infinite dense antinucleon star of
Sec. II. Moreover, in Ref. [6] pair suppression is assumed by
considering only positive-energy end states, and this is what
we have achieved formally.

All the above observations are also valid in the case
of (pseudo-)vector coupling and the 7w NAj; coupling of
subsection Secs. III B and III C, respectively, as we will see.

The last important observation is that in Eq. (27) it does
not matter whether the derivative just acts on the A(x — y)
propagator or also on the @[n(x — y)] function.* Therefore,
the P method of article I can be applied, although it is not
really necessary. This situation is contrary to ordinary baryon
exchange, where the P method can be applied only for the
summed diagrams, as explained in article I. The summed
S-matrix elements (27) lead to baryon exchange and resonance
Kadyshevsky diagrams, which are exposed in Fig. 2. We treat
them separately.

The amplitude for the (pseudo-)scalar baryon exchange and
resonance resulting from the S matrix in Eq. (27) are

g2 dKl — 1
MK’K(”) = ? / N M(P N )[F(?u + MB)F]u(pS)A(Pu)
K1 +1

&
2
8 diy
M, (s) = &
) =3 //q—i—ie

a(p'sHIC (P, + Mp)Tu(ps)A(Py).
(28)
Here Pi = A; +nk —nk; and A(P;) = e(PY)S(P? — M3)
(i =u,s). The A; stand for
Au — 1 /+ YA
T(p P—9q9 —q) (29)
Ay =5 +p+4q +q.

After expanding the §(P? — M2) function the «; integral can
be performed
1 _
8(P2— M}) = ————[8k1 — &) + 8(k1 — 7))
|K1 — K |
. (30)
Kq IA,"}’Z—FI?:I:A[.
The e(PiO) selects both solutions with a relative minus sign.
This yields for the amplitudes
&2
M) = 5 a(p'sHIM + My — O + &yl u(ps)
1

X
(A -n+k)3?—Al+ie

“This is because §(x° — y))A(x — y) = 0.
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K/ R
Y P q
P K1
p e O P
K (a) (b)
g2
M) = =25 a(p'sHIM — My — @+ &l u(ps)
1
X
(Ay-n+k)?—A2+ie
2
M3, (s) = ‘%S @(p'sHIM + My + @+ &) u(ps)
1
X
(As-n+ik)?—A2+ie
2
MPS(s) = 588 a(p'sh[M — My + @+ &) u(ps)

2
1

X ,
(As - n+ik)?—A2+ie

€29

where S and PS stand for scalar and pseudoscalar, respec-
tively. Taking the limit of ¥ = x = 0 in (31) we get
S 85
My (w) = == a(p's"H[M + Mg — @) u(ps)—————
30 = 5 P )M + Ma = @1 u(ps)— o
gbs
2

2
MS\(s) = %S a(p's')[M + Mg + @1 u(ps)

MES ) = = a(p's[M — Mp — @1 u(ps)

u—Mé—i—is

s—M3i+ie

2
MES(s) = EP8 (s’ M — Mg+ Q] u(ps) ————,
00() B (p'sHI B+ @l u(p )S—M%;—i—iS

(32)

which is a factor 1/2 of the result in Ref. [6]. This factor
is because of the fact that we took only the positive-energy
contribution. This difference can easily be intercepted by
considering an interaction Lagrangian as in Eq. (10) scaled
by a factor of +/2 and eventually identifying g/+/2 as the
physical coupling constant. We stress here that although we
have included absolute pair suppression formally, we still get
a factor 1/2 of the usual Feynman expression.

In article I we studied the n dependence of the (approx-
imation of the) Kadyshevsky integral equation using the GJ
method

Moo = M + / dx M G M.,

9 M Mgy
Pozﬁ — Moy = Polﬁ 00 PO{ﬂ / d Ok
anp ( onf + “ onb

/ irr irr v 8M11<K1T0
X GK MK10 + MOK] G/q 81’15
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FIG. 2. Baryon exchange (a) and
resonance (b) diagrams.

8Mirr )
+ P / diidics [(#) G, M" G
) ) irr )
<l + 5, 6, (T ) 6 v

Mirr G/ Mirr G/ aM:;rO
+ 0K1 K1 K1K2 K2 8”13

4. =0, (33)

Important was that the integrals on the right-hand side of the
second equation of Eq. (33) are all of the form

/ dr f(k) h(k)G, (34)

where f(k) is at least linear proportional to « and A(x) only
has poles in the lower half complex « plane. In some cases a
phenomenological “form factor” is needed

A2 N,
F(K)Z(A%_KZ—ie(K)g) . .

For the details we refer to article I. Whether (34) applies
and (35) is necessary we need to check for every exchange
and resonance process.

To do so in the case of (P)S baryon exchange or resonance
we notice that two contributions are added (30) and that the
sum has poles in the lower half complex & plane

1 1 1 1

24, A, n+R—A;+ie 24, A -n+R+ A +ie
B 1

(A -nR)? — A 2ie(A; n 4 k)

(36)

where i = u, s. In fact this is valid for all baryon exchange
and resonance amplitudes, so we will not repeat this in case of
(pseudo-)vector and r N A3z coupling. Taking a closer look at
the denominators in (31)

(Ain+R)? — A} = A} = M +28; nk +7%, (37)

we conclude that all n-dependent terms in Eq. (31) are at
least linear proportional to either x or «’ (or both). If we
would consider only (P)S baryon exchange or resonance in
the Kadyshevsky integral equation, then we indeed would have
a situation as in Eq. (34). Looking at the powers of «, ¥’ in
Eq. (31) we see that h(x) in Eq. (34) will be of the order O(Klz)
and the phenomenological “form factor” (35) would not be
necessary.

055205-7



J. W. WAGENAAR AND T. A. RIJKEN

B. (Pseudo-)vector coupling

The g? contributions of (pseudo-)vector coupling in the
second and first order of the S matrix are

s@ — (—i)Z/d4xd4y9[n(x — WIH(x)H(y)

2 -
- —% d*xd*yo[n(x — NIYHT, (3" $).(i§ + M)

x AT (x — YIT Y@ )],

SO = (=) | d*xH,;(x)

2 -
f / d*xd* [T, (") 0n(x — VP + M)

- 2m2
x ADx — Y@ 9)],. (38)

Adding the two together
2 1 lfz 4 4 ()
S48 = -2 / d*xd*y[n(x — IO, ("),
mﬂ

X (i + M)A(x — TP P @), (39)

leads again to a covariant, n-independent result (¢" = k = 0).
See the text below (27) about this issue and other important
observations.

The two Kadyshevsky diagrams resulting from Eq. (39) are
the same as shown in Fig. 2. The amplitudes that go with them,
in case of (pseudo-)vector coupling, are

2
Mov) = =L f i

m K1 —+ ie
x (T - ¢")] u(ps)A(P,)
fz dKl — /
My(s) = ﬁ/ SO P, + M)
x (I - q@)] u(ps)A(Py), (40)

where P; and A(P;) are defined below (28). As far as
the «; integration is concerned we take similar steps as in
Eq. (30).

After some (Dirac) algebra the amplitudes in Eq. (40)
become

a(p'sHIT - @)(P, + Mp)

M, (u)
_ f\% — 1 M M M2 1
- 2m2 M(P s ) _( - B) - + E(up’q + upq’)

1 1
+2M Q- E(K’ —Kk)p' = p)-n+ i(fc’ — k) [, @]
1 / 2 1 M2 1 /
- E(K —K) ) - E(upq/ - )<Q+ FU - K);;t)
1 2 1 /
_E(upfq—M )<Q— E(K —K)}/i)

+k<—(p’—p>-n @+20 -n Q+ M

1
(A, -n+R)— A2 +ig’

- %i(up’q + upq/)>:| M(P)
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MY (u)

N - 1
= ﬁu(ps) —(M + Mpg) —M2+§(u,,,q + 1ty

1 1
+2MQ— E(K’ —K)(p' —p)-n+ E(K’ — k) [, @]

1 ’ 2 1 2 1 /

_E(K —K) ) - E(upq’ -M )<Q+ §(K —K)'fl)
1 1,

~3 (upq — M?) (Q— E(K — K)¢>

+ I?(—(p/—P)'” Q+20-n @+ M

] 1
N o+ , ,
Z(Mptl Upg') M(p)(A,,-n—i—E)z—A%—i-is
M (®)
f\% = 1 M M M2 1
- Im2 u(p s ) _( - B) - + E(sp’q’ + Spq)

1 1
—2MQ— S~ )P — p) -1 = S0 )l @)
1 ’ 2 1 M2 1 4
— 50 =) ) + 5y = M) <Q+ S~ mt)
1 5 1,
+§(qu_M )(Q_ E(K _K)¢>

+I?<(p/—p)~n Q+20-n Q+ M

it 1
2(51;'qf + Spq) u(P)(AS T RR—Altis
My (s)
_ szV i M M M2 1
- Im2 M(P s ) _( + B) - + E(Sp’q/ + qu)
be

1 1
—2M Q- E(K/ —K)p' = p)-n— E(K/ — k) [, ]
1 / 2 1 M2 1 ’
— E(K — k) ) + E(s,,/q/ - )<Q+ E(K —K)¢)
1 2 1 /
+E(Spq_M )(Q_ E(K _K)¢>

+I?<(p/—p)'n Q+20-n Q+ M

y 1
_ 5(sp,q, +qu))} u(p)(AS Nt RE—A2+ie
(41)

Here, (P)V stands for (pseudo-)vector. Taking the limit k' =
k=0
2

Myy(u) = 2];—V2ﬁ(p/s’)[—(M — Mg)(—M* 4+ u +2M Q)

— J— 2 —
(= MG ()
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2
Mg (1) = Qf%ﬁ(p’s/)[—(M + Mp)(—M? +u+2M Q)
_ _ 2
= MO u(p)e—
2
Mio(s) = 2{22 a(p's[—(M — Mp)(—M* +5 —2M @)
_ 2
+6 = MO )
2
Mgy (s) = zf%ﬁ(p’s’)[—(M + Mp)(—M* +5 —2M Q)

+(s — MA@l u(p) (42)

s — Mp +ie’
where we, again, get factor 1/2 from the result in Ref. [6] for
the same reason as mentioned in Sec. IIT A.

Studying the n dependence of the amplitudes (41) in light
of the n dependence of the Kadyshevsky integral equation
as before (Sec. III A), we see that, again, all n-dependent
terms in Eq. (41) are at least linear proportional to either k
or k’. Therefore, when we would only consider (P)V baryon
exchange or resonance in the Kadyshevsky integral equation,
we would, again, find ourself in a similar situation as in
Eq. (34), when studying the n dependence. However, looking
at the powers of x and «’ in Eq. (41) we notice that the function
h(k) in Eq. (34) is of higher order then O(%). Therefore, the
phenomenological “form factor” (35) would be necessary.

C. N Aj; coupling

As far as the 7 N A3z coupling is concerned we find the
following g;‘ contribution in the second and first order of the
S matrix from (25)

5O = (—iy? f d*xd* yTn(x — yTH M, ()
= —g2 / d*xd*yo[n(x — " P YO ysy,d5¢).059",

X ((§ + Ma) Ao AT(x — VP ysye v Pagdl,

SO = (—i)/d4xH1(x)
&2 S
=5 /d“xd“y[emﬁw(*)ysm3ﬂ¢]x9[”(x — Y190

. 1
X (la + MA) (gvv’ - 5%})’\)’) A(l)(x - y)
< [V ysyu iy Pop ¢l
igii -
+ 7[6”“”"'3 YD ysy,0p]
x [(ig +Mpa)nyn, +#(n,id,y +id,n,)
. 1
—2in, nyn - id] <gwr — gyvy‘,r)

x [V ysyu g ¢l (43)
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where
1 20,0,
A/Lv =— 8w — gy;ﬁ/v + W
1 . .
_m(yulm — )/VIBM):| . 44)

Because of the antisymmetric property of the epsilon tensor
all derivative terms in Eq. (44) do not contribute.
On addition of the two contributions in Eq. (43) we find
@ g e [ pxus)
SO 450 = —=5 [ dhedty Py D ysydpdl.

1
X auau’ i+ Mp) (gw’ - gyvyv’) On(x —y)]

x Ax — P ysyy Dag dl,. (45)

Again, we have a similar situation for the S-matrix element as
in Sec. III A. Therefore, we refer for the discussion of Ref. (45)
to the text below (27).

A difference of this S-matrix element as compared of those
of the forgoing subsections (Secs. Il A and III B) is that the
derivatives act not only on the A(x — y) propagator in Eq. (45)
but also on the §[n(x — y)]. Therefore, the P method of article
I can be applied. Of course this is obvious because this method
was introduced to incorporate terms like the second term on
the right-hand side of S in Eq. (43).

As in the previous subsections (Secs. III A and III B)
two amplitudes arise from this S matrix: As3 exchange and
resonance, whose the Kadyshevsky diagrams are shown in
Fig. 2. The amplitudes are

2
8i di; oaflmr _ _
M (u) = _78 / m e aﬁM(P s/)VaVSQﬂ(Pu)/L(Pu);L’

7 1 wv'a'p
X (P, +Mp) | gov — s A(Py)e

X Yo' V54 u(ps)

2
8 dx vap =/ (D D
Mo(s) = =35 | (s )yaysap(Py (Pl
1
- 1 /v/a/ ’
X (Ps + MA) <gw’ - g)/uyv’) A(Ps)eﬂ B
X Yo' ¥sqp u(ps), (46)

where P; = P, + nky,i = u, s. P, and A(P;) are as before.

Performing the « integral is in this situation even simpler
than in the previous cases (Secs. IIT A and III B). As can be
seen from Eq. (30) the A(P;) in Eq. (46) selects two solutions
for x [with a relative minus sign, due to e(Pl.O)], which need
to be applied only to the quasiscalar propagator 1/(k; + i¢).
This is because the P; is k; independent. Contracting all the
indices in Eq. (46) the amplitudes become

2
8gi _ ’ 7 5 ’ 1 ’
M (u) = —Tgu(p s") [(PM + My) (Pf(q q) — ngM
L pdBy )+ S B (P a) = 2P, - )
_3Pu4i M'Q)+3Puq(u'Q)_3(u'q
1
(A, -n+&)P—A2+is’

X (l_’u'q)ﬂ u(ps)
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gzi_ 7 ¥ D / 1_ i
MK’K(S)Z _Tgu(ps)[(lbs +MA) (Psz(q q)_ gpszqq
— PP @)+ PP ) — 2(Pr-q)
3R¢ s q 3P5q s q 3 s q
1
(Ay -n+R)? — A2 +ig’

x (P ~61)>} u(ps)

which leads, after some (Dirac) algebra, to
MK’K (Lt)
g;i

1 -
==~ ap's) [EPE (M + Ma = @+ &) 2m* = 174)

1 1
= 32 (14 M4+ S0~ 1

+ %(s,,q + 1y — M* —dm?)¢' + mqq’)

My

: <Isuzq+ MA(SM - M? —2m?) — qu

12 2
+ MAwtq) (—4m® + 5pq — Upg + tyq — 28(D' — p)

1 /- M
ntdkn - Q — (k2 — kD) + 3 (Pfq/ + TA(MZ

Ma / g 2
—Upg) — qu + Maikig" ) (—4m~ + 5, — U pq
+tyq +2R(p' — p)-n+4dRn - O+ (k* —k?))
1
24 (M + Ma — @+ Rif) (—4m® + sy — ttpg +1gg

—2&(p' = p)-n+4kn - Q — (K — kM) (—4m* + 5,
—Upg+tyg +2k(p'— p)-n+4kn- Q

1
(A, -n+i)— A2 +ie’

+(k* — K2)>} u(ps)
MK’K(S)

2
8gi _ ’ 15 K
= 4w [EPE(M + My + @+ R = 1)

_ 1
p? ((M +Ma) g — 5(5p — M*¢'

ST

(tpg + tyq — M> —4m?) ¢ + mq’q)

1 (=, Mx ) My
ﬁ(’”’*?“” 2 )+ o dd

+ MAI?M/> (4m® + spg — pg — lyg

+2k(p' — p)-n+4kn- Q+ (k?* —«?)
1 /- M M

+— (P2 + =" (5pg—MD) + —=4'd + Makrid
12 2 2

x (4m* + Sprgt — Upg —

+diin - Q — (k7 = k2))

lq’q - 2’2(17/ - P) -n

1
- ﬂ(M + Ma + Q@+ kf)(4m* + Spg — Upg — lgg
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—2&(p' = p)-n+4kn - Q — (K — kM) dm* + s,
—Upy —tyg +2k(p'— p)-n+4kn - Q

1
(Ay-n+i)?— A2+ie’

+ e — :«%)}u(ps)
(47)

where
puz = %(”p’q +upg) — %(K/ — k) +2kA, -n+i? 48)
P} = L(spq + 5pg) — 2" — k) + 2R A -1+ k2

and
4 =Q— ik — k)
¢ = Q+ i’ — k)
d'd = —2M Q+ 3(spg + 5pg) — M?> — (k' —K)(p'— p) - n
+ 30— ) [@ ] — 50" — k)
dd = 2M Q+ L(upy +upy) — M? — 2" — k) (p' = p) - n
— L =) (@A) — 2 — k)
te = Mp—(n-p)—3[@ Al +n-Q— 3k —x)
hgd=—Mp+n-p)— 3@l +n- 0+ 3k —«)
hd'd = =M+ 3(spg + Spt — 5" = k)n - (p' — p)ik
+ =) O — (' —K)@—2n-(p' — p)@
— L = k)
tdd = —MPh + J(upg + upg it — 3" —n - (p' — pf
— (k' —)n- O+ (k' —)@+2n-(p' — p)@
— 3" — k). (49)
Taking the limit ' = k = 0 yields

g;i N 2
Moo(u) = ——~i(p's)| (M + Ms — @@2m” — 1)

_ %((M £ MOCMQ+u — M?) —m*Q)
1
— W@+ Ma(MQ— m*)(M* —m* — u)

1
+owe+ MAM? —u — M@Q)YM* — m* —u)

1
— (M + My — OM?* —m?* — u)z] u(ps)

1
x u— M3 +ie
géz’i— N 2
Mon(s) = ==S(p's')| 5(M + M + @2m* = 1)
- §(<M M) (—2M Q@+ s — M)+ m> Q)
l 2 2 2
—6(5Q+ MAM@P+ m)(s — M~ +m~)

1
+ 2@+ Mals — M?* — M@Q)(s — M* +m?)
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1 2, 22
—6(M+MA+Q)(S—M +m)]M(PS)

1
Mt (50)
Considering only the Ajz; exchange and resonance in the
Kadyshevsky integral equation and study its n dependence,
we see from Eqs. (47) and (49) that all n-dependent terms in
Eq. (47) and (49) are at least linear proportional to either k or
k" and therefore Eq. (34) applies. The function A(«x) is such
that the phenomenological “form factor” (35) is necessary.

IV. INVARIANTS AND PARTIAL-WAVE EXPANSION

In elastic-scattering processes important (indirect) observ-
ables are the phase shifts. In this section we introduce the
phase shifts by introducing the partial-wave expansion, which
is particularly convenient for solving the Kadyshevsky integral
equation. By also using the helicity basis we are able to link
the amplitudes obtained in article I and the previous section
(Sec. III) to the phase shifts.

A. Amplitudes and invariants

Following the standard procedure, see, e.g., Ref. [23],
the most general form of the parity-conserving amplitude
describing N scattering in Kadyshevsky formalism is

M = a(p's)[A+ BQ@+ A+ B'[f, @1 u(ps), (51)

where the invariants A, B, A’, and B’ are functions of the
Mandelstam variables and of ¥ and «’. The contribution of
the invariants to the various exchange processes is given in
Appendix A.

In proceeding we do not keep n** general but instead choose
it to be [3,5]

I Ve P +q)"
V5pq VS
With this choice, n* is no longer an independent variable and

the number of invariants is reduced to 2. This is made explicit
as follows

(52)

1
a(p's") ] u(ps) = —————i(p's)
Spa T /Spg
x [My+ M; +2Q] u(ps) (53)

a(p's" [, A u(ps) =0.

As aresult of the choice (52) the invariants A and B in Eq. (51)
receive contributions from the invariant A’. We, therefore,
redefine the amplitude

M = a(p'sH[A" + B" Q] u(ps)

1
A=A+ ——— (M;+ M)A
VSpa' T /Spq
2
B =B+ -—"— A (54)
Sra t /Spq
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In addition to the invariants A” and B”, we also introduce
the invariants F and G very similar to [24]

Mee = x'OF+G (o -p) (0 -PIx(s), (55

because we will use the helicity basis. Here, x (s) is a helicity
state vector. In Ref. [6] this expansion was used in combination
with the expansion of the amplitude in Pauli spinor space. The
connection between the two are also given there.

The relation between the invariants A”, B” and F, G is
given by

F = /(E +Mp)(E+ M)

{A” + %[(W’ — M)+ (W — M))] B”}
(56)

G = /(E —Ms)(E — M)

{—A” + %[(W’ + M)+ (W + M,)] B”}.

B. Helicity amplitudes and partial waves

In this subsection we want to link the invariants A” and
B” to experimental observable phase shifts. This is done by
using the helicity basis and the partial-wave expansion. The
procedure is based on that in Ref. [25] and similar to that in
Ref. [7].

The helicity amplitude in terms of the invariants F and G
[see Eq. (55)] is

Mo Oup, 2i) = Cop 5,0, 9)LF + 432Gl (57)
where
Coy 00, 8) = x|, (0 160,(B) = D7 ($.0,—).  (58)

Here, D,{lm,(a, B, y) are the Wigner D matrices [25] and the
angles 6 and ¢ are defined as the polar angles of the center-
of-mass (c.m.) momentum p’ in a coordinate system that has
p along the positive z axis. In the following we take as the
scattering plane the xz plane, i.e., ¢ = 0. Furthermore, we
introduce the functions f » by

h f2

F=— G=-——.

4 4

Then, with these settings the helicity amplitude (57) is

(59)

1
My, h) = -di 7 @) fi + 40 g0 ). (60)

Next, we make the partial-wave expansion of the
helicity amplitudes in the center-of-mass frame very
similar to [24]°

MyeeOophi) = ()™ Y @0 + DM, O hi)
J

x Di*, (.0, —¢)

The difference is a normalization factor.
®The difference is again a normalization factor. We use the same
normalization as that in Refs. [6,7].
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= (@m) e TN 2T + DML, (g )
J
xdj ; (). (61)

Using the partial-wave expansion as in Eq. (61) we obtain the
Kadyshevsky integral equation (article I) in the partial-wave
basis. Here, we just show the result; for the details we refer
to [7]

o0
Mo(hphi) = Mg (i) + Z/O kndky M 0 phn)
A

x Gl (Wys W) M2 (k). (62)

As mentioned in article I, the « label is fixed after integration.
Because of the summation over the intermediate helicity
states the partial-wave Kadyshevsky integral equation (62) is
a coupled-integral equation. It can be decoupled using the
combinations f(;_1/2+ and f(;4+1,2)— defined by

fre N (FUHLY (MI1/21/2) 63)
favn- +1-1) \M'(=1/21/2) )’
here we introduced L = J — 1/2.7
In Eq. (63) and in the following we omit the subscript 00
for the final amplitudes where x and «” are put to zero.

A similar expansion as (63) holds for M, ,‘("KJ (A rA;) and what
one gets is

o0
FaW W) = FE W W)+ Y / Kk, FIL(W', W)
M VO

XG (W W) fre(Wa, W). (64)

The two-particle unitarity relation for the partial-wave
helicity states reads [24]

iM? (0 phi) — M7* k)] =2 Zk M7 pr) M (Mid).
An
(65)
In a manner similar to that for the partial-wave Kadyshevsky

integral equation (62), the unitarity relation (65) also decouples
for the combinations (63). One gets

Imfp (W) =k f{ (W) fLe(W), (66)

which allows for the introduction of the elastic phase shifts
1 .
fra(W) = 2 = sin 1.4 (W). (67)

From Eq. (67) we see that once we have found the invariants
frL+(W) by solving the partial-wave Kadyshevsky integral
equation (62) we can determine the phase shifts. The relation
between the invariants f;(W) and the invariants fi 5 is

1 +1
fi+ = 5/ dx [PL(x)fi + Pr1(x) f2]

1
= fiL + forL+1, (68)

where x = cosf.

"The labels L+ and (L + 1)— in Eq. (63) and their relation to
total angular momentum J come from parity arguments as is best
explained in Ref. [25].
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C. Partial-wave projection

Via the equations (68), (59), and (56), the partial waves
fL+ can be traced back to the partial-wave projection of
the invariant amplitudes A” and B”, which means that we
are looking for the partial-wave projections of the invariants
A, B, A, and B'.

Before doing so we include form factors in the same
way as in Ref. [6]. As mentioned there, they are needed to
regulate the high-energy behavior and to take into account
the extended size of the mesons and baryons. We take them
to be

—(ky—k;)?

F(A) =e 22 for ¢ channel
—(k2f+k,.2) (69)
F(A)=¢ a2 for u,s channel.

The partial-wave projection includes an integration over
cos 0 = x. We, therefore, investigate the x dependence of the
invariants. The main concern is the propagators. We want to
write them in the form 1/(z £ x), which is especially difficult
for the propagators in the # channel, because of the square root
in A;. We therefore use the identity

1

w(w + a)

_ 1 +2a/'°° di 1 1
S wr—ar w Jy M4a|e+r?2 w—a?]’

(70)

which holds for w,a € R. With this identity we write the
propagators as

1 1
24, A, n+ik— A +ie
1 [1 Ar-n+k [ dir 1
T 2p [5 T f/\(i?)j|
1 A-n+k [ dr 1
2p)p w Sul®) zep — x
1 1
Z_At —A;-n+ik— A +ie

1 [l_A,-n—/Z/ d } 1
- 2p'p|2 n [u(=R) | z(—R) — x

1 A,~n—/zf dx 1
2p'p T (=) 25 —x

1 _ 1 1 71
(kK + A, -n)* — A2

Z;(I?) — X

C2p'p )+ x
where p’p = |p'||p| and
fi@) =22+ (A -n)? + &2+ 2kA, - n

1 2
@)= —[p +p+M —&*—2kA) — (A
a®) = I+ (a9)]

1
2= ——I[p +p+ M+ (72)
2p'p

055205-12
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The invariants are expanded in polynomials of x, like

JEO) = [XI () + x Y (£)]DV(£A,, n, k)
F(A))
z;(Xk) — x
F(A,)
Tt — x] ’
F(Ay)
Zu(i€) +x
F(Ay)
TW W+ + ) — My
(73)

1 . .

+ (X)) +xY (1))

1. , ,
— (X! +xY/ +x°Z7)
2p'p

Jjs) = (X +xY7 +x2Z)

J ()

where j is an element of the set (A, B, A, B’). Furthermore,
there are the relations in the  channel

in__|:l+:i:A?+/?/ d }in
AR PR FRE]

; _:I:A?—i—l?/ dr .

X&) = — ﬂ(ﬂ)X’(i). (74)

The coefficients X/, Y/, and Z/ can easily be extracted from
the invariants and they are given for the various exchange
processes in Appendix A.

With the partial-wave projection

1 1
Je) = 5/ dx Pp(x)j(i), (75)
-1

where i = ¢, u, s, we find the partial-wave projections of the
invariants

Ji = ﬁ[(x{ (&) + 2 (ER)Y{ (D) UL (A, 2,(£R))
+ (XD + 20, Y (D) Ur(Ar, 200)
~Y{(E)RL(Ar, 2(ER) — Vi (B)RL(Ar, 20.3)]
(—DF

2p'p
— (=Y + 2, () Z) R (A, 2u(R))
— Z'SL(Ay, zu(®))]

. . 1 . 1/2 )
jL(s) = X"5L,o+§Y"5L,1+§ §5L,2+5L,0 zJ

Jjr(u) = [(X) — z®)Y! + 22(R)Z7) U (Mg, (%))

F(Ay)

76
X}T(W/+W+K/+K)2—M§’ (76)
where
1
Ub(A.2) = l/ gy PLEOEA)
2/ 7—Xx
1 1
Rr(A,2) = 5/ dx Pr(x)F(A)
-1
1
St(A,2) = %/ dxx PL(x)F(A). (77)
-1
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V. CONCLUSION AND DISCUSSION

In two articles, article I and this one, we have presented
the results for meson-baryon, or, more specifically, 7 N
scattering, in the Kadyshevsky formalism. In article I we have
presented the results for meson-exchange amplitudes and a
second quantization procedure for the quasifield present in
the Kadyshevsky formalism is given. We studied the frame
dependence, i.e., the n dependence, of the Kadyshevsky
integral equation, which we continued in this article.

Couplings containing derivatives and higher-spin fields
may cause differences and problems as far as the results
in the Kadyshevsky formalism and the Feynman formalism
are concerned. This is discussed in article I by means of an
example. After a second glance the results in both formalisms
are the same; however, they contain extra frame-dependent
contact terms. Two methods are shortly introduced and
applied, which discuss a second source extra terms: the TU
and the GJ methods. The extra terms coming from this second
source cancel the former ones exactly. Both formalisms yield
the same results. With the use of (one of) these methods the
final results for the S matrix or amplitude are covariant and
frame independent (n independent). For practical purposes we
have introduced and discussed the P method and, last but not
least, we have shown that the TU method can be derived from
the Bogoliubov-Medvedev-Polivanov theory.

In this article we have presented the results for baryon
exchange. It also contains a formal introduction and detail
discussion of so-called pair suppression. We have formally
implemented “absolute” pair suppression and applied it to the
baryon exchange processes, although it is in principle possible
to also allow for some pair production. The formalism used
is based on the TU method. For the resulting amplitudes, we
have shown, to our knowledge for the first time, that they are
causal, covariant, and n independent. Moreover, the amplitudes
are just a factor 1/2 of the usual Feynman expressions. The
amplitudes contain only positive energy (or, if one wishes,
only negative energy) initial and final states. This is particularly
convenient for the Kadyshevsky integral equation. It should be
mentioned that negative energy is present inside an amplitude
via the A(x — y) propagator. This is, however, also the case in
the academic example of the infinite dense antineutron star.

The last part of this article contains the partial-wave
expansion. This is used for solving the Kadyshevsky integral
equation and to introduce the phase shifts.

APPENDICES
A. KADYSHEVSKY AMPLITUDES AND INVARIANTS

A. Meson exchange

1. Scalar-meson exchange, diagram (a)

M, = gppsgsla(p)) u(pIDV(A, 0, 7), (AL

where DD(A,, n, k) = 2—}41 . —A,~n+EI—A,+i8
As = gppsgsDV (A, n, ). (A2)
X3 = grrsgs- (A3)
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2. Scalar-meson exchange, diagram (b)

M, = gppsgsla(p's) u(pIDV(=A, n. k). (Ad)
As = gppsgsDV(—A,, n, k). (AS)
X¢ = grpsgs. (A6)

3. Pomeron exchange
8PPPEP _,
M = T[M(P s u(p)l. (A7)
gprr8PpP
Ap = =————. A8
P i (AB)

The partial-wave projection is obtained by applying (75)
straightforwardly.

4. Vector-meson exchange, diagram (a)

a — 8v /
M = —gypp a(p's) [2ng— 7 (M = M)+ ')
v
1
X Z(sp’q’ — Spg FUpg — Upyg)

— (m? —mlz) + 2ikn - Q)

Sv
2My

1
- E(Sp’q’ + qu))

+

1
(Z(Mf + M)Q+ E(upq’ + up’q)

fv (1 1
e <§(M]% £ 02) 4 3 ()

1 /1
5 <§(tp’p 1) +ttpg + Spq)
1
+(My + Mp)x' + Z(K/ — k) = +p)- ”’?>
1 1
X Z(Sp/q’ —Spg) + Z("pq’ —Upy)

(A9)

8v

1
Ay = —gvpp |:—M—‘2/(Mf - M;) (Z(Sp’q’ — Spq

Flpy — Upy) — (m? —m?) + 2kn - Q)

fv
+ M(MPQ' +Upg —Spg = Spg)

fv (1 1
T <§(M,2f + M7) + 3 (m +m)

Ay =

Xy =

055205-14
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1 /1 1,
—E<§(Z‘p/p+[q/q)+upq’+5‘pq)+Z(K —K)2

/ /1 1
- +p)- ’”‘) (Z(Sp’q’ — Spg) + Z(“pq’ —Upq)

— (m} —m}) + 2kn - Q) } DW(A,, n, i)

fv

= —2gypp |:gv + WM+ Mi):| DV(A, n, k)

2My

/
8vppk
2
My

gv + il (My + M;) l(S//—S
ZMV . 4 rq pPq

+ U py —u[,/q)—(m?—m?)-f-ZIZn. Q)

x DY(A,, n, k). (A10)
8v 1 / N2
— — 2L M- M) =(E
gVPP|: M‘z,( ! )(4( +&)
1E &) 1M2 M? 3 (m2 2
_Z( + )_Z( FT i)_Z(mf_mi)

|
+ 5(E’g —EEN+RE + 5))

+ 4]1:; (M7 + M7 +m% +m} —2E'E + EE)
1%
—(E'+EV —(E+E)) — 411:; . (M_?- + M} +m5
\%4

1 1
+m? + S = K)? — 5 (M7 +3M] + 3m% +m}

—2E'E —26'€ —4E'E+(E + &)%)

—2(E'+ E):z) G(E’ + &) - %(E + &)

—_

3
= 7 (M5 = M7) = 2 (m —m7)
+ %(EQS’ —EEN+k(E + 5))}

((E/+5/)2 _(E+g)2

! 1
_sverfyp'p |, T
My e

— (M7 —M?) = 3(m} —m}) + 2E'E — EE)

l

+4k(E + 5))]

—2gvpp |:gv + 2f7VV(Mf + Mi)i| ,
gVPPK/ Sfv
4M3 2M
—(E + &) — (M7 — M?) = 3(m} —m?)
+2(E'E — EEN +4k(E' +E)).

|:gv + (M + M»] ((E'+¢&')
\4

(Al1)
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5. Vector-meson exchange, diagram (b)
_ 8v
M,EI/J,)K = —gvppi(p's’) [ZgVQ— W((Mf - M;) — «it)
1%
1 2 2
X (Z(Sp’q’ — Spg T Upg —Upg) — (mf - mi)

fv
2My

—2%n - Q> (2(MJf + M)Q

1 1
+ E(Wq’ +upg) — g(sp’q’ + Spq))

v (1 1
e (0003 + 3) + 50+ )

1/1
) <§(tp’p t1gq) + Upg + Spq)

1
— (Mg + Mkt + Z(K/ — 1)+ (p' +p)- n/?)

1 2 2
X (Z(Sﬁ’q’ — Spg T Upg —Upg) — (mf - mi)

—2kn - Q)] u(ps) x DY(=A,, n, &). (A12)

8v 1
—5(My— M) <Z(Sp’q’ — Spq

Ay = —gvpp [— e

FUpy — Upg) — (m? —mlz) —2ikn - Q)

A
41\/‘1/ ( Upg + Upg = Spg — Spq)
1 1
- 2% (E(M}% £ M2) 4 5+ md)

1 /1 1
-3 (5@,,7, +lgg) + Upg + qu) + Z(K/ —K)?
, _ 1 1
+(p"+ p) - nk Z(Sp’q’ — Spg) + Z(“M’ —Upq)
— (mfc — m,z) — 2kn - Q>] D“)(—A,, n,iK)

Sv _
By = —2gypp |gv + =—(M; + M;) | DV(=A, n, &)
2My

gvppk fv 1
A, =— [ + M +M,-):|<—(s~—s
v M2 oMy g
FUpy —Upg) — (mf m; ) 2kn - Q)
x DW(=A,, n, ). (A13)
1
A / N2
Xy = —gvep [ M (Mf M;) <Z(E +&

1 3
- Z(E + &y — Z(M% - M}) — Z(m? —m;})

fv
4AMy

1
+ 5(E’e — EE) — k(& + 5)) + (M7 + M7
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+m% +m] —2AE'E+ EE)—(E'+ &)

2 fV 2 2 2 2

1 1
+ E(K’ — k) — E(M_? +3M} +3m% +m?

—2E'E —28'€ — 4E'E + (E + €)?)

+2(E' + E)E) (%(E + &) — %(E + &)?

1 3 1,
- Z(MJ% - M)~ Z(’”?f —m;) + S(EE
—E&) k(€ + 5)>:|

_gVPPpr/p
My

— (M} = M7) = 3(m;]

—4ic(E' +¢)) }

2
[1+4M2 (E'+&Y —(E+¢&)

—m}) +2E'E — EE')

Xy = —2gvpp |:gv + f—(Mf + M)i|
! K / /
x4 =_gIA’;’; [ V+—f (Mf+M)} ((E'+ &)

|4
2
f

—(E+ &7 — (M3 — M}) — 3(m?
+2E'E — EE) —4k(E'+E)).

)
(A14)

B. Baryon exchange/resonance

1. Baryon exchange, scalar coupling
85 1
M, == a(p's) [—(M_f + M;)
2 2
+Mp — @+ mz} u(ps)DP(A,, n, k), (A1)

where the denominator D® (A, n, k) =

function is
[(& + A -n)? — A2 i =u,s.

Ag = g [ (M +M)+MB:| DP(A,, n, %)

2
By = =5 DU(A,.n. %) (A16)
Al — gS D(Z)(A
s=5 =K us 1, 6).
X4 =— gs[ (Mf+M)+MBi|
2
X8 = 8s (A17)
2
2
’ 85 _
Xy =-==
S ) K
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2. Baryon exchange, pseudoscalar coupling

The expressions for baryon exchange with pseudoscalar
coupling are the same as Eqs. (A15)—(A17) with the substitu-
tion Mg — —Mp.

3. Baryon resonance, scalar coupling

2

MS =5 a(p's" l(M + M;)
Ko T g T
+MB+Q+¢/2] u(ps)D® (Ag,n, k). (Al8)
Ag = g [ (M; + My)+ My } D (A, n, )
_35 ) _
Bs = Y DY (A, n, k)
A = gstD(z) (Mg, 1, i) (A19)
g5 1
X¢ === (Mg + M)+ Mg
2|2
2
8s
xB=_25%
§ 2
, g2
Xy = —?S k. (A20)

4. Baryon resonance, pseudoscalar coupling

The expressions for baryon resonance with pseudoscalar
coupling are the same as Eqgs. (A18)—(A20) with the substitu-
tion Mg — —Mp.

MV

5. Baryon exchange vector coupling

i

1
= o (PS)|: (E(Mf +Mi)—MB)

1 1
X <_§(M]2‘ + Mi2)+§(”p’q +Upg)
1 ’ ’
+ My +M)Q— FU —Kk)p = p)-n

1 l 1 ’ 2
+ W =l O — S —K)>

R =

1
(Upg — M?) (E(Mf M)+ Q
1, 1 M2
+ 3  0n) = 5 (g~ )

1 1,
+ (—5<Mf — M)+ @ S~ Km)

1
+7 <_E(Mf —M)p' —p)n—(p'—p)-nQ
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1 ) 1
+20 0 @ S(My — M) — 1)+ (M7 — M)

1, , 5 1
X [7{1 Q] + E(Mf + Mi )¢ - E(up’q + upq’)’ﬂ)jl

x ui(p)DP(Ay, n, ). (A21)

A fy 1(M +M)—M
YT om2 o ST B
1, o1
x (=5 (M7 4 M7) + S g +upg)
1 1
- E(K’ —k)p' —p)-n— E(K/ — K)z)
Iz /
- E(Mf —M)p —p)-n
1
+ (tpg — ttpgy — M7+ M7) (My — M;)
i
— 5 (M — M~ m] DP (A, n, k)
B 1y 1(M + M;))— Mp ) (M; + M;)
vV = zmjzr ) f i B f i
1 = ’
+ E(M;’ +Mi2 —Upq — “pq’) —ik(p'—p)n
+ 2kn - Q} DP(A,, n, i)
A/V=4J;:2 [(Mz Upg) '+ (M _”M) ]D(Z)(A”’n"?)
f2
By = =15 lk'Mi = cM; = (<" = )M D (A, n, ).
(A22)
A \% 1 1 2 2
Xy =—5 7|\ 53(Ms+ M) — My E(mf +m3)

Xy =

055205-16

/ /_l r_ ’r_ _l r_ 2
— E'E — EE 2(lc k)E'— E) 2(K K))

Kk 1 2 2 ’
— 5y — ME —E)— Z(mf —m?42E'E

—ZEg/)(Mf M,‘)—%(Mf—Mi)(K/—K):I,

= Vpp |:1(Mf+Mi)_MB:|

fv

My + M;
2m]27 )( s+ M)

|:( My +M;)—
+ %(mjc +m} —2E'E —2EE)

+ k(E'—E)-n —k(€’+5)]
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YE = fvzzp
mrr
A’ f\% ’ 2 ’ 2 ’
Xy = 4_2[,< (m% —2EE") 4+« (m] —2E'€)],
vy = BEPP
m?‘l’
. f2
x5 4mV2 [k’ M; —kMy — (' — K)M3p]. (A23)

6. Baryon exchange, pseudovector coupling

The expressions for baryon exchange with pseudovector
coupling are the same as Eqs. (A21)—(A23) with the substitu-
tion Mg — —Mjp.

7. Baryon resonance, vector coupling

_ i

7'[

1
MV _(P/s/)|: (E(M‘f+Mi)_MB)
L, , n 1
X _E(Mf + Mi)+§(sp’q’ +5pg)—(My + Mi)Q
1
-

2
1, 1
_ E(K _ I()2> E ( v — MZ)

1
’ —K)(p/ _ p)n — E(K/ —K)[ﬁ, Q]
1 Lo !
(01— 0+ 0+ 50— ) + 3
2 1 ! '
X (spg — M7) (—E(Mf - M)+ Q- E(K - K)'/l)
1
+I?<_§(Mf—M,-)(p/—P)'”‘*‘(P/_p)'” ¢
1 1
+2Q-n Q= S(My = M)k — 1) = S(My — My)

(R
[, @1+ E(Mf + M)k — E(Sp’q’ + qu)”i)]

x ui(p)DP (A, n, ). (A24)

Ay = IV Lo, + My —m
YT om? 2 ST i
1 1 5 5 I,
X E(sp,q/ + Spg) — E(Mf + Mi) — E(K —K)
/ 1 / 2 Kk
X(P—P)'H—E(K—K) _E(Mf_Mi)
, 1
x(p—p)~n+Z(s,,rq/—qu—Mj2¢+Mi2)

IZ ’ 2 -
x (My—M;) — 5(M.,- — M) — K)] DY (A, n, i)
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ST (Y oy -
2m% |:<2(Mj +M1)

1
+ B (SF/!I’ + Spg — M}% - Mzz)

MB) (My + M)

+ k(p' = p)-n+2in - Q] D (A, n, &)

Iy
Ay = 4”;/% [(Mz _Spq)K +( f

I3
4m?2

sprq/) K] D@ (A, n, i)

i — KMy — (kK — K)MIDP (As, 1, R).

(A25)

v [o11 N
"o |:—§ (E(Mf“l‘Ml) MB)

X ((E’+5’)2+(E+5)2 — (M7 + M7?)
1 ’ ’ 1 / 2)
— —(K —k)E —E)——(K — k)

——(Mf—M)(E E)+ - ((E + &V —(E+E)

— M_?- + M})(My — M;) — E(Mf - M) — K)] ,

N

X8 =
v Zmﬂ

[( (Mf+M)—MB)(Mf+M,-)

—(r 7\2 - 2_1 2 2
+2(E + &) +2(E+5) 2(Mf+M,~)
+ k(E' — E)+ k(& + 5)} ,

Xt = 2o

4m?2

M} —(E + &) k' + (M7 — (E' + €'Y k]

x5 = _4sz [k’ M; —kMy — (k' — k)Mp].

(A26)
8. Baryon resonance, pseudovector coupling

The expressions for baryon resonance with pseudovector
coupling are the same as Eqs. (A24)—(A26) with the substitu-
tion Mg — —Mp.

9. %Jr Baryon exchange, gauge-invariant coupling

i 15
MK’,K = ——M(PS) u (Mf +M)
2 2
+Ma— Q+ ;Zyi) (m% +m} —144) — 2 P;

1 / 1 2
X ((E(Mf+Mi)+MA> 44 + 3 (upy — M) ¢

—

+ = (Spg + tgg — M7 —m7 —3m}) ¢’ +K¢qq)

_ M, My
—— PP+ =M, — M, —
12(( .+ 2( / )>gi+ >

_ N
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M

(5 = M2 = 202) = 2244+ Mk
2o+ 5 (P24 0 - )¢
Pt (Bt M - Mo )4
M

+—= (M}

) - “pq’)

MA ’ — / D
- Tﬂi + Maicitd > (Py-q)

1 /1 5.
_ﬂ<§(Mf+M,~)+MA—Q+'?'/i>(Pu~q)

x (P, ~q>} u(ps)DP (A, n, ). (A27)

Here, P? is defined in Eq. (48). All the expressions for the

slashed terms (i.e., ¢, ¢', etc.) can be found in Eq. (A68).

Furthermore,

P,-q = (_M%+Mi2_3m3‘ —Upg tlgyq
—2k(p' — p)-n+4kn-Q — (k* — K2))

P,q = (MJZ‘ - M; —mi, = 3m} + Spg — g + 1y
+28(p' — p)-n+4dkn - Q + (k? — k).

2
—m; + Spg

(A28)

2
8|1
AA=—§{2u|:(Mf+M)+MA:|( +mi—ty,)

1 1
- - |:<§(Mf+M,)+MA> <§(”p’q+upq’)

(O8]

1
=5 (M} + M7) = 5" =)' = p)-n

1
G K)2> T (pg =

»—Ml»—

M) (My — M;)

—_ N

22 2
2 (5pq +tgg — M7 — m3 — 3m})

X(Mf—M[)—/?(Mf—Mi)n~Q:|

Vi Mar ) v, — u
_E 5 ”+T( f— i) ( = i)

— 2m12) — lMA

1 2
+§MA(SM - M; B

1 1
X (E(Sp/q/ +Spq)— E(M)zc—f-Mlz)
l(’ )p' = p) l(’ )
—=k —k —p)-n—=-kK —K
2 p—pr 2

+ KMy (n-p'—l—n-Q+%(K’—K))i|(13u'q/)

L Moy oy
122\ e " S T

1
x (M — M;) — EMA(MI? — Upg')

1 1 1, 5 )
+§MA 5(“17’4 +upg) = E(Mf + Mi)

1 ’ ’ 1 1 2 M
_E(K —K)(p—p)-n—z(fc —K))—K A
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’ 1 ’ D
X\mnpAn- Q=S —x) |1 (P q)

1
24|: (Mf+M)+MAi|(Pu CI)(P Q)}

x DP(A,, n, ). (A29)
2
8qi L= 5 2
Ba = —Tg {—§Pu (m% +m; —144)
1.
—§Pu2 [(E(Mf + M)+ MA> (My+ M;)
1 1
+ E(upq’ - Mzz) + E(Spq +lgq — M? - m? - 3’":2)

— 1 ” 2
+2K(P—p)-n+§(ic — k)

_ _ |
BT (PL,2 + MAMf) (Py-q)+ D (Puz - MAMi)

_ 1 . _
x (Pu-q)+ 37 (P -q") (P, -q)} DP(Ay, n, k).

(A30)

Eh
|~ -i—
|
LY
|
3
~
|
(%)
3

2(Mf+M2)+ Sy +upg) = (K_K)
x(p’—p)-n—(x’—x)Q-n—5<x’—x)2)]

~5 [(c" — )P} — Ma(cMy + k' M)

2
X [Sp’q’ t8pg — Upg — Upg + 2gq —4m7

ant rsin 0]+ E (g
4m[+8Kn~Q]+24(Pu'q)(Pu'Q)

x DP(Ay, n, k). (A31)
2
i |5 Mk’
5 = & {pg [Mik' = Myic+ My’ = 0] + o
_ , MAIC — ) —
X(Pu‘q)—T(Pu'q) DY (A, n, k). (A32)
I 1 !
X4 = 75’ { (). |:§(Mf + M) + MA] &'e - g(ﬁf)c.m.

Lo, + Mp+ M L2 4 M2 4 4 m?

X E( F M)+ Ma E( FTMi+my+m;
1 1

—2E/5—25/E)—E(szc-f-Miz)—z(K/—K)

x(E'— E) — %(K/ — K)2) + i(mi —2EE)

1
x (Mg — M) = Z((E+ £ —26'E — M7 —2m?)
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1
X (Mg = My) = Sk(My = M)(E + 5)}
1T1(, -, M
_E [2 <(PM)C~m~ + T(Mf - Mi))(Mf — Mi)
+ %MA((E +E? — M —2m?) - %MA
Loy o, ] |
X (E(E +5)2+§(E+5)2_ E(szc-i-Mlz)
1 ’ E E 1 , ) iy
_ E(K —K)( — )_E(K _K) T RM,y

1 1 5
x (E + 5(5/ +&)+ E(K’ - m)] (Pu - q")em.

111/, - M
T [—((Pf)c.m_ + My~ M»)(Mf - M)

122
—lM( 2 —2EE) Dvta (L2 4 m2 —2p€
B a\my +2 A 2(mf—|—mi

— 25’E) — %(K/ —Kk)WE' —E)— %(K/ - K)2>

— kM, (—EH—l(E/ + 5)—1(// — K))} (Pu - @)em.

1
__[ (Mf+M)+MAi|(P Q)cm(Pu Q)cm}v

(A33)

where

+K/K+IZ(E/—|—E—S/—5):|
(Pu : q/)c.m. = [_szf — 3m§ =+
E)+2k(E + &) — (k" — k)]
Py @em. = [-M? —3m? + (E + &P +2E'E — 26

—2k(E' —

(A34)

+2R(E' — E) 4+ 28(E' + &) + (" — kD).
gup'p (1 5, -
YR = A’T {[E(Mf + M)+ MA} 26'E — g(Pj)C.m.

1 2 1
X |:§(Mf + M)+ MAi| —= [(E(Mf + M)+ MA)

3

=(M7 4+ M7 +m5 +m] —2E'E - 2£'E)

X
NI'—‘/\
| =

——((E +&)* —26'E — M} —2m?)(M; — M;)

_|_
N -NH

SIH

(M} — M} —3m’ —3m} + (E' + &)

(Pem. = B(M? + M} +m} +m} —2E'E —26'E)

(E' 4+ &Y +2EE —28'¢E

— (M3 +M2)—-(K —k)E —E)— —(K - )2>

(m} —2EE") (M — M,-)—%/Z(Mf - Mi)(5/+5%
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+(E+E?+2E'E+2EE
M _

-2 ).

_ 5g(p'p)’
3

2
Si | _(p2y ge_Lip
2 { (Pbl)c.m.gg 3(Pu)c.m.

X [(%(Mf + M)+ MA) (My + M;)

—4E8'E +4k(E + )]

x [M; — (A35)

|: (Mf+M)+MAi| (A36)

+=((E+ &) —28'€ — M} —2m})

l\)lr—l\)l'—

1
+=(m} —2EE) +2R(E' — E) + 5(K’Z — K2)}

1., -
~ LI,

1 _ _
+ E[(Puz)c,m‘ - MAMi](Pu “q)em.

+ MAMf](P q/)c.m.

|
+ﬂ(Pu -q )C.Hl.(PM : q)c.m.} . (A37)

2 7
ggipp ’ 1 52
=28+ (P
2 { +3( u)C.m.
2 l(M + M)+ M
3 ) f i A

x(My+ M)+ = ((E+<€)2

+ %(m?f —2EE) 4k (' — k) +2(E' — E))]

28'E — M} —2m7)

1
+2l

+(E+E)* — 2EE' +2E'E + 4k(E' — E)
+2(” — Kz)] } .

M7 — M} +3m5—3m] — (E'+ &'

(A38)

(PP’
B

2
B o (p2 T
e e - 32 [0 -0

x (m} —2EE +26'E — (E + £ + M} +2m])

(A39)

+i (%(m? +m})— E'E—EE — %(K' —K)
x(E' — E)— %(K/ —Kk) - %(K/ —k)E + 8))i|

1
= 35 [ = 1)(P]) oy, = Ml My + kM)

x [(E'+ &) +(E+ &) +2E'E +2EE —2€6'E
— M} — M} —3m% —3m% + 4% (€ + )]

ko, _
+ ﬂ(Pu : q )C.m.(Pu : q)c.m.} . (A40)
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2
vA — 8giP D
AT 3

X (m% —2EE — (E 4+ &) +28'E + M} +2m])

{2/25’5 - %(pj)c_m - [}‘w — )

1 1
+i (E(mzf +m;) = E'€ = &' E=2 (' —)(E' — E)

(k" —x)
12

1 / 2 1 ’r_ / o
- E(K K) E(K K)(E +5)):|
x [-M} — M} —3m’ = 3m} + (E' + &)
+(E+ &Y +2E'E+2EE —4E'E + 4k (E + 5)]} :

(A41)
5 2 ' N2
8 (P'P)k

3 (A42)

xb =2 {(Pj)c'm'[M,-K/ — Myic + Ma(c' = )]

MAK,

4
gaup'p

+

_ , MAK —
(Pu : q )c.mA - T(Pu : q)c.m.} . (A43)

Yg/ = [MiK/—MfK+MA(K/_K)]' (A44)

+ . . .
10. % Baryon resonance, gauge-invariant coupling

2

8yi 1-,/1
MK/K:_i_ 's' —P2 —(M M;
, > M(ps)[z § <2( r+ M)

1
+Mp+ Q+ /2;,4) (m% +mi —144) — ng

1 . 1 2\
X ((E(Mf+Mi)+MA>¢¢_E(Spq_Mi)q
- % (“pq/ +igq — Mi2 - 3m§- - mlz) g+ kﬁq,q)

1 ((~ M My
——((PP+ =My — M) f + =2
12<<S+2(f ))q+2

MA / — !
x (M} + 2m§ —Upy) + qu + MaRiid )

(P - q) i((ﬁz %(M M-)) Ma
Bt (\ Pt My = M) ) d+ =

M _
X ($pg — Mzz) + TA¢/¢ + MA/?’M) (Ps-q")

1 /1

x (Py-q') (P - q)} u(ps)DP (A, n,8),  (A45)

where P? is defined in Eq. (48) and the slashed terms are, as
before, defined in Eq. (A68). The inner products in Eq. (A45)
are

P -q = (—M; + M? +3m§ +mi 4 Spy — Upy —
—2k(p' — p)-n+4dkn- Q — (k" — k?))

lyq
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Py.q= (M%—Miz—i—m?c—i-?amiz—i—qu—uprq—tq/
+2k(p' — p)-n+4dkn- Q+ (k" —«k?)).

(A46)

q

2
8ai |1 5,1
AA:__g{ PZ[E(Mf+Mi)+MA] (m§c+m,-2—tqrq)

2 |27

1

(1
- gpf [<§(Mf + M;) + MA)

1 I, , 2 1,
X E(sp’q"“qu)_E(Mf+Mi)_§(K —K)

/ 1 / 1
x (p —p)~n—§(fc —K)2>+Z(qu—M,~2)

1
x (My — M;) + Z(Mf +3my +mi —upy —tyg)
X(Mf —Mi)+E(Mf —Mi)l’l . Qi|

+ L (e Mo, — vy iy —
1202\ T T f :

1 ., 1 1
—EMA (Ml +2mf—upq/)—§MA E(l/tp'q

1 2 2 1 ’ /
+itpy) — E(Mf + M7) — z(K —k)p —p)n

—%(K/—K)2> — KMy (—n-p’—l—n-Q

1, 5 11 52
_E(K _K)>:|( S'Q)—FE[E( ’

MA 1 2
+ (M = M) ) (M = M)+ S Ma (s = M7)

1

1 1 1, , )
+ EMA E(Sp/q’ +8pg) — E(Mf + Mi)

1 ’ ’ 1 / 2
_E(K —Kk)(p —p)-n—E(K —K)>
+RMy (n-p’+n-Q—i—%(lc’—/())](f_’s'q/)

11 o
_ﬂ|:§(Mf+Mi)+MAi|(PS'Q)(Ps'q)}

x DP(A,, n, ). (A47)
2
8ei |1 -
Ba = _Tg {zpvz (mzf +mi2 - tq/q)

1, (1

—§PS - E(Mf + M)+ Ma | (My + M;)
1 2 [ 2 2

- E(Spq - M7) + E(Mi +3my A+ mi = upy

1 _
- tqrq) —2ik(p' —p)-n— 5(/{’2 — /(z)i| - E(Ps2

_ 1, 5
+MaMy)(Ps - )+ 15 (PF = MaM;) (P - q)

+§(Ps q')(Py - q)} D@ (Ay,n, 7). (A48)
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8ai 1,11
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1
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1 1
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Iz D / D / -
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—lizl {PS2[M,-K/ — Mk + Ma(k" — k)]
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(A50)
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_ 1
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1 2
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1 1
(E'+ &)+ S(E+8) = S (M} + M7)

N =

AI'—‘

+2EE +28'E)(My — M;) + 1 ((E + &) — M})
x (M — M)+ S0 = M(E + 8)}

+i ! (). +—(M — M) ) (M; — M)
122 / /

1 N 1
— 5 Ma (m7 +2EE') — 7 Ma <§(m§ +m7)

—2E'E+EE)— %(I{/ —k)E —E)— %(K/ - K)2>
- ! 1 ! 1 / D

—KkMp <_E +§(8 +g)_§(’( _K)>:| (PS'Q)c.m.
171/, -, My
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1 1
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- 7 1 ! 1 / D /
+icMa (E + 5(5 +&)+ E(K - K)>i| (Ps - q)em.

1
24[ (Mf+M)+MA:|(P “qem (Ps - Q)cm}

(AS1)

where
_ 1 1
(P}).m = I:E(E/ +&Y+ E(E + & +«'k
+ E(E’+E+S/+€)]
(Py - q')em. = [-M7 +m% + (E' + £V +2EE +2£'E
—2R(E' — E) +2&(E'+ &) — (k" — k?)]

(P Qe = [-M? +m? + (E +EP +2E'E +26'E
+2R(E' — E) 4 2k(E' + &) + (K — k)]

(A52)
8PP 1
ve = SEE o), | S0ar 0+ MA]
MA[ 1 1
Jr?A |:—§M2 + S MP+2M M+ o (3m, +m?)

—(E'§E—EEH) - l(E’ +&) — E(E +&)?
—4kE' — (k" — 2)} [ (M +M)+MA}

x [=M% — M24m® +m? + (E' + ) + (E + &)

+2E'E +2EE +4E'E 4+ 4k (€' + €)] } ) (AS53)
(p'p)?
Zﬁ:—%[ (Mf+M)+MAi| (A54)

2
8si |/ 5 PO G 1
xt = e, e 3o, [ (3014 Mo+ )
1 2 / / 1
x(My+ M;)— E(mf +2EE +28E) + 5

x (E+ &) — M) +2k(E' — E) + %(K’2 - KZ)]

1 1., -
LB+ MaM NP+ 5[ (P2),

_ 1 = _
- MAMi](Ps . q/)c.m. + ﬂ(Ps ! q/)c.m.(Ps ' Q)C.m} .
(AS5)

2

giP'P [, - 1

yp = S {(Pf)c.m. — Ma(My + M) + 5[~ M;
— M} +m%+m] 4+ (E' +EV +(E+ &)

F2EE 4+ 2E'E +4E'E +4R(E + 5)]} . (A56)
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b (P’ p)?

AT 3 (A57)

A géi (52 , 1 v
Xy = {K(PS Jem &€= (P )em [1(" — )
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, 8eil'P [ _, = My ik
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X [-M7 — M} +m5 +m} +(E'+ &V +(E+E)

+2E'E +2EE +4E'E + 4k (E' + &)] } ) (A59)

2 7 \2
, .(P'p)
74 = _%. (A60)
g
x5 = % {(Pf)c‘m'[K’M,‘ —kMy+ (k' — K)MA]
K'Mp - KMa -
—~ 4A(Ps-q>c.m.+TA(Ps-q/)c.m.}. (A61)
2 /
M
vF = %(K/—K). (A62)

C. Useful relations

1. Feynman

In the Feynman formalism the following relations are quite
useful

2q' - q) =m} +mi —1

2p' - p)=Mj;+ M —1

2p' - q)=s—M;—m;

Ap-q)=s—M} —m;

2Ap-q) =M +m} —u

2p' - q)=M;+m} —u. (A63)

s+u+t=M;+M +m;+m;. (A64)
d=3My— M)+ Q
§ =—3(M;—M)+Q
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dd = (M; + M)@— L(M> + M2) +u
§'d =—M;+M)Q— 5(M] + M) +5. (A65)

2. Kadyshevsky

In the Kadyshevsky formalism there are similar relations

2q' - q) = m +m} — 1y,

2p' - p)=M;+ M —ty,

2p - q') = spg — M7 —m7 (A66)
2(p-q) =Spq — Mi2 — ml2

2(p-q) = M[2 +m§ — Upg

2p' - q)=M;+m} —uy,.

Spig + Spg T Upg T Upy +1pp + gy

= 2(M7 + M} +m5 +m]) + (' — k)
2/SpqSpq FUpg FtUpy +1pp t+lgyg

= 2(M7 +M; +m7} +mj). (A67)
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— 3 =) [k @ = 5’ — )
dd' = My + M)Q+ Ly + upy)
— 3 (M} +MP) = 3" = )P = p)-n
+ 5 =) I @ = 5 = k)
#d = S(My+ Myt — (n - p')+ L1t @1
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+n- Q450" —x)
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(A68)
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