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Pion-nucleon scattering in Kadyshevsky formalism. I. Meson exchange sector
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In a series of two articles we present the theoretical results of πN /meson-baryon scattering in the Kadyshevsky
formalism. In this article the results are given for meson exchange diagrams. On the formal side we show, by
means of an example how general couplings, i.e., couplings containing multiple derivatives and/or higher spin
fields, should be treated. We do this by introducing and applying the Takahashi-Umezawa and the Gross-Jackiw
method. For practical purposes we introduce the P̄ method. We also show how the Takashashi-Umezawa method
can be derived using the theory of Bogoliubov and collaborators and the Gross-Jackiw method is also used to study
the n dependence of the Kadyshevsky integral equation. Last but not least we present the second quantization
procedure of the quasiparticle in Kadyshevsky formalism.
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I. INTRODUCTION

Over the years the Nijmegen group has constructed very
successful baryon-baryon models (NN and YN ). As, for
instance, in Refs. [1,2], soft-core one-boson exchange NN and
YN models are constructed based on Regge-pole theory. The
models are linked via SUf (3) symmetry to have more control
on the parameters. Based on the same ideas, the Nijmegen
group recently broadened its horizon by also including meson-
baryon models [3]. Here, a simultaneous πN and K+N model
is constructed using one-meson and one-baryon exchange
potentials.

This work is presented in two articles, referred to as article I
(this article) and article II [4], and can be regarded as an
extension of Ref. [3], because we also consider meson-baryon
scattering or pion-nucleon, more specifically. The reason for
considering pion-nucleon scattering is, in addition to the inter-
est in its own, that there is a large amount of experimental data.
Using the aforementioned SUf (3) symmetry the extension
to other meson-baryon systems is easily made. Last but not
least we mention the connection to photo-/electroproduction
models.

Compared to Ref. [3] our focus is more on the theoretical
background. For instance, we formally include what is called
“pair suppression”, whereas this was assumed in Ref. [3]. Pair
suppression comes down to the suppression of negative-energy
contributions. For the first time, at least to our knowledge,
we incorporate pair suppression in a covariant and frame-
independent way. This may also be interesting for relativistic
many-body theories. The details of the formal incorporation
of pair suppression are discussed in article II.

To have this covariant and frame-independent pair sup-
pression, we use the Kadyshevsky formalism [5–8]. This
formalism is equivalent to Feynman formalism, because it
can be derived from the same S-matrix formula. It covariantly,
though frame dependently,1 separates positive and negative
energy contributions. Generally, the number of diagrams
increases: 1 → n! at order n as in old-fashioned perturbation
theory. Contrary to the Feynman formalism all particles

1By frame dependent we mean dependent on a vector nµ.

in the Kadyshevsky formalism remain on their mass shell
at the cost of the introduction of an extra quasiparticle,
which carries four-momentum only. A second quantization
formalism of this quasifield is presented in Appendix B. The
mass-shell condition has the advantage that it enables one
to use covariant on-mass-shell form factors, which is not
possible in the Feynman formalism. Another advantage of the
Kadyshevsky formalism is that it brings about a three-
dimensional Lippmann-Schwinger type of integral equation
[8], whereas a three dimensional integral equation was
achieved in Ref. [3] only after approximations of the Bethe-
Salpeter equation [9]. We study the n dependence of the
Kadyshevsky integral equation with tree level amplitudes as
input in Sec. II A. As compared to the original Kadyshevsky
rules we use a slightly different version, introduced and
discussed in Appendix A.

Couplings containing derivatives and higher-spin fields
may cause differences and problems as far as the results
in the Kadyshevsky formalism and the Feynman formalism
are concerned. This is discussed in Sec. IV B by means of
an example of simplified vector-meson exchange. After a
second glance the results in both formalisms are the same;
however, they contain extra frame-dependent contact terms.
Two methods are introduced and applied, which discuss a
second source of extra terms: the Takahashi-Umezawa (TU)
[10–12] and the Gross-Jackiw (GJ) [13] methods. The extra
terms coming from this second source cancel the former ones
exactly. Both formalisms, however, yield the same results.
With the use of (one of) these methods the final results for the
S matrix or amplitude are covariant and frame independent
(n independent). In Sec. IV B4 we introduce and discuss the P̄

method, which is quite useful for practical purposes. We derive
the TU method from the BMP [14–16] theory in Appendix C
and in light of this TU method we make some remarks about
the Haag theorem [17] in Appendix D.

Although we already discussed some content, this article
is organized as follows: we start in Sec. II with some
meson-baryon scattering kinematics in Kadyshevsky formal-
ism together with the discussion of the n dependence of the
integral equation. We start the application of the Kadyshevsky
formalism to the πN system by first discussing the ingredients
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of the model in Sec. III. The meson exchange amplitudes are
calculated in Sec. IV, which contains the results for equal
initial and final states. For the results for general meson-baryon
initial and final states we refer to Appendix A of article II.
For the results for baryon exchange we refer to article II as
well. As mentioned before Sec. IV also contains the discussion
of how general couplings, i.e., couplings containing multiple
derivatives and/or higher-spin fields, should be treated in the
Kadyshevsky formalism.

II. MESON-BARYON SCATTERING KINEMATICS

We consider the pion-nucleon or, more generally, the
meson-baryon reactions

Mi(q) + Bi(p, s) → Mf (q ′) + Bf (p′, s ′), (1)

where M stands for a meson and B is a baryon. For the four-
momentum of the baryons and mesons we take, respectively,

pµ
c = (Ec, pc), where Ec =

√
p2

c + M2
c

(2)
qµ

c = (Ec, qc), where Ec =
√

q2
c + m2

c .

Here, c stands for either the initial state i or the final state f .
In some cases we find it useful to use the definitions (2) for
the intermediate meson-baryon states n.

Using the Kadyshevsky formalism (Appendix A) and
especially the second quantization procedure (Appendix B),
external quasiparticles may occur with initial and final-state
momenta nκ and nκ ′, respectively. Therefore, the usual overall
four-momentum conservation is generally replaced by

p + q + κn = p′ + q ′ + κ ′n. (3)

As (3) and (1) make clear, a “prime” notation is used to
indicate final-state momenta; no prime means initial-state
momenta. We will maintain this notation (also for the energies)
throughout these articles unless indicated otherwise.

Furthermore we find it useful to introduce the Mandelstam
variables in the Kadyshevsky formalism

spq = (p + q)2 sp′q ′ = (p′ + q ′)2

tp′p = (p′ − p)2 tq ′q = (q ′ − q)2 (4)

up′q = (p′ − q)2 upq ′ = (p − q ′)2,

where spq and sp′q ′ , etc., are identical only for κ ′ = κ = 0.
These Mandelstam variables satisfy the relation

2
√

sp′q ′spq + tp′p + tq ′q + upq ′ + up′q

= 2
(
M2

f + M2
i + m2

f + m2
i

)
. (5)

The total and relative four-momenta of the initial, final, and
intermediate channels (c = i, f, n) are defined by

Pc = pc + qckc = µc,2pc − µc,1qc, (6)

where the weights satisfy µc,1 + µc,2 = 1. We choose the
weights to be

µc,1 = Ec

Ec + Ec (7)

µc,2 = Ec

Ec + Ec

.

Because in the Kadyshevsky formalism all particles are on
their mass shell, the choice (7) means that always k0

c = 0.
In the center-of-mass (c.m.) system p = −q and p′ = −q′,

therefore

Pi = (W, 0) Pf = (W ′, 0)
(8)

ki = (0, p) kf = (0, p′).

where W = E + E and W ′ = E′ + E ′. Furthermore we take
nµ = (1, 0). Moreoever, we take as the scattering plane the
xz plane, where the three-momentum of the initial baryon is
oriented in the positive z direction.

In the c.m. system the unpolarized differential cross section
is defined to be(

dσ

d�

)
c.m.

= |p′|
2|p|

∑ ∣∣∣∣ Mf i

8π
√

s

∣∣∣∣
2

, (9)

where the amplitude Mf i is defined in Appendix A and the
sum is over the spin components of the final baryon.

To generate amplitudes at all orders we use the
Kadyshevsky integral equation in the c.m. system

M(W ′ p′; W p)

= M irr
00(W ′ p′; W p) +

∫
d3kn M irr

0κ (W ′ p′; Wn kn) (10)

× 1

(2π )3

1

4EnEn

1√
s − √

sn + iε
Mκ0(Wn kn; W p).

Although there are still κ labels in Eq. (10), they’re fixed
at κ = P 0

i − P 0
n . Also we have included the spinors of the

projection operator of the fermion propagator

S(+)(pn) = �(1/2)(pn)θ
(
p0

n

)
δ
(
p2

n − M2
)

=
∑
sn

u(pnsn)ū(pnsn)θ
(
p0

n

)
δ
(
p2

n − M2
)
, (11)

in the amplitudes M0κ (p′q ′; pnqn) and Mκ0(pnqn; pq).
We have put the intermediate negative-energy states

[	(−)(x − y; m2
π ) and S(−)(x − y; M2

N )] in M irr
κκ ′ , but in prin-

ciple they could also participate in the integral equation.
However, using pair suppression the way we do in article II,
these terms vanish.

A. n independence of Kadyshevsky integral equation

When generating Kadyshevsky diagrams to random order
using the Kadyshevsky integral equation, the (full) amplitude
is identical to the one obtained in Feynman formalism when the
external quasiparticle momenta are put to zero. It is therefore
n independent, i.e., frame independent.

Because an approximation is used to solve the Kadyshevsky
integral equation, namely tree-level diagrams as driving terms,
it is not clear whether in this case also the amplitude generated
by solving the Kadyshevsky integral equation is n independent
when the external quasiparticle momenta are put to zero.
Below we will formulate the conditions for this to happen,
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and we have explicitly checked that the tree diagrams used in
our work satisfy these conditions.

In examining the n dependence of the amplitude we write
the Kadyshevsky integral equation schematically as

M00 = M irr
00 +

∫
dκM irr

0κG
′
κMκ0 (12)

Because n2 = 1, only variations in a spacelike direction are
unrestricted, i.e., n × δn = 0 [13]. We therefore introduce the
projection operator

P αβ = gαβ − nαnβ, (13)

from which it follows that nαP αβ = 0. The n dependence of
the amplitude can now be studied

P αβ ∂

∂nβ
M00

= P αβ

(
∂M irr

00

∂nβ

)
+ P αβ

∫
dκ1

[(
∂M irr

0κ1

∂nβ

)
G′

κM
irr
κ10

+M irr
0κ1

G′
κ1

(
∂M irr

κ10

∂nβ

)]

+P αβ

∫
dκ1dκ2

[(
∂M irr

0κ1

∂nβ

)
G′

κ1
M irr

κ1κ2
G′

κ2
M irr

κ20

+M irr
0κ1

G′
κ1

(
∂M irr

κ1κ2

∂nβ

)
G′

κ2
M irr

κ20

+M irr
0κ1

G′
κ1

M irr
κ1κ2

G′
κ2

(
∂M irr

κ20

∂nβ

)]
+ · · · = 0. (14)

Every term in this expansion has to vanish by itself. If both
Kadyshevsky contributions are considered in the first term
on the right-hand side of Eq. (14), then it is n independent
when κ ′ = κ = 0, because it yields the Feynman expression.
Although a single term in the remaining part of the right-
hand side of Eq. (14) consists of a product possibly containing
a large number of irreducible amplitudes and quasiparticle
propagators, the main ingredient of such a term is the derivative
with respect to nβ . It can be written as

∂M irr
κ1κ2

∂nβ
∝ f (κ1κ2)F (κ1κ2). (15)

Here, f is a sum of terms, where each term is at least linear
proportional to either κ1 or κ2. F (κ1κ2) has poles only in the
lower half plane.

Because we take for M irr
κ1κ2

tree-level amplitudes only,
we will demonstrate the asserted features for every single
amplitude. It is important to note here that when M irr

κ1κ2
only has

poles in the lower half plane, F (κ1κ2) also has this property.
Because of the properties of f we loose no generality by

putting one of the arguments to zero. Therefore the important
integral looks like∫

dκf (κ)F (κ)G′
κ M irr

κ0 · · · =
∫

dκf (κ)h(κ)G′
κ , (16)

where h only has poles in the lower half plane.
When performing the integral we decompose the G′

κ as
follows

G′
κ ∝ 1

κ + iε
= P

1

κ
− iπδ(κ). (17)

�(κ)

�(κ)

I I

II

III

FIG. 1. Principal-value integral.

As far as the δ(κ) part of Eq. (17) is concerned, we immediately
see that it gives zero when used in the integral (16) because
of the property of f (κ). For the principal-valued integral,
indicated in Fig. 1 by I, we close the integral by connecting
the end point (κ = ±∞) via a (huge) semicircle in the upper
half, complex κ plane (line II in Fig. 1) and by connecting
the points around zero via a small semicircle also in the upper
half-plane (line III in Fig. 1). Because h only has poles in
the lower half plane and not within the contour, the contour
integral is zero.

Because we have added integrals (II and III in Fig. 1) we
need to know what their contributions are. The easiest part is
integral III. Its contribution is half the residue at κ = 0 and
because the only remaining integrand part h(κ) in Eq. (16)
does not contain a pole at zero it is zero.

If we want the contribution of integral II to be zero, than the
integrand should at least be of order O( 1

κ2 ). Unfortunately, this
is not (always) the case as we will see in Sec. IV and article II.
To this end we introduce a phenomenological “form factor”

F (κ) =
[

�2
κ

�2
κ − κ2 − iε(κ)ε

]Nκ

(18)

where �κ is large and Nκ is some positive integer. In Eq. (18)
ε is real and positive, though small, and ε(κ) = θ (κ) − θ (−κ).

The effect of the function F (κ) [Eq. (18)] on the original
integrand in Eq. (16) is small, because for large �κ it is close to
unity. However, including this function in the integrand makes
sure that it is at least of order O( 1

κ2 ) so that integral II gives a
zero contribution. The −iε(κ)ε part ensures that there are now
poles on or within the closed contour, because they are always
in the lower half-plane (indicated by the dots in Fig. 1).

III. APPLICATION: PION-NUCLEON SCATTERING

In the following sections we are going to apply the
Kadyshevsky formalism to the pion-nucleon system, although
we present it in such a way that it can easily be extended

TABLE I. Exchanged particles in the
various channels.

Channel Exchanged particle

t f0, σ, P, ρ

u N, N∗, S11, 	33

s N, N∗, S11, 	33
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t : f0, σ, P, ρ u : N,N∗,∆ s : N,N∗,∆

FIG. 2. Tree-level amplitudes as input
for integral equation. The inclusion of the
quasiparticle lines is schematically. There-
fore, the diagrams represent either the
(a) diagram or the (b) diagram.

to other meson-baryon systems. The isospin factors are not
included in our treatment; we are concerned only about the
Lorentz and Dirac structure. For the details about the isospin
factors we refer to Ref. [3].

The ingredients of the model are tree-level, exchange
amplitudes as mentioned before. These amplitudes serve as
input for the integral equation. Very similar to what is done
in [3] we consider for the amplitudes the exchanged particles
as in Table I. Graphically, this shown in Fig. 2.

Contrary to Ref. [3] we do not consider the exchange of
the tensor mesons, because their contribution is small. The
inclusion of the them can be regarded as an extension of
this work. For the description of the amplitudes we need the
interaction Lagrangians, which in our treatment always serve
as the starting points:

(i) Triple meson vertices

LSPP = gPPS φP,aφP,b · φS (19a)

LV PP = gV PP (φai
↔
∂µφb) · φµ, (19b)

where S, V , and P stand for scalar, vector, and pseu-
doscalar to indicate the various mesons. The indices a

and b are used to indicate the outgoing and incoming

meson, respectively. For the derivative
↔
∂µ = −→

∂µ − ←−
∂µ .

(ii) Meson-baryon vertices

LSNN = gS ψ̄ψ · φS (20a)

LV NN = gV ψ̄γµψ · φµ − fV

2MV

i∂µ
(
ψ̄σµνψ

) · φν

(20b)

LPV = fPV

mπ

ψ̄γ5γµψ · ∂µφP (20c)

LV = fV

mπ

ψ̄γµψ · ∂µφP , (20d)

where σµν = 1
2 [γµ, γν]. The coupling constants fV

of (20b) and (20d) do not necessarily coincide.
We have chosen Eq. (20b) in such a way that the
vector meson couples to a current, which may contain
a derivative. This is a bit different from Refs. [3,18],
where the derivative acts on the vector meson. In
Feynman theory this does not make a difference;
however, it does in Kadyshevsky formalism, because
of the presence of the quasiparticles.

Equation (20c) is used to describe the exchange (u, s

channels) of the nucleon and Roper (N∗) and (20d) is
used for the S11 exchange. This, because of their intrin-
sic parities. Note, that we could also have chosen the

pseudoscalar and scalar couplings for these exchanges.
However, because the interactions (20c) and (20d) are
also used in Ref. [3] and in chiral symmetry–based
models, we use these interactions.

(iii) πN	33 vertex

LπN	 = ggi ε
µναβ(∂µ�̄ν)γ5γαψ · (∂βφ)

+ ggi ε
µναβψ̄γ5γα(∂µ�ν) · (∂βφ) (21)

The use of this interaction Lagrangian differs from the
one used in Ref. [3]. We will come back to this in
article II.

The meson exchange processes are discussed in Sec. IV. As
mentioned, the discussion of the baryon exchange processes
(including pair suppression) is postponed to article II. Another
important ingredient of the model is the use of form factors.
We also postpone the discussion of them to article II.

IV. MESON EXCHANGE

Here, we proceed with the discussion of the meson
exchange processes. We give the amplitudes for meson-baryon
scattering or pion-nucleon scattering, specifically meaning that
we take equal initial and final states (Mf = Mi = M and
mf = mi = m, where M and m are the masses of the nucleon
and pion, respectively). The results for general meson-baryon
initial and final states are presented in Appendix A of article II.

A. Scalar-meson exchange

For the description of the scalar-meson exchange processes
at tree level, graphically shown in Fig. 3, we use the interaction
Lagrangians (19a) and (20a), which lead to the vertices

�PPS = 1
(22)

�S = 1

q

p

q′

p′

Pa

κ

κ′

κ1

(a)

q

p

q′

p′

Pb

κ

κ′

κ1

(b)

FIG. 3. Scalar-meson exchange.
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using LI = −HI → −�. For the appropriate propagator we
use the first line of Eq. (A2).

Applying the Kadyshevsky rules as discussed in Appendix
A, the amplitudes read

M
a,b
κ ′κ = gPSSgS

∫
dκ1

κ1 + iε
[ū(p′s ′)u(ps)]θ

(
P 0

a,b

)
δ
(
P 2

a,b − M2
S

)
,

(23)

where Pa,b = ±	t + 1
2 (κ ′ + κ)n − κ1n (here a corresponds to

the + sign and b to the − sign) and 	t = 1
2 (p′ − p − q ′ + q).

For the κ1 integration we consider the δ function in Eq. (23)

(a) : δ
(
P 2

a − M2
S

) = 1

|κ+
1 − κ−

1 | [δ(κ1 − κ+
1 ) + δ(κ1 − κ−

1 )]

κ±
1 = 	t · n + 1

2
(κ ′ + κ) ± At

(b) : δ
(
P 2

b − M2
S

) = 1

|κ+
1 − κ−

1 | [δ(κ1 − κ+
1 ) + δ(κ1 − κ−

1 )]

κ±
1 = −	t · n + 1

2
(κ ′ + κ) ± At, (24)

where At =√
(n·	t )2−	2

t +M2
S . In both cases θ (P 0

a,b) selects the
κ−

1 solution. Therefore,

Pa = 	t − (	t · n) n + Atn
(25)

Pb = −	t + (	t · n) n + Atn.

With these expression we find for the amplitudes

M
(a)
κ ′κ = gPSSgS [ū(p′s ′)u(ps)]

1

2At

· 1

	t · n + κ̄ − At + iε
,

M
(b)
κ ′κ = gPSSgS [ū(p′s ′)u(ps)]

1

2At

· 1

−	t · n+κ̄−At + iε
,

(26)

where κ̄ = 1
2 (κ ′ + κ).

Adding the two together and putting κ ′ = κ = 0 we get

M00 = gPSSgS [ū(p′s ′)u(ps)]
1

t − M2
S + iε

(27)

which is Feynman result [3].
In Sec. II A we discussed the n dependence of the

Kadyshevsky integral equation. For it to be n independent
we consider the amplitudes in Eq. (26). Both contributions
have poles in the lower half complex κ̄ plane and therefore
also their sum

1

2At

· 1

	t · n + κ̄ − At + iε
+ 1

2At

· 1

−	t · n + κ̄ − At + iε

=
(

κ̄

At

− 1

)
1

−(	t · n)2 + (κ̄ − At )2 + 2iε(κ̄ − At )
.

(28)

Furthermore, we notice that when writing out the squares,
especially A2

t , that all n-dependent terms are at least linear
proportional to κ̄ . Therefore, if we would consider only
scalar-meson exchange in the Kadyshevsky integral equation
the integrand would be of the form (16), where h(κ) would by
itself be of order O( 1

κ2 ) as can be seen from Eq. (28), and the
phenomenological “form factor” (18) would not be needed.

Pa ↓ κ1

p p′

q q′

(a)

κ

κ′

Pb ↑ κ1

p p′

q q′

(b)κ

κ′

FIG. 4. Vector-meson exchange in Kadyshevsky formalism.

Because there is no propagator as far as Pomeron exchange
is concerned, the Kadyshevsky amplitude is the same as the
Feynman amplitude for Pomeron exchange [3]

Mκ ′κ = gPPP gP

M
[ū(p′s ′)u(p)]. (29)

B. Vector-meson exchange: example

Before we go on with real vector-meson exchange, we
consider simplified vector-meson exchange. We use this as
an example to illustrate seaming problems that might occur in
the results in the Kadyshevsky formalism, especially when
compared to those in the Feynman formalism. We stress
that although we consider the example of simplified vector-
meson exchange, these peculiarities are generally present
when interaction Lagrangians containing derivatives and/or
higher-spin fields (s � 1) are considered.

To study simplified vector-meson exchange we take inter-
action Lagrangians (19b) and (20b), without the σµν term

LI = g φai
↔
∂µφb · φµ + g ψ̄γµψ · φµ. (30)

1. Naive Kadyshevsky approach

The Kadyshevsky diagrams for the (simplified) vector-
meson exchange are shown in Fig. 4.

For the various components of the diagrams we take the
following vertex functions

�ψ̄ψ
µ = γµ

(31)
�φφ

µ = (q ′ + q)µ

following from Eq. (30), and the third line of Eq. (A2) for the
propagator.

Applying the Kadyshevsky rules as given in Appendix A
straightforwardly we get the following amplitudes

M
(a,b)
κ ′κ = −g2

∫
dκ1

κ1 + iε
[ū(p′s ′)γµu(ps)]

(
gµν − P

µ

a,bP
ν
a,b

M2
V

)

× θ
(
P 0

a,b

)
δ
(
P 2

a,b − M2
V

)
(q ′ + q)ν . (32)

The κ1 integral is discussed in Eqs. (24) and (25). We,
therefore, give the results immediately

M
(a)
κ ′κ = −g2 ū(p′s ′)

[
2Q/ − 1

M2
V

(
(Mf − Mi) + 1

2
n/(κ ′ − κ)

− (	t · n − At )n/

)(
1

4
(sp′q ′ − spq) + 1

4
(upq ′ − up′q)
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− (
m2

f − m2
i

) − 2(	t · n − At )n · Q)

]
u(ps)

× 1

2At

1

	t · n + 1
2 (κ ′ + κ) − At + iε

M
(b)
κ ′κ = −g2 ū(p′s ′)

[
2Q/ − 1

M2
V

(
(Mf − Mi) + 1

2
n/(κ ′ − κ)

− (	t · n + At )n/

)(
1

4
(sp′q ′ − spq) + 1

4
(upq ′ − up′q)

− (
m2

f − m2
i

) − 2(	t · n + At )n · Q

)]
u(ps)

× 1

2At

1

−	t · n + 1
2 (κ ′ + κ) − At + iε

. (33)

Adding the two together and putting κ ′ = κ = 0 we should get
back the Feynman expression

M00 = M
(a)
00 + M

(b)
00

= −g2ū(p′s ′)
[

2Q/ + (Mf − Mi)

M2
V

(
m2

f − m2
i

)]
u(ps)

× 1

t − M2
V + iε

− g2ū(p′s ′) [n/] u(ps)
2Q · n

M2
V

. (34)

From Eq. (34) we see that the first term on the right-hand side
is indeed the Feynman result. However, the second term on the
right-hand side is an unwanted, n-dependent, contact term.

As mentioned, similar discrepancies are obtained when
couplings containing higher-spin fields (s � 1) are used.
Therefore, it seems that the Kadyshevsky formalism does not
yield the same results in these cases as the Feynman formalism
when κ ′ and κ are put to zero. Because the real difference
between Feynman formalism and Kadyshevsky formalism
lies in the treatment of the time-ordered product (TOP) or
θ function also the difference in results should find its origin
in this treatment.

In Feynman formalism derivatives are taken out of the TOP
to get Feynman functions, which may yield extra terms. This
is also the case in the above example

T [φµ(x)φν(y)] = −
[
gµν + ∂µ∂ν

M2
V

]
i	F (x − y)

− iδ
µ

0 δν
0 δ4(x − y)

Sf i = (−i)2g2
∫
d4xd4y[ψ̄γµψ]xT [φµ(x)φν(y)]

× [φa

↔
i∂νφb]y

⇒ Mextra = −g2ū(p′s ′) [n/] u(ps)
2Q · n

M2
V

. (35)

2If we include the extra term of Eq. (35) on the Feynman
side we see that both formalisms yield the same result.

Although we have exact equivalence between the two
formalisms, the result, though covariant, is still n dependent,

2If we include the nµ vector in the θ function of the TOP, which
would not make a difference, then we can make the replacement
δ

µ

0 → nµ. This would make the result more general.

i.e., frame dependent. Of course, this is not what we want. As
it will turn out, there is another source of extra terms canceling
exactly; for instance, the one that pops up in our example
[Eqs. (34) and (35)]. As mentioned in the Introduction we
present two methods for getting these extra terms to cancel the
one in Eqs. (34) and (35): the TU method is more fundamental
and the GJ method is more systematic and pragmatic. We will
introduce both methods shortly and apply them to the problem
in Secs. IV B2 and IV B3, respectively.

2. Takahahsi and Umezawa solution

To demonstrate the TU method [10–12], we start with a
rewritten version of the Yang-Feldman (YF) equations [19]
for a general interaction

�α(x) = �α(x) −
∫

d4y Rαβ(∂)Da(y)	ret (x − y) · jβ;a(y),

(36)

where �α(x) and �α(x) are fields in the Heisenberg represen-
tation (HR) and interaction representation (IR), respectively.
Furthermore, the vectors Da(x) and jα;a(x) are defined to be

Da(x) ≡ (1, ∂µ1 , ∂µ1∂µ2 , . . .)

jα;a(x) ≡
(
− ∂LI

∂�α(x)
− ∂LI

∂(∂µ1�α(x))

− ∂LI

∂(∂µ1∂µ2�α(x))
· · ·

)
. (37)

Next, a free auxiliary field �α(x, σ ) is introduced, where σ is
a spacelike surface and x does not necessarily lie on σ . We
pose that it has the following form

�α(x, σ ) ≡ �α(x) +
∫ σ

−∞
d4y Rαβ(∂)Da(y)	(x − y) · jβ;a(y).

(38)

Combining (38) with (36) leads to

�α(x) = �α(x/σ ) + 1

2

∫
d4y[Rαβ(∂)Da(y), ε(x − y)]

×	(x − y) · jβ;a(y). (39)

This equation will be used to express the fields in the HR in
terms of fields in the IR.

We explain in Appendix C that the auxiliary fields and the
fields in the IR are related by a unitary operator using the
BMP theory. Also it is shown how the interaction Hamiltonian
should be deduced.

Applying these concepts to our example we determine the
“currents” via (37)

jφa,a
= (−gi∂µφb · φµ, igφb · φµ)

jφb,a
= (gi∂µφa · φµ,−igφa · φµ)

(40)
jψ,a = (−gγµψ · φµ, 0)

jφµ,a = (−gφa

→
i∂νφb − gψ̄γµψ, 0).
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Using (39) we can express the fields in the HR in terms of
fields in the IR, i.e., free fields

φa(x) = φa(x/σ )

φb(x) = φb(x/σ )

∂µφa(x) = [∂µφa(x, σ )]x/σ + 1

2

∫
d4y

[
∂x
µ∂y

ν , ε(x − y)
]

×	(x − y) (igφb · φν)y
= [∂µφa(x, σ )]x/σ + ignµφbn · φ

∂µφb(x) = [∂µφb(x, σ )]x/σ + 1

2

∫
d4y

[
∂x
µ∂y

ν , ε(x − y)
]

×	(x − y) (−igφa · φν)y
= [∂µφb(x, σ )]x/σ − ignµφan · φ

ψ(x) = ψ(x/σ )

φµ(x) = φµ(x/σ ) + 1

2

∫
d4y

[(
−gµν − ∂µ∂ν

M2
V

)
,

ε(x − y)

]
	(x − y)(−gφa

↔
i∂νφb − gψ̄γνψ)y

= φµ(x/σ ) − g nµ

M2
V

(φan · ↔
i∂φb + ψ̄n/ψ). (41)

As can be seen from Eq. (39), the first term on the right-hand
side is a free field and the second term contains the current
expressed in terms of fields in the HR, which on their turn are
expanded similarly. Therefore, one gets coupled equations. In
solving these equations we assumed that the coupling constant
is small and therefore considered only terms up to first order
in the coupling constant in the expansion of the fields in the
HR. Practically speaking, the currents on the right-hand side
of side (41) are expressed in terms of free fields.

These expansions (41) are used in the commutation rela-
tions of the fields with the interaction Hamiltonian [Eq. (C17)
of Appendix C]

[φa(x),HI (y)]

= iU−1(σ )	(x − y)[−gi∂µφb · φµ + g
←−
i∂µφb · φµ]yU (σ )

= i	(x − y)[−g
↔
i∂µφb · φµ

+ g2

M2
V

n · ↔
i∂φb(φan · ↔

i∂φb + ψ̄n/ψ) − g2φa(n · φ)2]y

[ψ(x),HI (y)]

= iU−1(σ )(i∂/ + M)	(x − y)[−gγµψ · φµ]yU (σ )

= i(i∂/ + M)	(x − y)

×
[
−gγµψ · φµ + g2

M2
V

n/ψ(φan · ↔
i∂φb + ψ̄n/ψ)

]
y

[φµ(x),HI (y)]

= iU−1(σ )

(
−gµν − ∂µ∂ν

M2
V

)
	(x − y)

× [−g φa

↔
i∂νφb − g ψ̄γνψ]yU (σ )

= i

(
−gµν − ∂µ∂ν

M2
V

)
	(x − y)[−gφa

↔
i∂νφb − gψ̄γνψ

− g2 nν φ2
an · φ − g2 nν φ2

bn · φ]y. (42)

As stated below (C17) these are the fundamental equations
from which the interaction Hamiltonian can be determined

HI = −gφa

↔
i∂µφb · φµ − gψ̄γµψ · φµ − g2

2
φ2

a(n · φ)2

− g2

2
φ2

b(n · φ)2 + g2

2M2
V

[ψ̄n/ψ]2 + g2

M2
V

[ψ̄n/ψ]

× [φan · ↔
i∂φb] + g2

2M2
V

[φan · ↔
i∂φb]2 + O(g3) . . . .

(43)

If Eq. (41) was solved completely, then the right-hand side of
Eq. (41) would contain higher orders in the coupling constant
and therefore also the interaction Hamiltonian (43). These
terms are indicated by the ellipsis.

If we want to include the external quasifields as in Appendix
B, then the easy way to do this is to apply Eq. (B7)
straightforwardly. However, because we want to derive the
interaction Hamiltonian from the interaction Lagrangian we
would have to include a χ̄(x)χ (x) pair in Eq. (30) similarly to
that in Eq. (B7). This would mean that the terms of order g2 in
Eq. (43) are quartic in the quasifield, where two of them can
be contracted

χ̄(x)χ (x)χ̄χ (x)χ̄(x)χ (x) = χ̄ (x)θ [n(x − x)]χ (x). (44)

Defining the θ function to be 1 in its origin we assure that
all terms in the interaction Hamiltonian (43) relevant to πN

scattering are quadratic in the external quasifields, even higher-
order terms in the coupling constant.

The only term of order g2 in Eq. (43) that gives a
contribution to the first order in the S matrix describing πN

scattering is the third term on the second line in the right-hand
side of Eq. (43). Its contribution to the first order in the S

matrix is

S
(1)
f i = −i

∫
d4xHI (x) = −ig2

M2
V

∫
d4x[ψ̄n/ψ]

× [φan · ↔
i∂φb]x

= −ig2

M2
V

ū(p′s ′)n/u(ps)n · (q ′ + q),

⇒ Mcanc = g2 ū(p′s ′)n/u(ps)
2n · Q

M2
V

. (45)

Indeed we see that this term (45) cancels the extra term in
Eq. (34).

From Eq. (43) one can see that the interaction Hamiltonian
contains not only terms of order g but also higher-order terms.
In our example we see that the g2 terms in the interaction
Hamiltonian is responsible for the cancellation. In this light we
also mention the specific example of scalar electrodynamics
as described in Ref. [20], section 6-1-4. There the interaction
Hamiltonian also contains a term of order g2, which has
the same purpose as in our case. The method described
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in Ref. [20] is not generally applicable, whereas the above
described method, although applied to a specific example, is.

3. Gross and Jackiw solution

The essence of the Gross and Jackiw method [13] is to
define a different TOP: the T ∗ product, which is by definition
n independent:

T ∗(x, y) = T (x, y; n) + τ (x, y; n). (46)

Studying the n dependence is done in the same way as
described in Sec. II A

P αβ δ

δnβ
T ∗(x, y)

= P αβ δ

δnβ
T (x, y; n) + P αβ δ

δnβ
τ (x, y; n) ≡ 0. (47)

In our applications we are interested in second-order
contributions to πN scattering. Therefore, we analyze the n

dependence of the TOP of two interaction Hamiltonians, where
we take it to be just HI = −LI

P αβ δ

δnβ
T (x, y; n) = P αβ(x − y)βδ [n · (x − y)]

× [HI (x),HI (y)] . (48)

In general one has for equal time commutation relations

δ[n(x − y)] [HI (x),HI (y)]

= [C(n) + P αβSα(n)∂β

+P αβP µνQαµ(n)∂β∂ν + · · ·]δ4(x − y), (49)

where the ellipsis stand for higher-order derivatives. We will
consider (and encounter) only up to quadratic derivatives. The
Sα and Qαβ terms in Eq. (49) are known in the literature as
Schwinger terms.

It should be mentioned that in Ref. [13] only the first two
terms on the right-hand side of Eq. (49) are considered.

Using the fact that the TOP and therefore also the T ∗
product appears in the S matrix as an integrand, we are allowed
to use partial integration for the Sα(n) and Qαβ(n) terms. The
C(n) always vanishes. Furthermore, we use the fact that P αβ is
a projection operator. With these considerations we find from
Eqs. (47) to (49) the extra terms

τ (x − y; n) =
∫ n

dn′β[Sβ (n′) + P µν(Qβµ(n′)

+Qµβ(n′))∂ν] δ4(x − y). (50)

In principle, the right-hand side of Eq. (50) can also contain
a constant term, i.e., independent of nµ. But because we are
looking for nµ-dependent terms only, this term is irrelevant.

Now, we are going to apply the method of Gross and Jackiw.
The “covariantized” equal time commutator of interaction
Hamiltonians is

δ[n(x − y)] [HI (x),HI (y)]

= g2

{
1

M2
V

([ψn/ψ]x[φa

↔
i∂µφb]y + [ψnµψ]x[φan · ↔

i∂φb]y

+ [φan · ↔
i∂φb]x[ψnµψ]y + [φa

↔
i∂µφb]x[ψn/ψ]y

+ [ψn/ψ]y[ψγµψ]x + [ψγµψ]y[ψn/ψ]x

+ [φan · ↔
i∂φb]y[

↔
i∂µφb]x + [φa

↔
i∂µφb]y[φan · ↔

i∂φb]x)

+φa(y)n · φ(x)φa(x)φµ(y) + φa(y)φµ(x)φa(x)n · φ(y)

+ [φbn · φ]x[φbφµ]y + [φbφµ]x[φbn · φ]y

}
× P µρi∂ρδ

4(x − y). (51)

Comparing this with Eq. (49) we see that the terms between
curly brackets coincide with −iSα(n); the Qαβ(n) terms are ab-
sent. Therefore, the τ function, representing the compensating
terms, becomes by means of Eqs. (50) and (51)

τ (x − y; n) = ig2

[
1

M2
V

(2[ψn/ψ][φan · ↔
i∂φb] + [ψn/ψ]2

+[φan · ↔
i∂φb]2) + φ2

a(n · φ)2 + φ2
b(n · φ)2

]
× δ4(x − y). (52)

Its contribution to πN -scattering S matrix and amplitude is

S(2)
canc = (−i)2

2!

∫
d4xd4y

2ig2

M2
V

[ψn/ψ] [φan · ↔
i∂φb)]δ4(x − y)

Mcanc = g2ū(p′s ′)n/u(ps)
2n · Q

M2
V

, (53)

which is the same expression as the canceling amplitude
derived from the TU scheme in Eq. (45).

4. P̄ approach

From the forgoing subsections (Secs. IV B3 and IV B2)
we have seen that if we add all contributions, results in the
Feynman formalism and in the Kadyshevsky formalism are
the same (of course we need to put κ ′ = κ = 0). Also, we
have seen from Eq. (35) and the forgoing subsections that
if we bring out the derivatives out of the TOP in Feynman
formalism not only do we get Feynman functions but also the
n-dependent contact terms cancel out.

Unfortunately, this is not the case in Kadyshevsky formal-
ism. There, all n-dependent contact terms cancel out after
adding up the amplitudes. So, when calculating an amplitude
according to the Kadyshevsky rules in Appendix A one
always has to keep in mind the contributions as described
in Secs. IV B2 and IV B3. For practical purposes this is not
very convenient.

Inspired by the Feynman procedure we could also do the
same in Kadyshevsky formalism, namely let the derivatives
not only act on the vector-meson propagator3 but also on the
quasiparticle propagator (θ function). In doing so, we know
that all contact terms cancel out, just as in Feynman formalism.

We show the above in formula form:

θ [n(x − y)]∂µ
x ∂ν

x 	(+)(x − y)

+ θ [n(y − x)]∂µ
x ∂ν

x 	(+)(y − x)

3By “propagator” we mean the 	+(x − y) and not the Feynman
propagator 	F (x − y).
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= ∂µ
x ∂ν

x θ [n(x − y)]	(+)(x − y) + ∂µ
x ∂ν

x θ [n(y − x)]

×	(+)(y − x) + inµnνδ4(x − y)

= i

2π

∫
dκ1

κ1 + iε

∫
d4P

(2π )3
θ (P 0)δ

(
P 2 − M2

V

)
(−P̄µP̄ν)

× (e−iκ1n(x−y)e−iP (x−y) + eiκ1n(x−y)eiP (x−y))

+ inµnνδ4(x − y), (54)

where P̄ = P + nκ1. In this way the second order in the S

matrix becomes

S
(2)
f i = −g2

∫
d4xd4y[ū(p′s ′)γµu(ps)](q ′ + q)νe

−ix(q−q ′)

× eiy(p′−p) i

2π

∫
dκ1

κ1 + iε

∫
d4P

(2π )3
θ (P 0)δ

(
P 2 − M2

V

)
×

(
−gµν + P̄ µP̄ ν

M2
V

)
(e−iκ1n(x−y)e−iP (x−y)einκ ′x−inκy

+ eiκ1n(x−y)eiP (x−y)e−inκ ′x+inκy) + ig2
∫

d4x[ū(p′s ′)

× n/u(ps)]n · (q ′ + q)e−ix(q−q ′−p′+p−nκ ′+nκ). (55)

We see that the second term on the right-hand side of Eq. (55)
brings about an amplitude, which is exactly the same as in
Eqs. (34) and (35) and is to be canceled by Eqs. (45) and (53).

Performing the various integrals correctly we get

(a) ⇒
{

κ1 = 	t · n − At + 1
2

(
κ ′ + κ

)
n

P̄ = 	t + 1
2

(
κ ′ + κ

)
n

(56)

(b) ⇒
{

κ1 = −	t · n − At + 1
2

(
κ ′ + κ

)
n

P̄ = −	t + 1
2

(
κ ′ + κ

)
n

.

This yields for the invariant amplitudes

M
(a)
κ ′κ = −g2ū(p′s ′)

[
2Q/ + 1

M2
V

(
(Mf − Mi)

+ 1

2
(κ ′ − κ) n/ + n/κ̄

)((
m2

f − m2
i

)
+ 1

4
(spq − sp′q ′ +up′q − upq ′ ) + 2κ̄Q · n

) ]
u(ps)

× 1

2At

1

	t · n + κ̄ − At + iε

M
(b)
κ ′κ = −g2ū(p′s ′)

[
2Q/ + 1

M2
V

(
(Mf − Mi)

+1

2
(κ ′ − κ)n/ − n/κ̄

)((
m2

f − m2
i

)
+ 1

4
(spq − sp′q ′ + up′q − upq ′ ) − 2κ̄Q · n

) ]
u(ps)

× 1

2At

1

−	t · n + κ̄ − At + iε

M = M
(a)
00 + M

(b)
00

= −g2ū(p′s ′)
[

2Q/ + (Mf − Mi)

M2
V

(
m2

f − m2
i

)]

× u(ps)
1

t − M2
V + iε

, (57)

where κ̄ = 1
2 (κ ′ + κ). As before we get back the Feynman

expression for the amplitude if we add both amplitudes
obtained in Kadyshevsky formalism and put κ ′ = κ = 0. The
big advantage of this procedure is that we do not need to worry
about the contribution n-dependent contact terms because they
canceled out when introducing P̄ .

It should be noted, however, that the P̄ method is possible
only when both Kadyshevsky contributions at second order are
added. This becomes clear when looking at the first two lines
of Ref. (54): Letting the derivatives also act on the θ function
gives compensating terms for the 	(+)(x − y) part and for the
	(−)(x − y) part. Only when added together do they combine
to form the δ4(x − y) part.

Also it becomes clear from Eq. (54) that at least two deriva-
tives are needed to generate the δ4(x − y) part. Therefore,
when there is only one derivative, for instance, in the case
of baryon exchange (no derivatives in coupling, only in the
propagator) at second order, the δ4(x − y) part is not present
and it is not necessary to use the P̄ method. In these cases
it does not matter for the summed diagrams whether the P̄

method is used; however, for the individual diagrams it does
make a difference. This ambiguity is absent in Feynman theory,
there derivatives are always taken out of the TOP (which
is similar to the P̄ method, as discussed above) to come to
Feynman propagators.

In the forgoing we have demonstrated the P̄ method for
simplified vector-meson exchange and strictly speaking for
κ ′ = κ = 0. We stress, however, that this method is generally
applicable, i.e., for κ ′, κ �= 0 and for general couplings
containing multiple derivatives and/or higher-spin fields.

C. Real vector-meson exchange

Now that we have discussed how to deal with multiple
derivatives and/or higher-spin fields in the Kadyshevsky
formalism by means of the simplified vector-meson exchange
example, we are prepared to deal with real vector-meson
exchange. To do so we use the interaction Lagrangians as
in Eqs. (19b) and (20b). From these interaction Lagrangians
we distillate the already exposed vertex function in Eq. (31)
(second line) and

g �
µ

V NN = gV γ µ + fV

2MV

(p′ − p)ασαµ. (58)

The Kadyshevsky diagrams representing vector-meson ex-
change are already exposed in Fig. 4. Applying the
Kadyshevsky rules of Appendix A and the P̄ method described
in Sec. IV B4 we obtain the following amplitudes

M
(a)
κ ′κ = −gV PP ū(p′s ′)

[
2gV Q/

− gV

M2
V

κ ′n/
(

1

4
(sp′q ′ − spq + upq ′ − up′q) + 2κ̄Q · n

)

+ fV

2MV

(
4MQ/ + 1

2
(upq ′ + up′q) − 1

2
(sp′q ′ + spq)

− 1

M2
V

(
M2 + m2 − 1

2

(
1

2
(tp′p + tq ′q) + upq ′ + spq

)
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+ 2Mn/κ ′ + 1

4
(κ ′ − κ)2 − (p′ + p) · nκ̄

)

×
(

1

4
(sp′q ′ − spq) + 1

4
(upq ′ − up′q) + 2κ̄n · Q

))]

× u(ps)
1

2At

1

	t · n + κ̄ − At + iε

M
(b)
κ ′κ = −gV PP ū(p′s ′)

[
2gV Q/

+ gV

M2
V

κn/

(
1

4
(sp′q ′ − spq + upq ′ − up′q) − 2κ̄Q · n

)

+ fV

2MV

(
4MQ/ + 1

2
(upq ′ + up′q) − 1

2
(sp′q ′ + spq)

− 1

M2
V

(
M2 + m2 − 1

2

(
1

2
(tp′p + tq ′q) + upq ′ + spq

)

− 2Mn/κ + 1

4
(κ ′ − κ)2 + (p′ + p) · nκ̄

)

×
(

1

4
(sp′q ′ − spq) + 1

4
(upq ′ − up′q) − 2κ̄n · Q

))]

× u(ps)
1

2At

1

−	t · n + κ̄ − At + iε
. (59)

The sum of the two in the limit of κ ′ = κ = 0 yields

M00 = −gV PP ū(p′s ′)
[

2gV Q/ + fV

2MV

((u − s) + 4MQ/)

]

× u(ps)
1

t − M2
V + iε

, (60)

which is, again, the Feynman result [3].
Just as in Sec. IV A we consider the amplitudes (59) in light

of the n dependence of the Kadyshevsky integral equation (see
Sec. II A). Every n-dependent term in the numerators of M

(a)
κ ′κ

and M
(b)
κ ′κ is at least linear proportional to either κ or κ ′ (or

both) and the poles of M
(a)
κ ′κ and M

(b)
κ ′κ are in the lower complex

κ̄ plane. Those terms in the numerators of M
(a)
κ ′κ and M

(b)
κ ′κ that

are n independent are added in the same way as in the case of
scalar-meson exchange and the same reasoning applies.

The numerator of the summed diagrams M
(a)
0κ and M

(b)
0κ is

of higher degree in κ then the denominator. Therefore, the
function h(κ) in Eq. (16) will not be of order O( 1

κ2 ) and the
“form factor” (18) is necessary.

In Eq. (59) as well as in Eq. (26) we have taken u and ū

spinors. The reason behind this is pair suppression which we
will discuss in article II.

APPENDIX A: KADYSHEVSKY RULES

Just as in Feynman theory Kadyshevsky amplitudes can
be represented by Kadyshevsky diagrams. Because the basic
starting points are the same as in Feynman theory we take
a general Feynman diagram and give the Kadyshevsky rules
from there on to construct the amplitude Mf i . Here, we define

the amplitude as

Sf i = δf i − i(2π )2δ4(Pf − Pi) Mf i, (A1)

where Pf/i is the sum of the final/initial momenta.

Kadyshevsky rules:

(i) Arbitrarily number the vertices of the diagram.
(ii) Connect the vertices with a quasiparticle line,

assigned to it a momentum nκs (s = 1 · · · n − 1).
Attach to vertex 1 an incoming initial quasiparticle
with momentum nκ and attach to vertex n an
outgoing final quasiparticle with momentum nκ ′.4

(iii) Orient each internal momentum such that it leaves a
vertex with a lower number than the vertex it enters.
If two fermion lines with opposite momentum
direction come together in one vertex, assign a +
symbol to one line and a − to the other. Each
possibility to do this yields a different Kadyshevsky
diagram.

(iv) Assign to each internal quasiparticle line a propaga-
tor, 1

κs+iε
.

(v) Assign to all other internal lines the appropriate
Wightman function of Eq. (A2). Assign to a fermion
line with a ± symbol: S(±)(P ) [see (iii)]

	(+)(P ) = θ (P 0)δ(P 2 − M2)

S(±)(P ) = �(1/2)(±P )θ (P 0)δ(P 2 − M2),
(A2)

	(+)
µν (P ) = �(1)

µν(P )θ (P 0)δ(P 2 − M2),

S(±)
µν (P ) = �(3/2)

µν (±P ) θ (P 0)δ(P 2 − M2),

where

�(1/2)
µν (P ) = (P/ + M)

�(1)
µν(P ) =

(
−gµν + PµPν

M2

)

�(3/2)
µν (P ) = −(P/ + M)

(
gµν − 1

3
γµγν − 2PµPν

3M2

+ 1

3M
(Pµγν − γµPν)

)
. (A3)

(vi) There is momentum conservation at the vertices,
including the quasiparticle momenta.

(vii) Integrate over the internal quasimomenta:
∫ ∞
−∞ dκs .

(viii) Integrate over those internal momenta not fixed by
momentum conservation at the vertices:

∫ ∞
−∞

d4P
(2π)3 .

(ix) Include a − sign for every fermion loop.
(x) Include a − sign for identical initial or final

fermions.
(xi) Repeat the various steps for all different numberings

in (i).

4Obviously these quasiparticle may not appear as initial or final
states, because they are not physical particles. However, because we
use Kadyshevsky diagrams as input for an integral equation we allow
for external quasiparticles.
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It is clear from (iii) and (xi) that one Feynman diagram leads
to several Kadyshevsky diagrams. Generally, one Feynman
diagram leads to n! Kadyshevsky diagrams, where n is the
number of vertices (or the order). Especially for higher-order
diagrams this leads to a dramatic increase of labor. Fortunately,
we will only consider second-order diagrams.

A few remarks need to be made about these rules as far
as the choice of definition is concerned. In item (iii) we have
followed Ref. [5] to orient the internal momenta. Furthermore,
we have chosen to use the integral representation of the θ

function

θ [n · (x − y)] = i

2π

∫
dκ1

e−iκ1n·(x−y)

κ1 + iε
(A4)

instead of its complex conjugate. Because the θ function is
real, this is also a proper representation, originally used in the
articles of Kadyshevsky. To understand why we have chosen
to deviate from the original approach, consider the S matrix

S = 1 +
∞∑

n=1

(−i)n
∫ ∞

−∞
d4x1 · · · d4xn θ [n(x1 − x2)] · · · θ

× [n(xn−1 − xn)]HI (x1) · · ·HI (xn). (A5)

In each order Sn there is a factor (−i)n already in the definition.
In that specific order there are (n − 1) θ functions, each
containing a factor i from the integral representation (A4).
Therefore, every Sn will, regardless of the order, contain a
factor (−i). Hence, the amplitude Mf i , defined in Eq. (A1),
will no longer contain overall factors of i.

The momentum space S(−)(P ) functions differ an
overall minus sign by their coordinate space analogs
〈0|ψ̄(x)ψ(y)|0〉 = S(−)(x − y). The reason for that is twofold.
In many cases the Wightman functions S(−)(x − y), includ-
ing the overall minus sign, appear in combination with
the normal ordered product (NOP): N (ψψ̄) = −N (ψ̄ψ).
Therefore, the minus signs cancel. In all other cases the
Wightman functions S(−)(x − y) appear in fermion loops and
are therefore responsible for the fermion loop minus sign in
(ix), because every fermion loop will contain an odd number of
S(−)(x − y) functions. We stress that this method of defining
the Kadyshevsky rules for fermions differs from the original
one in Ref. [7].

APPENDIX B: SECOND QUANTIZATION

When discussing the Kadyshevsky rules in Appendix A
and the Kadyshevsky integral equation in (10) we allowed
for quasiparticles to occur in the initial and final state. To
do this properly a new theory needs to be set up containing
quasiparticle creation and annihilation operators. It is set up in
such a way that external quasiparticles occur in the S matrix as
trivial exponentials so that when the external quasimomenta
are taken to be zero the Feynman expression is obtained. We,
therefore, require that the vacuum expectation value of the
quasiparticles is the θ function

〈0|χ (nx)χ̄ (nx ′)|0〉 = θ [n(x − x ′)] (B1)

and that a quasifield operator acting on a state with quasimo-
mentum (n)κ yields only a trivial exponential

χ (nx)|κ〉 = e−iκnx

(B2)〈κ|χ̄(nx) = eiκnx.

Assuming that a state with quasimomentum (n)κ is created in
the usual way

a†(κ)|0〉 = |κ〉
(B3)〈0|a(κ) = 〈κ|

we have from the requirements (B1) and (B2) the following
momentum expansion of the fields

χ (nx) = i

2π

∫
dκ

κ + iε
e−iκnxa(κ)

(B4)
χ̄ (nx ′) = i

2π

∫
dκ

κ + iε
eiκnx ′

a†(κ)

and the fundamental commutation relation of the creation and
annihilation operators

[a(κ), a†(κ ′)] = −i2πκδ(κ − κ ′). (B5)

From this commutator (B5) it is clear that the quasiparticle is
not a physical particle nor a ghost.

Now that we have set up the second quantization for the
quasi particles we need to include them in the S matrix. This
is done by redefining it

S = 1 +
∑
n=1

(−i)n
∫

d4x1 · · · d4xnH̃I (x1) · · · H̃I (xn), (B6)

where

H̃I (x) ≡ HI (x)χ̄ (nx)χ (nx). (B7)

In this sense contraction of the quasifields causes propagation
of this field between vertices, just as in the Feynman formalism.
Those quasiparticles that are not contracted are used to
annihilate external quasiparticles form the vacuum.

S(2)(p′s ′q ′nκ ′; psqnκ)

= (−i)2
∫

d4x1d
4x2〈πNχ |H̃I (x1)H̃I (x2)|πNχ〉

= (−i)2
∫

d4x1d
4x2〈0|b(p′s ′)a(q ′)a(κ ′)

× [χ̄ (nx1)HI (x1)χ (nx1)χ̄(nx2)HI (x2)χ (nx2)]

× a†(κ)a†(q)b†(ps)|0〉

= (−i)2
∫

d4x1d
4x2e

inκ ′x1e−inκx2〈0|b(p′s ′)a(q ′)HI (x1)

× θ [n(x1 − x2)]HI (x2)a†(q)b†(ps)|0〉. (B8)

For the π and N fields we use the well-known momentum
expansion

φ(x) =
∫

d3l

(2π )32El

[a(l)e−ilx + a†(l)eilx]
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ψ(x) =
∑

r

∫
d3k

(2π )32Ek

[b(k, r)u(k, r)e−ikx (B9)

+ d†(k, r)v(k, r)eikx],

where the creation and annihilation operators satisfy the
following (anti-)commutation relations

[a(k), a†(l)] = (2π )3 2Ek δ3(k − l)

b(k, s), b†(l, r) = (2π )3 2Ek δsrδ
3(k − l) = d(k, s), d†(l, r).

(B10)

Putting κ ′ = κ = 0 in (B8) we see that we get the second order
in the S-matrix expansion for πN scattering as in Feynman
formalism. Of course, this is what we required from the
beginning: external quasiparticle momenta occur only in the
S matrix as exponentials.

So, we know now how to include the external quasiparticles
in the S matrix and therefore we also know what their effect
is on amplitudes. For practical purposes we will not use the
S matrix as in Eq. (B6) but keep the above in mind. In those
cases where the (possible) inclusion of external quasifields is
less trivial we will make some comments.

APPENDIX C: BMP THEORY

According to Haag’s theorem [17] in general there does not
exist a unitary transformation that relates the fields in the IR
and the fields in the HR. However, there is no objection against
the existence of an unitary U [σ ] relating the TU auxiliary fields
and the fields in the IR.

�α(x, σ ) = U−1[σ ] �α(x)U [σ ]. (C1)

Here, we follow the framework of Bogoliubov and Collab-
orators [14–16], to which we refer to as the BMP theory to
prove (C1) in a straightforward way (see Appendix (C2)).

The BMP theory was originally constructed to bypass the
use of an unitary operator U as a mediator between the fields
in the HR and in the IR.

1. Setup

In the description of the BMP theory we will consider only
scalar fields. By the assumption of asymptotic completeness
the S matrix is taken to be a functional of the asymptotic fields
φas,ρ(x), where as = in, out. In the following we use in-fields,
i.e., φρ(x) = φin,ρ(x)

S = 1 +
∞∑

n=1

∫
d4x1 · · · d4xnSn(x1α1, · · · , xnαn).

× : φα1 (x1) · · ·φαn
(xn) : . (C2)

Here, concepts like unitarity and the stability of the vacuum,
i.e., 〈0|S|0〉 = 1, and the one-particle states, i.e., 〈0|S|1〉 = 0
are assumed. The Heisenberg current, i.e., the current in the

HR, is defined as5

Jρ(x) = iS† δS

δφρ(x)
. (C3)

We note that for a Hermitean field φρ(x) the current is also
Hermitean due to unitarity. Microcausality takes the form, see
Ref. [15], section 17,6

δJρ(x)

δφλ(y)
= 0 for x � y. (C4)

It can be shown that the notion of microcausality is
reflected in the expression of the S matrix as the time-ordered
exponential. See Ref. [15] for the details on this point of view.
It can also be shown that with the current (C3) the asymp-
totic fields φin/out,ρ(x) satisfy a YF type of equation [as in
Eq. (C11)]

φρ(x) = φin/put,ρ(x) +
∫

d4y 	ret/adv(x − y) Jρ(y) (C5)

giving the Heisenberg fields φρ(x) in terms of the φin/out(x)
fields.

Lehmann, Symanzik, and Zimmermann (LSZ) [21] formu-
lated an asymptotic condition utilizing the notion of weak
convergence in the Hilbert space of state vectors. See, e.g.,
Ref. [22] for an detailed exposition of the LSZ formalism. The
correspondence of BMP theory with LSZ is obtained by the
identification

Jρ(x) = −iS† δS

δφρ(x)
≡ (� + m2) φρ(x). (C6)

As is explained in, for instance, Ref. [16], the local com-
mutivity of the currents follows from microcausality (C4).
Using the YF equations one can show that for spacelike
separations the fields in the HR commute with the currents and
among themselves, as was assumed in the LSZ formalism. For
more details and results of BMP, see Refs. [14–16].

2. Application to Takahashi-Umezawa scheme

In this subsection we introduce the auxiliary field similar
to (38)

φ(x, σ ) ≡ φ(x) −
∫ σ

−∞
d4x ′	(x − x ′) J(x ′) (C7)

and prove that φ(x) and φ(x, σ ) satisfy the same (usual)
commutation relations. Such a relation justifies the existence
of an unitary operator connecting the two as in Eq. (C1).

5Note that in Ref. [16] the out-field is used. Then

Jρ(x) = i
δS

δφρ(x)
S†.

Also, we take a minus sign in the definition of the current.
6Here x � y means either (x − y)2 � 0 and x0 < y0 or (x − y)2 <

0. So the point x is in the past of or is spacelike separated from the
point y.
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The difference of the commutation relations is, using
Eq. (C7),

[φ(x, σ ), φ(y, σ )] − [φ(x), φ(y)]

= −
∫ σ

−∞
d4y ′	(y − y ′)[φ(x), J(y ′)]

+
∫ σ

−∞
d4x ′	(x − x ′)[φ(y), J(x ′)]

+
∫ σ

−∞

∫ σ

−∞
d4x ′d4y ′ 	(x − x ′)	(y − y ′)[J(x ′), J(y ′)].

(C8)

Because the S operator is an expansion in asymptotic fields,
so is J(x) by means of its definition in terms of this S

operator (C3). Now, from the commutation relations of the
asymptotic fields one has

[φρ(x), Jσ (y)] = i

∫
d4x ′	(x − x ′)

δJσ (y)

δφρ(x ′)
. (C9)

Using this in Eq. (C8) we have

[φ(x, σ ), φ(y, σ )] − [φ(x), φ(y)]

= −i

∫ σ

−∞
d4y ′

∫ ∞

−∞
d4x ′	(x − x ′)	(y − y ′)

δJ(y ′)
δφ(x ′)

+i

∫ σ

−∞
d4x ′

∫ ∞

−∞
d4y ′	(x − x ′)	(y − y ′)

δJ(x ′)
δφ(y ′)

−i

∫ σ

−∞
d4x ′

∫ σ

−∞
d4y ′	(x − x ′)	(y − y ′)

(
δJ(x ′)
δφ(y ′)

− δJ(y ′)
δφ(x ′)

)
= 0. (C10)

Cancellation takes place in Eq. (C10) when the second integral
of the first two term on the right-hand side in Eq. (C10) is split
up:

∫ ∞
−∞ = ∫ σ

−∞ + ∫ ∞
σ

. The remaining terms are zero because
of the microcausility condition (C4). Although we shown the
proof for scalar fields only, the generalization to other types of
fields is easily made.

Complementary to what is in Refs. [10–12] we explicitly
show that the unitary operator in Eq. (C1) is not any operator
but the one connected to the S matrix. We, therefore, consider
(general) in- and out-fields. Their relation to the fields in the
HR is

�α(x) = �in,α(x) +
∫

d4yRαβ(∂)	ret(x − y) Jβ(y)

= �out,α(x) +
∫

d4yRαβ (∂)	adv(x − y) Jβ(y),

(C11)

where 	ret(x − y) = −θ (x0 − y0)	(x − y) and 	adv(x −
y) = θ (y0 − x0)	(x − y).

Equation (C11) makes clear that the choice of the Green
function determines the choice of the free field (in- or out-field)
to be used. In this light we make the following identification:
�α(x,−∞) ≡ �in,α(x), because we have used the retarded
Green function in Sec. IV B2 [text below Eq. (36)]. With
Eq. (C11) we can also relate the out-field to the auxiliary
field �α(x,∞) = �out,α(x).

Using these identifications in Eq. (C1) we obtain the relation
between �α,in(x) and �α,out(x)

�α,in(x) = U−1[−∞]U [∞]�α,out(x)U−1[∞]U [−∞]

�in,α(x) = S�out,αS−1. (C12)

Obviously, the operator connecting the in- and out-fields is the
S matrix, where the relation between U [σ ] and the S matrix is

U [σ ] = T

[
exp

(
−i

∫ σ

−∞
d4xHI (x)

)]
(C13)

U [∞] = S U [−∞] = 1.

To make contact with the interaction Hamiltonian we follow
Refs. [10–12] for completion by realizing that the unitary
operator satisfies the Tomonaga-Schwinger equation

i
δU [σ ]

δσ (x)
= HI (x; n)U [σ ]|x/σ = U [σ ] HI (x/σ ; n). (C14)

Here, the interaction Hamiltonian will in general depend on
the vector nµ(x) locally normal to the surface σ (x), i.e.,
nµ(x)dσµ = 0. It is Hermitean because of the unitarity of
U [σ ]. Then, from (C1) and (C14) one gets that

i
δ�α(x, σ )

δσ (y)
= U−1[σ ] [�α(x),HI (y; n)] U [σ ]. (C15)

However, varying (38) with respect to σ (y) gives

i
δ�α(x, σ )

δσ (y)
= iDa(y)Rαβ(∂)	(x − y) · jβ;a(y). (C16)

Comparing Eqs. (C15) and (C16) gives the relation

[�α(x),HI (y; n)] = i U [σ ][Da(y)Rαβ(∂)	(x − y)

· jβ;a(y)]U−1[σ ]. (C17)

This is the fundamental equation by which the interaction
Hamiltonian must be determined.

APPENDIX D: REMARKS ON THE HAAG THEOREM

Here, we take a closer look at the connection between the
fields in the HR and in the IR in the covariant formulation of
Tomonaga and Schwinger [23,24]

�α(x) = U−1[σ ]�α(x) U [σ ]. (D1)

This is in light of the Haag theorem [17], which states
that if there is a unitary operator connecting fields in two
representations at some time [as in Eq. (D1)], where the field
in one representation is free, both fields are free. This would
lead to a triviality.

The question is whether this situation (D1) is applicable to
our case. To answer that question we look at the results of the
previous section (Appendix C). By introducing the auxiliary
field in the scalar case as in Eq. (38) [or for general fields as
in Eq. (C7)], we proved Eq. (C1) using BMP theory.
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Now, we start with Eq. (36) and use similar arguments7 to
come to

�α(x) = �α(x) +
∫ ∞

−∞
d4y Da(y) Rαβ(∂) θ [n(x − y)]

×	(x − y) · jβ;a(y)

= �α(x) +
∫ ∞

−∞
d4yθ [n(x − y)] Da(y) Rαβ(∂)

×	(x − y) · jβ;a(y)

+
∫ ∞

−∞
d4y[Da(y)Rαβ(∂), θ [n(x − y)]]

×	(x − y) · jβ;a(y)

⇒ �α(x) = U−1[σ ]�α(x) U [σ ]|x/σ

+1

2

∫ ∞

−∞
d4y[Da(y)Rαβ(∂), ε(x − y)]

×	(x − y) · jβ;a(y). (D2)

7We have included the nµ vector in the first line of Eq. (D2), which
causes no effect. The reason for this inclusion is that we can keep the
surface σ general though spacelike.

The above is different from what is exposed in Ref. [22]
(ch. 17.2). The difference is the commutator part in Eq. (D2)
and this term is nonzero for theories with couplings containing
derivatives and higher-spin fields, carefully excluded in the
treatment of Ref. [22]. Therefore (D2) could be seen as an
extension of what is written in Ref. [22].

Returning to Haag’s theorem we see that if the last term
in Eq. (D2) is absent there is a unitary operator connecting
�α(x) and �α(x) and therefore they are both free fields. Such
theories can then be considered as trivial, although they can
still be useful as effective theories.

In our application we use various interaction Lagrangians
(for the overview see Sec. III) to be used to describe the various
exchange [and resonance (article II)] processes. Whether the
nonvanishing commutator part in Eq. (D2) is present depends
on the process under consideration. In the vector-meson
exchange diagrams (Sec. IV C) and in the spin-3/2 exchange
and resonance diagrams (article II) those commutator parts
are nonvanishing. If we include pair suppression in the way
we do in article II also in the spin-1/2 exchange and resonance
diagrams the commutator parts will be nonvanishing. So, if
we take the model as a whole (all diagrams) then it is most
certainly not trivial in the sense of the Haag theorem.
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