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Wigner function of produced particles in string fragmentation
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I show that quantum chromodynamics in four dimensions (QCD4) with transverse confinement can be
approximately compactified into QCD2 with a transverse quark mass m

T
that is obtained by solving a set

of coupled transverse eigenvalue equations. In the limits of a strong coupling and a large number of flavors,
QCD2 further admits Schwinger QED2-type bosonized solutions. I therefore examine phenomenologically the
space-time dynamics of particles produced in string fragmentation by studying the Wigner function of bosons
produced in Schwinger QED2, which mimics many features of string fragmentation in quantum chromodynamics.
I find that particles with momenta in different regions of the rapidity plateau are produced at the initial moment of
string fragmentation as a quark pulls away from an antiquark at high energies, in contrast to classical depictions
of string fragmentation with longitudinal space-momentum-time ordering.
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I. INTRODUCTION

Soft particle production by string fragmentation is an impor-
tant process in high-energy collisions. In the strongly coupled
regime of nucleus-nucleus collisions at energies currently
available at the BNL Relativistic Heavy Ion Collider (RHIC),
the dynamics of string fragmentation falls within the realm
of nonperturbative quantum chromodynamics (QCD), and the
detailed mechanism of the production process cannot yet be
described from the first principles of QCD. Phenomenological
particle production models based on preconfinement [1],
parton-hadron duality [2], cluster fragmentation [3], string
fragmentation [4], dual partons [5], the Venus model [6],
the relativistic quantum molecular dynamics (RQMD) model
[7], the multiple-collision model [8], parton cascade model
[9,10], color-glass condensate model [11], the multiphase
transport (AMPT) model [12], the Lexus model [13], and
many other models have been put forth and are successful in
describing some aspects of the data. These models incorporate
some features of QCD, but their fundamental foundation in
nonperturbative QCD is still lacking. It is of interest to study
the physics of particle production in string fragmentation with
QCD-inspired, low-dimensional nonperturbative models.

Two-dimensional quantum electrodynamics [14–24] fea-
turing one space coordinate and one time coordinate (QED2)
furnishes an interesting arena for such a study. This is a
quantum mechanical system in which a fermion interacts with
an antifermion through a linear gauge field potential in the
Coulomb gauge. It is a system in which the Higgs phenomenon
occurs and the global chiral symmetry is spontaneously
broken [14–17]. When a positive fermion and a negative
antifermion are separated in such a system, the vacuum is so
polarized that the positive and negative charges are completely
screened in a manner similar to the confinement of quarks. The
quantum field theory of massless fermions interacting with a
gauge field in QED2 can be solved exactly [14–19]. The
interacting field turns out to be equivalent to the quantum
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field theory of free bosons with a mass. It was demonstrated
by Casher, Kogut, and Susskind [18] that when a fermion
separates from an antifermion in the limit of infinite energies
in QED2, the rapidity distribution of the produced particles
produced will exhibit the property of boost invariance. For
a finite energy system, the boost-invariant solution turns
naturally into a rapidity plateau whose width increases with
energy as ln(

√
s) [23,24].

Rapidity plateau distributions of produced particles have in-
deed been observed in high-energy e+-e− annihilation, which
produces initially a separating quark and an antiquark [25–30].
Rapidity plateau distributions of produced particles have also
been observed in pp collisions at

√
s = 200 GeV by the

BRAHMS Collaboration [31]. The close similarities between
the features of empirical fragmentation data and theoretical
QED2 fragmentation results motivated me to examine in this
article the circumstances in which the longitudinal dynamics of
a transversely confined system of quantum chromodynamics in
four dimensions (QCD4) can be approximately compactified
into quantum chromodynamics in two dimensions (QCD2).
We also need to examine further how multiflavor QCD2 can
be approximated by QED2.

Our renewed interest in the nonperturbative production
mechanism arises from the puzzling observations of the
momentum distribution of particles associated with a near-
side jet. In high-energy heavy-ion collisions, a near-side
jet is characterized by the presence of associated particles
within a narrow cone along the trigger-particle direction. Its
characteristics resemble those of a jet in pp and peripheral
heavy-ion collisions. In addition to this “jet component,” there
is an additional “ridge component” of associated particles
at �φ ∼ 0 with a ridge structure in �η, where �φ and
�η are, respectively, the azimuthal angle and pseudorapidity
differences measured relative to the trigger particle [32–52].

In the phenomenon of the ridge associated with the near-
side jet, it is observed that (i) the ridge-particle yield increases
with the number of participants, (ii) the ridge yield appears
to be nearly independent of the trigger-jet properties, (iii) the
baryon-to-meson ratios of the ridge particles are more similar
to those of the bulk matter than those of the jet, and (iv) the
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slope parameter of the transverse distribution of ridge particles
is intermediate between those of the jet and those of the bulk
matter [32–52]. These features suggest that the ridge particles
are medium partons at an early stage of the medium evolution
during the passage of the jet. The azimuthal correlation of the
ridge particle with the jet and the presence of strong screening
suggest that the associated ridge particle and the trigger jet are
related by a collision. A momentum kick model was put forth
to explain the ridge phenomenon [53–57]. The model assumes
that a near-side jet occurs near the surface, collides with
medium partons, loses energy along its way, and fragments into
the trigger and its associated fragmentation products (the “jet
component”). Those medium partons that collide with the jet
acquire a longitudinal momentum kick along the jet direction.
They subsequently materialize by parton-hadron duality as
ridge particles in the “ridge component.” They carry direct
information on the momentum distribution of the medium
partons at the moment of jet-(medium parton) collisions. Based
on such a description, the experimental ridge data of the STAR,
PHOBOS, and PHENIX Collaborations [32,34,36,46,49] re-
veal an early parton momentum distribution that has a thermal-
like transverse momentum distribution and a rapidity plateau
extending to rapidities as large as |y| ∼ 4.

The early stage of a nucleus-nucleus collision consists of
simultaneous particle production processes involving quarks
pulling away from antiquarks (or qq diquarks) at high energies.
As experimental data of elementary production processes have
a rapidity plateau structure [25–31], partons at the early stage
of the nucleus-nucleus collision can possess the characteristics
of a rapidity plateau. A rapidity plateau would also be
expected from the theoretical model of string fragmentation
in QED2 [18,19,23,24], the dual-parton model [5], Bjorken
hydrodynamics [19], the Lund model [4], the Venus model [6],
the color-glass condensate model [11], the Lexus model [13],
and many other models. Thus, the possibility of a rapidity
plateau for the ridge particles should not come as a surprise.
However, the fact that a parton of large absolute rapidity can
occur together with a jet of central rapidities, as revealed by the
PHOBOS data and the momentum kick model analysis, poses
an interesting conceptual question. For those medium partons
with high magnitude of the longitudinal momentum to collide
with the jet so as to become an associated ridge particle in
the PHOBOS experiment, the partons must be present in the
longitudinal neighborhood of the jet at the moments of the
jet-medium collision, at an early stage of the nucleus-nucleus
collision.

In many classical descriptions of particle production pro-
cesses, a particle with a large absolute rapidity is associated
with a large separation from the longitudinal origin of
collision contact. For example, in the Lund model of string
fragmentation [4], there is a momentum-space-time ordering
of particles produced in the fragmentation of a string. Consider
the case in the center-of-mass system. Those particles with
the smallest absolute rapidity will be produced nearest to the
origin at the earliest times, and those with the largest absolute
rapidity will be produced farthermost from the origin at the
latest times [4,24].

In Bjorken hydrodynamics [19], the spatial configurations
are invariant with respect to a boost in rapidity. There is

a longitudinal momentum-space ordering of the particles
produced. Particles at the local longitudinal location z = 0
have rapidity zero, and it is necessary to go to a relatively large
absolute longitudinal coordinate |z| to find another particle
with a large absolute rapidity |y|.

In another classical model of Landau hydrodynamics
[58–60], one starts with a fluid initially at rest. As the fluid
evolves, there is also an ordering of the rapidity with the
longitudinal coordinate and time. It is necessary to go to larger
absolute longitudinal coordinates at later times to find particles
with greater absolute rapidities.

In these classical depictions of produced particles, there
is a space-momentum-time ordering. Those partons with large
values of absolute rapidities are not produced at the early stage
of the jet production and therefore cannot be associated with
a jet by a collision. However, the PHOBOS data [49] and the
momentum kick model analysis [53–57] indicate that a central
rapidity jet and another parton at a large absolute rapidity
can be associated by a collision. How does one resolve the
difference of these two seemingly contradicting results?

It should be pointed out that the momentum-space-time
ordering of produced particles in the above classical descrip-
tions is obtained in final-state-interaction models. There is,
however, another class of well-justified initial-state-interaction
models, one in which the constituent particles or produced
particles are present at or before the collision time of contact
at t = 0. Notable examples are the parton model [61] and
the Drell-Yan process [62], which assume the presence of
constituent partons inside the hadron or in the quark-antiquark
sea before collisions. The multiperipheral model [63] assumes
that the exchange of a tower of reggeons and the plateau
of particles are present before the collision at t = 0. The
dipole approach in photon-induced reactions [64] assumes the
fluctuation of the incident photon into a dipole quark-antiquark
pair before its collision contact with the hadron.

With regard specifically to the dynamics of produced
particles in the fragmentation of a string, it is important to point
out that there are important quantum effects [14,20,65] arising
from the vacuum structure in strongly coupled nonperturbative
quantum field theories that are beyond the realm of classical
considerations. The proper space-time dynamics should be
based on a quantum field theory in which the quantum
effects of the vacuum structure play appropriate roles. As
is well known, in theories in which the fermions are weakly
interacting and can be isolated, the bare vacuum suffices for the
description of the dynamics in a weak-coupling perturbation
theory. In contrast, however, in our systems with strong
coupling between fermions, such as in massless QED2 and
similar field theories, the vacuum of the filled Dirac sea is
the appropriate vacuum that participates in the dynamics.
The self-consistent dynamics of the filled Dirac sea in the
nonperturbative response to the presence of gauge field and
fermion disturbances lead to peculiar quantum effects of the
axial anomaly [16,17,20,65], the confinement of the fermion
[14], and the appearance of massive bosons [14]. The particle
production process in string fragmentation should therefore be
treated in a nonperturbative quantum field theory framework.

Though a complete nonperturbative theory based on full
quantum chromodynamics is desirable, it is, however, not
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available. Simplifying approximations are needed. I shall
show that a system of transversely confined QCD4 can be
approximately compactified to a system of QCD2 with a
transverse quark mass mT that is obtained from a set of coupled
transverse eigenvalue equations. I shall show that in the limit
of strong coupling and a large number of flavors, a multiflavor
massless QCD2 admits Schwinger QED2-type solutions with
an effective coupling constant that depends on the number
of flavors. In the absence of rigorous nonperturbative QCD4
solutions we are justified in examining phenomenologically
the dynamics of the system in the solvable quantum field theory
of QED2 because of its close theoretical connection with the
transversely confined QCD4 and its desirable properties of
the proper high-energy rapidity plateau behavior, confinement,
charge screening, and chiral symmetry breaking.

The space-time dynamics of particles produced in string
fragmentation can be obtained by evaluating the Wigner
function of the produced particles when a strongly coupled
fermion separates from an antifermion at high energies in
QED2. In contrast to the classical description of particle
production, we shall find that produced particles with different
momenta in different regions of the rapidity plateau are present
at the moment when the overlapping fermion-antifermion pair
begin to separate.

The space-time dynamics of partons in the central rapidity
region has been obtained in the color-glass condensate model
[11]. In contrast to the strongly coupled nonperturbative
field theory discussed here, the color-glass condensate model
considers the region of x � 1 and pT � �QCD in the weak-
coupling limit of isolated quarks and gluons. The space-
time dynamics has been evaluated in the boost-invariant
limit of infinite energies with the valence quark in the no-
recoil approximation. The description is appropriate for the
production of particles in the central rapidity region with large
transverse momenta. In the present case I wish to examine the
space-time dynamics of the production of particles with large
(pseudo)rapidities (|�η| ∼ 4) and small transverse momenta
(pt > 0.035 GeV), such as those ridge particles detected by
the PHOBOS Collaboration [49], in a system of finite energy.
These particles are in the region of large x and small pt �
�QCD, and the dynamics is within the realm of strong coupling.
It is therefore appropriate to investigate here the space-time
dynamics of produced particles in string fragmentation in a
strongly coupled nonperturbative quantum field theory.

This article is organized as follows. In Sec. II, I spell out
explicitly the circumstances in which a transversely confined
QCD4 can be approximately compactified to a massive QCD2
of fermions with a transverse mass mT which is the eigenvalue
of transverse confinement. In Sec. III, I study how the
multiflavor massless QCD2 and QED2 are related in the limit
of strong coupling and a large number of flavors Nf . The
dynamics can then be considered as those of QED2 with an
effective coupling constant that is proportional to

√
Nf . In

Sec. IV, I review the particle production processes in massless
QED2 and show how the Wigner function can be obtained from
the initial fermion current. In Sec. V, I give an explicit example
in the fragmentation of a string with finite energy and compare
the experimental rapidity distribution data in high-energy
e+-e− annihilation with the theoretical rapidity distribution.

In Sec. VI, the Wigner function of the produced particles
is evaluated as a function of time to study the space-time
dynamics of particles produced in the fragmentation of a string
in high-energy e+-e− annihilation. In Sec. VII, I generalize the
results for a single string to the case of many identical strings
at different locations and show how the Wigner function can
be evaluated. In Sec. VIII, I give numerical examples of the
Wigner function in the fragmentation of identical strings. The
Wigner function exhibits the effects of interference between
different strings. In Sec. IX, I discuss schematically the space-
time dynamics in the case of the fragmentation from many
independent strings in the context of high-energy heavy-ion
collisions. I present my discussions and conclusions in Sec. X.

II. APPROXIMATE COMPACTIFICATION OF
TRANSVERSELY CONFINED QCD4 TO QCD2

Under certain appropriate conditions, QCD4 can be ap-
proximately compactified to QCD2. It is useful to describe the
circumstances and assumptions leading to this simplification.
Previously, t’Hooft showed that in the limit of large Nc with
fixed g2Nc in single-flavor QCD4, planar diagrams with quarks
at the edges dominate, whereas diagrams with the topology of
a fermion loop or a wormhole are associated with suppressing
factors of 1/Nc and 1/N2

c , respectively [66]. In this case,
a simple-minded perturbation expansion with respect to
the coupling constant g cannot describe the spectrum, and the
1/Nc expansion may be a reasonable expansion, despite
the fact that Nc is equal to 3 and is not very big. The dominance
of the planar diagram allows one to consider QCD in
one space dimension and one time dimensions (QCD2) and
the physics resemble those of the dual string or a flux tube,
with the physical spectrum of a straight Regge trajectory [67].
Since the pioneering work of t’Hooft, the properties of QCD2
systems have been investigated by many workers [66–81].
The flux tube depiction of the longitudinal dynamics is further
phenomenologically supported by hadron spectroscopy [82]
and the limiting average transverse momentum of produced
particles in high-energy hadron collisions [83].

The description of the QCD4 dynamics as a flux tube
and the dominance of the longitudinal motion over the trans-
verse motion in string fragmentation provide the motivation
to compactify, at the least approximately, the transversely
confined QCD4 to QCD2 and QED2. Such a link was presented
briefly in Ref. [56]. I reiterate the derivation further here to
show how the coupling constant of a transversely confined
QCD4 can be related to the coupling constant in QCD2 in
such a compactification.

We start with QCD4 in which the dynamical variables are
the quarks fields ψab and the gauge fields Aa

ν , where a and b

are the color and flavor indices, respectively, and ν = 0, 1, 2, 3.
The color and flavor indices will not be displayed explicitly
except when they are needed. The gauge fields are coupled
to the quark fields, which are in turn coupled to the gauge
fields, resulting in a coupled system of great complexity. The
transverse confinement of the flux tube can be represented by
quarks moving in a nonperturbative scalar field m(r), part of
which may contain the flavor-dependent quark rest masses.
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The equation of motion of a quark field ψ is

{iD/ − m(r)}ψ = 0, (1)

where

iD/ = γ µ�µ, (2)

�µ = pµ + gAµ, (3)

Aµ = τ aAa
µ, (4)

and τ a are the generators of the color SU(Nc) group. The
equation of motion for the gauge field Aµ is

DµFµν = gψ̄γ ντψ, µ, ν = 0, 1, 2, 3, (5)

where

Fµν = ∂µAν − ∂νAµ − ig[Aµ,Aν], (6)

DµFµν = ∂µFµν − ig[Aµ, Fµν], (7)

Fµν = τ aF a
µν. (8)

The fermion current that is the source of the gauge field is

jν = gψ̄γ ντψ. (9)

We shall consider the problem of string fragmentation in
which the momentum scale for the longitudinal dynamical
motion of the source current is much greater than the
momentum scale for the transverse motion, |v3| � |v1|, |v2|,
where v is a typical source velocity. In the Lorentz gauge, the
associated gauge field Aµ is proportional to the four-velocity
γ (1, v) where γ = 1/

√
1 − v2. Under the dominance of the

longitudinal motion over the transverse motion in string
fragmentation, A1 and A2 can be neglected in comparison with
the magnitudes of A0 or A3. For the flux tube configuration,
it is further reasonable to assume that the gauge fields A0

and A3 inside the tube depend only weakly on the transverse
coordinates r = (x1, x2). It is meaningful to investigate these
fields inside the tube by averaging them over the transverse
profile of the flux tube. After such an averaging, A0 and A3 can
be considered as a function of (x0, x3) only. As a consequence,
the equation of motion for the quarks becomes

{γ 0�0 + γ 1p1 + γ 2p2 + γ 3�3 − m(r)}ψ = 0, (10)

where �0 and �3 have been approximated to be independent
of the transverse coordinates. To separate out the longitudinal
and transverse degrees of freedom, we expand the quark field
in terms of spinors µi [23],

ψ(x) = (G1µ1 − G2µ2)f+ + (G1µ3 + G2µ4)f−, (11)

where G1,2 are functions of the transverse coordinate r, f±
are functions of (x0, x3), and the spinors have been chosen to
be eigenstates of the gamma matrix α with αµ1,2 = µ1,2 and
αµ3,4 = −µ3,4 [23],

µ1 =

⎛
⎜⎝

1
0
1
0

⎞
⎟⎠ , µ2 =

⎛
⎜⎝

0
1
0

−1

⎞
⎟⎠ ,

µ3 =

⎛
⎜⎝

1
0

−1
0

⎞
⎟⎠ , and µ4 =

⎛
⎜⎝

0
1
0
1

⎞
⎟⎠ . (12)

Working out the Dirac matrices, we obtain from Eq. (10) the
set of coupled equations of motion for the quarks

−m(r)G1f+ + (−p1 + ip2)G2f+ + (�0 + �3)G1f− = 0,

(13a)

−(p1 + ip2)G1f+ + m(r)G2f+ + (�0 + �3)G2f− = 0,

(13b)

(�0 − �3)G1f+ − m(r)G1f− − (p1 − ip2)G2f− = 0,

(13c)

−(�0 − �3)G2f+ + (p1 + ip2)G1f− − m(r)G2f− = 0.

(13d)

Applying �0 − �3 on Eq. (13a) and using Eqs. (13c)
and (13d), we get[

(�0 − �3)(�0 + �3) − m2(r) − p2
T

]
G1f−

= [(−p1 + ip2)m(r)]G2f−. (14)

By the method of the separation of variables, we can introduce
the eigenvalue m2

T such that Eq. (14) can be separated into an
equation for the transverse coordinates and an equation for the
longitudinal and time coordinates,[

p2
T + m2(r) − m2

T

]
G1(r) = [(p1 − ip2)m(r)]G2(r), (15)[

(�0 − �3)(�0 + �3) − m2
T

]
f−(x0, x3) = 0. (16)

By applying �0 − �3 on Eq. (13b) and using Eqs. (13c)
and (13d), we can separate out the same longitudinal equation
but the following transverse equation,[
p2

T + m2(r) − m2
T

]
G2(r) = −[(p1 + ip2)m(r)]G1(r). (17)

Similarly, by applying �0 + �3 on Eq. (13c) and using
Eqs. (13a) and (13b), we can separate again the same transverse
Eq. (15) for G1, and the following longitudinal equation:[

(�0 + �3)(�0 − �3) − m2
T

]
f+(x0, x3) = 0. (18)

The set of four coupled equations of Eqs. (13a)–(13d) from
Eq. (1) [or Eq. (10)] for the quark therefore becomes the
set of four Eqs. (15)– (18). Equations (15) and (17) provide
the equations for the solution of the eigenvalue m2

T under
the boundary condition that the functions G1 and G2 are
confined, with vanishing probabilities at |r| → ∞. Note that
Eqs. (15) and (17) are applicable not only to an azimuthally
symmetric transverse potential but also to an azimuthally
asymmetric potential m(r). For an azimuthally symmetric
transverse potential m(r), we can further write the transverse
wave functions as

G1(r, φ) = g1(r)eiνφ, (19a)

G2(r, φ) = g2(r)ei(ν+1)φ. (19b)

Equations (15) and (17) then become a coupled set of equations
for g1(r) and g2(r) [84],

[
p2

T
(ν) + m2(r) − m2

T

]
g1(r) = −i

∂m(r)

∂r
g2(r), (20a)

[
p2

T
(ν) + m2(r) − m2

T

]
g2(r) = i

∂m(r)

∂r
g1(r), (20b)
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where

p2
T
(ν) = −1

r

∂

∂r
r

∂

∂r
+ ν2

r2
. (21)

In solving the transverse eigenvalue Eqs. (15) and (17)
[or Eqs. (20a) and (20b)] with the boundary condition of
transverse confinement, an eigenstate is characterized by
transverse quantum numbers and the corresponding eigenvalue
mT depends on these quantum numbers. Thus, the transverse
quark mass mT will depend on the transverse quantum state
of the quark in the flux tube. Excitation of the quark in
the flux tube will lead to a greater transverse mass. There
is thus an additional degree of freedom for the transverse
quark mass. The excitation of the transverse state will lead
to a broader width of the transverse momentum distribution
for the quark. Composite objects formed by pairing a quark
with an antiquark will likewise acquire a broader transverse
momentum distribution [83].

Equations (16) and (18) are the longitudinal equations for
a quark in the two-dimensional space-time (x0, x3). They can
be rewritten as a Dirac equation in the two-dimensional space-
time as follows. We introduce a two-dimensional quark spinor,

ψ2D =
(

f+
f−

)
, (22)

and use two-dimensional gamma matrices [74,81],

γ 0
2D =

(
0 1
1 0

)
, γ 3

2D =
(

0 −1
1 0

)
,

γ 0
2Dγ 3

2D = γ 5
2D =

(
1 0
0 −1

)
. (23)

Then Eqs. (16) and (18) can be written as{
(�0)2 − (�3)2 + γ 3

2Dγ 0
2D[�3,�0] − m2

T

}
ψ2D = 0. (24)

This same Eq. (24) can also be obtained from{
γ 0

2D�0 + γ 3
2D�3 − mT

}
ψ2D

= {
γ 0

2D(p0 + gA0) + γ 3
2D(p3 + gA3) − mT

}
ψ2D

= 0, (25)

which is the equation of motion for a quark in two-dimensional
gauge fields of A0 and A3.

Note that Eq. (25) depends on g4DAµ(4D), where I have
added the subscript “4D” to g and Aµ to indicate that the
coupling constant is the coupling constant in QCD4, and
the gauge fields are from the Maxwell Eq. (5) in the four-
dimensional space-time. In the two-dimensional space-time of
QCD2, the corresponding equations of motion for the quark
and the gauge fields are{

γ 0
2D[p0 + g2DA0(2D)] + γ 3

2D[p3 + g2DA3(2D)] − mT

}
ψ2D

= 0, (26)

and

DµF
µν

2D = g2Dψ̄2Dγ ν
2Dτψ2D = jν

2D, µν = 0, 3, (27)

where F
µν

2D are given by Eqs. (6)–(8) with Aν(4D) replaced by
Aν(2D) and g4D by g2D.

To cast Eq. (25) in the form of Eq. (26) we can identify

g4DAµ(4D) = g2DAµ(2D). (28)

To cast Eq. (5) in the form of Eq. (27), we need a relationship
between jν

2D and jν
4D. With the quark field as given by Eqs. (11)

and (22), we have

jν
4D = g4Dψ̄4Dγ ν

4Dτψ4D

= g4D[|G1(r)|2 + |G2(r)|2]ψ̄2Dγ ν
2Dτψ2D,

= (g4D/g2D)[|G1(r)|2 + |G2(r)|2]jν
2D. (29)

This indicates that the jν
4D current depends also on the

transverse spatial density distribution. As our focus is on the
longitudinal dynamics for high-energy string fragmentation, it
suffices to average the quark transverse density |G1(r)|2 +
|G2(r)|2 over the flux tube transverse profile to relate j4D

approximately with j2D as〈
jν

4D

〉
T

= (g4D/g2D)〈[|G1(r)|2 + |G2(r)|2]〉
T
j ν

2D, (30)

where the transverse averaging of O is defined as

〈O〉
T

=
∫

drO[|G1(r)|2 + |G2(r)|2]. (31)

The source term of the Maxwell equation involves a coupling
constant and the gauge field quantity in the Dirac equation
also involves the coupling constant. The equations of motion
of the quarks and gluons [Eqs. (26) and (5)] can be cast in the
forms of Eqs. (26) and (27) by transversely averaging Eq. (5)
over the profile of the flux tube and by relating the coupling
constants by the following renormalization:

g2
2D = g2

4D〈[|G1(r)|2 + |G2(r)|2]〉
T
. (32)

We can get an estimate of the relation between g2D and g4D by
considering the case of a uniform transverse flux tube profile
with a transverse radius RT ,

[|G1(r)|2 + |G2(r)|2] ∼ �(RT − |r|)/πR2
T . (33)

We have then

g2
2D = g2

4D

/(
πR2

T

) = 4αs

/
R2

T . (34)

If we consider the case of e+-e− annihilation at
√

s =
29 GeV, the average p2

T of produced pions is 0.255 GeV2 [28],
corresponding to a flux tube radius of order

RT ∼ h̄
/√〈

p2
T

〉 ∼ 0.4 fm. (35)

A typical case of α = 0.4 and a flux tube radius of RT =
0.4 fm then gives

g2
2D = 0.40 GeV2. (36)

However, my earlier comparison relating g2
2D with the string

tension coefficient b in the linear potential [56] is

g2
2D = 2b, (37)

which also gives g2
2D ∼ 0.4 GeV2, for a string tension of b =

0.2 GeV2 = 1 GeV/fm. The estimate of the QCD2 coupling
constant given in Eq. (34) is therefore consistent with the
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string tension coefficient. This relationship also gives a relation
between the string tension b and other physical quantities,

b = 2αs

/
R2

T . (38)

Thus, with the many approximations outlined above, a trans-
versely confined QCD4 can be compactified as massive QCD2
with a transverse quark mass mT obtained by solving the
transverse eigenvalue Eqs. (15) and (17).

My explicit formulation for compactifying a four-
dimensional space-time in a flux tube to a two-dimensional
space-time serves to provide great simplification, which allows
us to examine the dynamics of systems dominated by the
dynamics along the longitudinal direction, as in high-energy
string fragmentation. The transverse degrees of freedom is
subsumed by the use of the transverse quark mass mT , and
the longitudinal and the transverse degrees of freedom are
decoupled. If needed subsequently, the transverse properties
may be approximately restored by using the transverse
eigenfunctions and their corresponding transverse momentum
distributions of the quarks and antiquarks. For example, while
we get the rapidity distribution of the produced bosons, its
transverse distribution may be considered by treating the boson
as a composite object made up of a quark and an antiquark, for
each of which the transverse momentum distribution can be
obtained from the transverse eigenfunctions G1(r) and G2(r),
as discussed previously in Ref. [83].

III. RELATION BETWEEN QCD2 AND QED2

In the previous section I have shown that the transversely
confined QCD4 can be approximately compactified to QCD2
with a transverse quark mass determined by the transverse
confinement of the quarks within a flux tube. We can examine
the flavor degrees of freedom and write down the flavor index b

in the QCD2 equations of motion (26) and (27). In the general
case when the transverse mass mb

T depends on the flavor (as
the current quark masses may be flavor-dependent), the QCD2
equation of motion for the quark is{

γ 0(p0 + g2DA0) + γ 3(p3 + g2DA3) − mb
T

}
ψb

= 0, b = 1, . . . , Nf , (39)

and the Maxwell equation for the gauge field is

DµFµν =
Nf∑
b=1

g2Dψ̄bγ ντψb, ν, µ = 0, 3, (40)

where the subscripts “2D” of γ , ψ , Aν , and Fµν have been
henceforth omitted, for brevity of notation.

We idealize to the case of a system with flavor symmetry
so that the transverse masses and the quark wave functions of
the underlying system are independent of the flavor. Then the
gauge field Eq. (40) becomes

DµFµν = Nf g2Dψ̄bγ ντψb (no sum in b). (41)

As the strength of the source of the gauge field increases
with Nf g2D, the case of a large flavor number Nf and a
large coupling constant is expected to be in the realm of
strong coupling. In this case, the multiflavor QCD2 can be

investigated best by bosonization because it gives a theory of
scalar particles with weak self-interactions. The bosonized
massive QCD2 gives rise to a sine-Gordon equation with
periodic symmetry that does not yield simple solutions. In
this case of strong coupling and in high-energy processes
for which the energy of the system is much greater than the
transverse masses, it is reasonable to consider massive QCD2
in the massless limit and treat the mass as a perturbation in the
mass-perturbation theory [17,85].

Accordingly, we can consider the presence of a disturbance
of the gauge field Aνa (ν = 0, 3) in massless QCD2 and
choose the disturbance to be along the direction of a color
component a. The corresponding field strength tensor Fµν,a

will also be along the a direction and commutes with Aνa .
The equation of motion for the gauge field (41) becomes the
Abelian Maxwell equation,

∂µ[∂µAνa − ∂νAµa] = Nf jν,ab, (42)

where

jν,ab = g2Dψ̄bγ ντ aψb (no sum in b). (43)

Upon taking into account gauge invariance and the singularity
of the Greens function, the induced current jν,ab for this
Abelian case of massless quarks is related to the gauge field
disturbance by [14,24]

jν,ab = −g2
2D

π

(
Aνa − ∂ν 1

∂λ∂λ

∂µAµa

)
. (44)

The Abelian Maxwell Eq. (42) is satisfied if

− �Aνa − Nf g2
2D

π
Aνa = 0, (45)

where � stands for ∂ν∂
ν . The equation of motion for the gauge

field disturbance then becomes the Klein-Gordon equation for
a boson with a mass square given by

M2 = Nf g2
2D

/
π, (46)

as obtained previously by Frischmann, Sonnenschein,
Trittmann and their collaborators and confirmed by numerical
calculations [71,76,78,86]. These authors argue further that
considerations such as given earlier in this article for the
classical equations of motion in massless QCD2 are applicable
especially in the large Nf limit, for which the partition
function is dominated by the classical configuration in the
functional integral. Investigation in this limit captures the
quantum behavior of the theory.

For each color index a of Aνa , there is a massive Klein-
Gordon equation (45). The massive bosons are therefore
(N2

c − 1)-fold degenerate, which is the degeneracy of the
gluon. The bosons are the quanta of the excitation arising from
the disturbance of the color gauge fields Aνa; they have the
color octet property of the underlying gauge field disturbances.
Furthermore, the coupling constant g2D is proportional to 1/RT

as given by Eq. (34). The boson mass M as given by Eq. (46)
is proportional to 1/RT . A boson mass of this magnitude is
also expected for a gluon in the four-dimensional space-time
confined to a flux tube of radius RT . Based on this, the
massive boson states are effectively gluons because (i) they
have the proper degeneracy of the gluon, (ii) they arise from
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the excitation of the color gauge fields Aνa , and (iii) they are
of the right order of magnitude of a gluon mass as in QCD4
space-time in a confined flux tube of radius RT .

One can keep track of the degrees of freedom from a
different perspective as one compactifies QCD4 into QCD2
and QED2. In the asymptotic freedom regime of QCD4,
light quarks and gluons are free and essentially massless at
short distances. However, for long-distance behavior in the
transversely confined QCD4 in a flux tube, gluons and quarks
are confined in the tube and they acquire a mass of order
h̄/RT corresponding to the zero-point energy in the confining
tube. When transversely confined QCD4 is compactified into
QCD2, the degrees of freedom are the massive quarks and the
gauge fields A0 and A3, where one of the gauge fields can be
eliminated by fixing the gauge and the other can be written in
terms of the fermion currents. It may appear at first that the
gluon degrees of freedom have disappeared. However, as noted
earlier in this article, the excitation of the gauge fields Aνa

leads to massive color-octet boson states with the properties
of confined and massive gluons. Thus, the gluons in QCD4
reappear as color bosons in the excitation of the gauge field.
These massive bosons can also be considered as excitations
accompanied by the coupling of quark-antiquark pairs in the
color-octet configuration. The excitation of the Aνa gauge
fields producing one of these bosons leaves the remaining
fermions in the corresponding color-octet configuration such
that the combined system of the gluons and quarks is color-
neutral.

What is the fate of these color bosons (or gluons) in the
depiction of string fragmentation and jet-parton interaction
as examined in Refs. [53–57]? One can envisage that, as
they emerge and decay into the detected colorless particles,
the color of these color scalar bosons can be evaporated
with the emission of soft gluons that carry the color away
from one boson to another neighboring boson until all bosons
and remaining fermion composite objects become colorless.
Such a color-evaporation depiction then leads to the model of
parton-hadron duality [2] that has been extensively used in the
discussion of high-energy collision processes, as for example
in the Glassma model [11].

The bosonization of multiflavor QCD2 in the large Nf limit
indicates that the QCD2 can be approximated as QED2 with
three essential modifications [71,76,78,79]. First, in the limit of
massless QCD2, the boson mass square is given by g2

2DNf /π

with an additional factor of Nf , and this massive boson state
possesses color and has the degeneracy of (N2

c − 1). Second,
the nonzero transverse quark mass in massive multiflavor
QCD2 leads to a mass term that gives rise to interactions
between the color bosons. In addition to modifying the particle
spectrum [85], the interactions arising from the nonzero
transverse quark mass will affect the dynamics of particles
after production. Third, the magnitude of the fermion current
generating the excitation of the gauge field increases linearly
with the flavor number Nf . As a consequence, the number of
boson particles produced should also increase linearly with the
flavor number Nf .

Though the spectrum is known in the limit of large
Nf and Nc for massless QCD2 [71,76,78,79], the spectrum
for the realistic case of N = 3 and Nf ∼ 3 in massive

multiflavor QCD2 has not been obtained. We shall carry out
a phenomenological fragmentation study by following the
Abelian bosonization of QCD2 to QED2 and equate the mass
m of the boson in QED2 as the experimental transverse mass of
detected pions in our analysis. We shall also likewise treat the
QCD fragmentation problem as a single-flavor QED2 problem
with the multiplicity of produced particles modified by the
multiplicative factor of Nf .

I note in passing that we can carry out an additional coupling
constant renormalization for a multiflavor QCD2 with flavor
symmetry by identifying

g′
2D = g2D

√
Nf . (47)

We introduce rescaled gauge field A′
µ related to Aµ by

g′
2DA′

µ = g2DAµ. (48)

Then Eqs. (39) and (41) become{
γ 0(p0 + g′

2DA′
0) + γ 3(p3 + g′

2DA′
3) − mb

T

}
ψb

= 0; b = 1, . . . , Nf , (49)

and the Maxwell equation for the gauge field becomes

Dµ(F ′)µν = g′
2Dψ̄bγ ντψb (no sum in b). (50)

The above set of Eqs. (49) and (50) is the same as the set
of single-flavor QCD2 equations with an effective coupling
constant g′

2D. The dynamics of the flavor-symmetric multi-
flavor QCD2 is therefore the same as that of a single-flavor
QCD2 with a renormalized coupling constant g′

2D as given by
g2D

√
Nf in Eq. (47).

IV. WIGNER FUNCTION OF PRODUCED PARTICLES

After discussing the relationship between QCD4 and
QED2, I shall briefly review and summarize previous QED2
results to show how the Wigner function of produced particles
in string fragmentation can be evaluated. In conformity with
the usual notation, I denote the coupling constant in QED2
by e, which will subsequently take on values related to the
QCD2 coupling constant −g2D (with the choice of the negative
sign by convention) or phenomenologically as

√
π times

the transverse mass of a detected pion. For convenience, I
shall label the two-dimensional coordinate and momentum by
x = (x0, x1) = (t, x) and p = (p0, p1), respectively.

From the work of Schwinger [14], it is known that QED2
involving massless fermions with electromagnetic interactions
is equivalent to a free boson field φ with a mass m = e/

√
π ,

where e is the coupling constant. We can understand this
remarkable property of massless QED2 from the following
lines of reasoning. (For a simple pedagogical discussion of
QED2, see Chapter 6 of Ref. [24].) One starts with charged
fermions occupying the negative-energy Dirac sea. If there is a
current disturbance jµ in some region of space, it will lead to
an electromagnetic gauge field Aµ. This electromagnetic field
Aµ will affect all wave functions of all particles, including
those in the Dirac sea. The resultant wave functions generate
a charge current jµ. This charge current in turn generates a
gauge field Aµ, which interacts with the fermions to generate
the current. The coupling of the gauge field Aµ and the
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fermion current jµ in a self-consistent manner is a problem
of great complexity. Remarkably, when the gauge invariance
property of the current is properly taken into account, the
generated current jµ is related to the the introduced local
electromagnetic disturbance. This current jµ in turn leads to an
electromagnetic field Aµ through the Maxwell equation. If this
generated electromagnetic field is self-consistently the same as
the electromagnetic field Aµ that was first introduced, then we
find that �Aµ is proportional to Aµ. The electromagnetic field
satisfies the Klein-Gordon equation appropriate for a boson
with a mass �Aµ + (e2/π )Aµ = 0. In the Lorentz gauge, we
can represent the gauge field Aµ in terms of the boson field
φ by Aµ = εµν∂νφ/m. QED2 involving interacting massless
fermions is therefore equivalent to a field of free φ bosons with
quanta of mass m.

The relation between the fermion and boson field quantities
is [14]

jµ = −eεµν∂νφ/
√

π, (51)

where jµ is the fermion current, which can be taken to be
a real quantity, and εµν is the antisymmetric tensor ε01 =
−ε01 = −1.

In QED2, the string fragmentation process is described as
the time evolution of a fermion separating from an antifermion
at a center-of-mass energy

√
s, with the production of the

quanta of the φ boson field (or the perturbation of the Aµ field)
at subsequent times. It can be formulated as an initial-value
problem. If the current jµ arising from the fermions is initially
known, then the subsequent dynamics of the boson field φ can
be inferred at all times.

The stipulation that the interacting fermion field is exactly
equivalent to a free massive boson field facilitates the solution
of such an initial-value problem. We can represent the
dynamics of the system through the evolution of a real massive
pseudoscalar field φ, with the most general solution,

φ(x, t) = 1√
2π

∫
d2pθ (p0)δ(p2 − m2)

× [c(p1)e−ip·x + c∗(p1)e+ip·x], (52)

where p · x = p0t − p1x. The coefficient c(p1) and its com-
plex conjugation c∗(p1) can be obtained from the initial
fermion currents j 0(x, t) and j 1(x, t) at t = 0. By using
Eq. (51), we therefore have[

e√
π

∂xφ(x, t)

]
t=0

= j 0(x, 0), (53)

and [
− e√

π
∂tφ(x, t)

]
t=0

= j 1(x, 0). (54)

From these initial conditions and Eq. (52), we obtain

c(p1) = − i
√

π

e

[
p0

p1
j̃ 0(p1) + j̃ 1(p1)

]
(55)

and

c∗(−p1) = − i
√

π

e

[
p0

p1
j̃ 0(p1) − j̃ 1(p1)

]
, (56)

where ˜jµ(p1) is the Fourier transform of jµ(x, 0),

˜jµ(p1) = 1√
2π

∫
dxe−ip1xjµ(x, 0). (57)

With the coefficients c(p1) and c∗(p1) thus determined, the
energy P 0 of the system can be determined from

P 0= 1

2

∫ {[
∂φ(x, t)

∂t

]2

+
[
∂φ(x, t)

∂x

]2

+ m2[φ(x, t)]2

}
dx.

(58)

It is useful to separate φ(x, t) in terms of positive and negative
frequency components,

φ(x, t) = φ(−)(x, t) + φ(+)(x, t), (59)

where

φ(−)(x, t) =
∫

dp1

√
2π2p0

c(p1)e−ip·x, (60)

and

φ(+)(x, t) =
∫

dp1

√
2π2p0

c∗(p1)eip·x. (61)

The energy of the system is then

P 0 =
∫

dx[∂tφ
(+)(x, t)∂tφ

(−)(x, t) + ∂xφ
(+)(x, t)

× ∂xφ
(−)(x, t) + m2φ(+)(x, t)φ(−)(x, t)]. (62)

This leads to the energy

P 0 =
∫

dp1c(p1)c∗(p1)/2, (63)

which is clearly a time-independent quantity. The momentum
distribution of the bosons is given by [23]

dN

dp1
= c(p1)c∗(p1)

2p0
= π

2p0e2

[
p0

p1
j̃ 0(p1) + j̃ 1(p1)

]

×
[
p0

p1
j̃ 0(−p1) + j̃ 1(−p1)

]
, (64)

where p0 =
√

(p1)2 + m2. The rapidity distribution of the
produced particles is [23]

dN

dy
= π

2e2

[
p0

p1
j̃ 0(p1)+ j̃ 1(p1)

] [
p0

p1
j̃ 0(−p1)+ j̃ 1(−p1)

]
.

(65)

We have thus obtained a simple relation between the rapidity
distribution and the Fourier transforms of the initial fermion
charge currents.
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To obtain the Wigner function of the produced particles, we
rewrite Eq. (62) as

P 0 =
∫

dx dk

∫
ds eiks

2π

[
∂tφ

(+)
(
x + s

2

)
∂tφ

(−)
(
x − s

2

)
+ ∂xφ

(+)
(
x + s

2

)
∂xφ

(−)
(
x − s

2

)
+m2φ(+)

(
x + s

2

)
φ(−)

(
x − s

2

)]
. (66)

The total energy of the system is related to the Wigner function
f (x, k) by

P 0 =
∫

dxdkk0f (x, k), (67)

where k0 = √
k2 + m2, and the total number N is

N =
∫

dxdkf (x, k). (68)

By comparing Eqs. (66) with (67), the Wigner function of
produced bosons is given by

f (x, k) =
∫

dseiks

2πk0

[
∂tφ

(+)
(
x + s

2

)
∂tφ

(−)
(
x − s

2

)

+ ∂xφ
(+)

(
x + s

2

)
∂xφ

(−)
(
x − s

2

)

+m2φ(+)
(
x + s

2

)
φ(−)

(
x − s

2

)]
. (69)

Upon substituting the explicit forms of φ(±) in terms of c(p1)
and c∗(p1) from Eqs. (60) and (61), we obtain

f (x, k) = 1

4πk0

∫
dqeiq{x−[p0(q)−p0 ′

(q)]t} p
0p0′ + (k0)2 − q2/4

2p0p0′

× c
(
k + q

2

)
c∗

(
k − q

2

)
, (70)

where p0 =
√

(k + q/2)2 + m2 and p0′ =√
(k − q/2)2 + m2. We can alternatively rewrite Eq. (70) as

f (x, k) = 1

2πk0

∫ ∞

0
dq cos{q[x − (p0(q) − p0′

(q))t]}

× p0p0′ + (k0)2 − q2/4

2p0p0′ c
(
k + q

2

)
c∗

(
k − q

2

)
.

(71)

Therefore, if an initial fermion current is given, its spatial
Fourier components ˜jµ(p1) can then be evaluated using
Eq. (57), and the spatial Fourier coefficients c(p1) and c∗(p1)
of the bosons can be obtained from Eqs. (55) and (56).
These Fourier coefficients can be used to evaluate the Wigner
function in Eq. (71).

As the longitudinal momentum is often represented by
the rapidity variable y, with k0 = m cosh y and |k| = k =
m sinh y, we can represent the Wigner function as a function
of the longitudinal coordinate x, and the rapidity y as

f (x, y) = k0f (x, k)
∣∣
k=m sinh y

. (72)

V. STRING FRAGMENTATION AT A FINITE ENERGY

As a simple example, I shall apply the above results to
particle production in the high-energy annihilation of e+ with
e−, which falls within the domain of multiflavor QCD4.
The approximate consideration of the dynamics as occurring
within a flux tube in the fragmentation of a string allows one
to approximate the transversely confined QCD4 to QCD2.
Multiflavor massless QCD2 in turn becomes a set of N2

c − 1
Abelian QED2-type systems in the large Nf limit with the
production of the Schwinger QED2-type states. Because the
boson mass for the realistic case of massive multiflavor QCD2
with Nf ∼ 3 is not known, we shall content ourselves with us-
ing phenomenologically the experimental observed transverse
mass of the produced pions as the mass of the produced bosons.
To take into account the linear dependence of the multiplicity
on the number of flavors, we can consider the fragmentation
of a single-flavor string, with the flavor number ascribed to be
the effective charge ν = √

Nf of the separating charges.
We therefore start with a positive charge with charge νe

separating from a negative charge −νe at a finite energy√
s in the center-of-mass system to simulate approximately

the dynamics as a quark separating from an antiquark after
an electron-positron annihilation. At t = 0 the fermion and
the anti-fermion charges superimpose so that the total charge
density of the system is zero:

j 0(x, 0) = 0. (73)

However, the initial charge current j 1(x, 0) is nonzero, and it
is a symmetric function of x. In the case of infinite energy, the
current can be represented as the sum of the delta functions of
the two sources moving at the speed of light out to +x and −x

directions [18], with the corresponding terms in the boson field
φ being step functions. This suggests a simple generalization
of the initial δ-function current for finite energies, in which
one replaces their step functions in θ (x ± t) with a smooth
function of diffusivity σ [23],

φ(x, t) = −
√

πν

2

(
tanh

x + t

σ
− tanh

x − t

σ

)
. (74)

The diffusivity σ is related to the total invariant mass
√

s of
the system given in Eq. (81). From Eq. (51), the field φ(x, t)
leads to the current jµ(x, t) = 0:

j 0(x, t) = eν

2σ

[
1

cosh2
(

x+t
σ

) − 1

cosh2
(

x−t
σ

)
]

, (75)

and

j 1(x, t) = eν

2σ

[
1

cosh2
(

x+t
σ

) + 1

cosh2
(

x−t
σ

)
]

. (76)

Strictly speaking, the fermion currents should travel at a speed
slightly less than the speed of light. At high energies, the
difference between their speed and the speed of light is so
small that it can be neglected. At t = 0, we have j 0(x, 0) = 0
and

j 1(x, 0) = νe

σ cosh2(x/σ )
. (77)
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For this initial current distribution jµ(x, 0) the Fourier trans-
forms of jµ(x, 0) are

j̃ 0(p1) = 0 (78)

and

j̃ 1(p1) = − iec(p1)√
π

= iec∗(p1)√
π

= νeπp1σ√
2π sinh(πp1σ/2)

. (79)

From Eqs. (55) and (56), these initial charge current Fourier
components lead to the Fourier coefficient

c(p1) = i
√

2
νp1πσ/2

sinh(p1πσ/2)
. (80)

We can use Eq. (63) to calculate the energy P 0 = √
s, which

is independent of time, and we obtain a relation between σ

and
√

s:

σ = 2πν2

3
√

s
. (81)

The rapidity distribution is therefore [23]

dN

dy
= ν2ξ 2

sinh2 ξ
, (82)

where

ξ = ν2π2m sinh y

3
√

s
. (83)

Thus, the rapidity distribution is boost-invariant, dN/dy = ν2,
in the limit of very high energies. At a finite energy

√
s, the

rapidity distribution therefore turns into a plateau structure,
with a half-width y0 at half maximum characterized by ξ0 =
1.491 and

y0 = sinh−1

(
3ξ0

√
s

ν2π2m

)
. (84)

The half-width y0 varies with
√

s of the fragmenting string as
y0 ∝ sinh−1(

√
s) ∼ ln(

√
s), as expected.

VI. EVALUATION OF THE WIGNER FUNCTION FOR A
SEPARATING FERMION AND ANTIFERMION PAIR

It is of interest to study a specific numerical example to
illustrate the space-time dynamics of string fragmentation. We
can consider the experimental rapidity distribution of charged
pions in e+-e− annihilation at

√
s = 29 GeV [25,26]. In such

an annihilation, heavier particles such as kaons and baryons are
also produced, and they carry a fraction of the initial energy.
By integrating out the experimental dN/dyptdpt data in Table
11 of Ref. [25], the particle multiplicities of the produced
pions, kaons, and baryons are in the ratio of Nπ : NK : NN =
80 : 15 : 5 and the total energies of the produced particles are
19.11, 7.10, and 2.53 GeV for pions, kaons, and nucleons,
respectively [25].

Rather than attempting to model the production of heavier
mesons here, we shall instead simply consider pions only and
study an idealized situation in which the system fragments
only into pions. We can consider the pions to take up√

sπ = 19.11 GeV of the total energy and fit the rapidity
distribution of the pions with Eqs. (82) and (83), which contain

only two unknown parameters: the mass m and the effective
charge ν. The pions have an average transverse momentum
of 0.48 GeV [25], which corresponds to a pion transverse
mass of mπT

=
√

p2
T + m2

π = 0.50 GeV. In approximately
compactifying QCD4 to QCD2 and QED2, we have subsumed
the details of the transverse degree of freedom by using the
transverse mass of quarks. With the quark mass modified to be
the transverse quark mass by this compactification, the corre-
sponding boson mass produced should also be modified to be
the transverse boson mass of the observed boson. Accordingly,
the boson mass m of the produced particle in Eqs. (83) should
be taken to be the pion transverse mass of m = mπT

= 0.50
GeV. The theoretical rapidity distribution of charged pions can
then be calculated using Eq. (82) with the effective charge ν

as the only unknown parameter. The effective charge value
of ν = √

3 [23] gives a good description of the experimental
rapidity plateau of the produced pions [25–27], as shown in
Fig. 1. It is interesting that Nf is related to ν as Nf = ν2.
It appears phenomenologically that the effective number of
flavors participating in the excitation of the vacuum for e+-e−
annihilation at this energy is 3. This effective charge is in line
with the discussions in in Sec. III, where the strengths of the
underlying color source generating the excitation of the gauge
fields is proportional linearly to the number of flavors Nf .

From Eq. (81), the width parameter of the initial charge
current σ is 0.33/GeV or 0.065 fm, which is a narrow current
distribution. With the knowledge of σ and ν, the Fourier
coefficient c(p1) can be evaluated and the Wigner function
obtained from Eq. (71) by direct numerical integration.
Figure 2 shows the Wigner function f (x, y) as a function of x

for various values of y at t = 0 in Fig. 2(a), for positive y at
t = 0.4 fm/c in Fig. 2(b), and for negative y at t = 0.4 fm/c

in Fig. 2(c). The range of rapidities in Fig. 1 span different
regions of the rapidity plateau, as one can see in Fig. 1. One
notes the following interesting features.

(i) At t = 0, the peak of all Wigner functions occurs
at x = 0, indicating that all bosons produced with
different momenta in different regions of the rapidity
plateau are present at t = 0. This depiction is in contrast
to the momentum-space-time ordering of the classical

0 1 2 3 4
y

0

1

2

dN
π+ + 

π−   
/  

dy

√
⎯
s=29 GeV e

+
e

-
(LBL-23737)

√
⎯
sπ=19.11 GeV, m=0.50 GeV, ν=1.73

FIG. 1. (Color online) The rapidity distribution of pions in high-
energy e+-e− annihilation at

√
s = 29 GeV, out of which

√
sπ =

19.11 GeV goes into producing pions. The data is from Refs. [25–27]
and the solid curve is from Eq. (82) with m = 0.50 GeV, ν = 1.73.
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FIG. 2. (Color online) Wigner function f (x, y) as a function of
x for different values of y. Panel (a) gives f (x, y) for t = 0, and
the dotted curve is the approximate analytical result for f (x, y = 0)
at t = 0 given by Eq. (86). Panel (b) gives f (x, y) for positive y at
t = 0.4 fm/c, and panel (c) shows that for negative y at t = 0.4 fm/c.

depiction of particle production in which particles of
larger momenta |y| are produced at larger |x| at a later
time.

(ii) The Wigner function is symmetrical with respect to
the changes of both x to −x and y to −y. That is,
f (x, y; t) = f (−x,−y; t).

(iii) The Wigner function for the zero mode with y = 0
behaves approximately as ν2e−2m|x| [see Eq. (86)] and
is positive definite. The width of the dominant Wigner
function peak for |y| �= 0 decreases as a function
of increasing |y|, as expected from the uncertainty
principle.

(iv) Except for Wigner function of the zero mode with
y = 0, which is positive definite, the Wigner function
of other longitudinal momenta oscillates as a function
of space and time and can assume negative values at
locations away from the dominant peaks.

(v) Except for Wigner function of the zero mode with y =
0, which does not depend on time, the dominant peaks
of the Wigner function move to the positive longitudinal
direction for positive y and to the negative longitudinal
direction for negative y. The speed of the movement of
the peak position increases with increasing magnitude
of the longitudinal momentum.

From the features listed, one can readily understand the
movement of the peak positions of the Wigner functions for
different y values because they follow the motion of what is
expected from classical physics.

How do we understand the relatively large width of the
spatial distribution of the Wigner function of the zero mode
with y = 0? The half width of the distribution is about
0.2 fm, which is large compared to the width parameter
σ ∼ 0.065 fm for the charge current. What physical quantity
determines the scale of this width? It is instructive to check
the Wigner function for this zero-mode case. For y = 0, the
Wigner function becomes

f (x, y = 0) = 1

2π

∫ ∞

0
dq cos(qx)

m2

(q2/4) + m2
2ν2

× (qπσ/4)2

sinh2(qπσ/4)
,

∼ ν2

π

∫ ∞

0
dq cos(qx)

m2

(q2/4) + m2
�(� − |q|),

(85)

where � ∼ 2ξ0/πσ = 2 × 1.491/πσ . In the spatial region
where �x � 1, we have

f (x, y = 0) ∼ 4xm2ν2

π

∫ �x

0
dξ

cos ξ

ξ 2 + 4m2x2
,

∼ mν2e−2m|x|. (86)

I plot the function mν2e−2m|x| as the dotted curve in Fig. 2(a).
We find that except in the region of x <∼ 0.05 fm, it agrees with
the exact Wigner function f (x, y = 0). It is also independent
of t , as p0 − p0′ = 0 for k = 0 in Eq. (71). The analytical
result shows that the width of Wigner function for the zero
mode with y = 0 is governed by the boson mass as (width)
∼h̄/m.

How do we understand the origin of the large range of
momentum y values that are present in the Wigner function
at t = 0? From our derivation of the Wigner function, we
note that the presence of an initial charge current with a very
narrow width in jµ(x, t) leads to a wave packet of the boson
field φ in Eq. (52), as a coherent sum of a large number of
waves of different momentum components p1. The greater the
energy of the fragmenting string, the narrower the initial spatial
current jµ(x, t), and the greater the spread of the momentum
components of the boson wave packet φ(x, t), as indicated
by the large width of |c(p1)|. The coherent sum of the boson
field gives rise to the corresponding Wigner function, which
depends on the correlation between the Fourier components
at different momenta. The Wigner function has a spatial
extension much greater than that of the initial charge current.

In physical terms, there are two peculiar quantum effects
that make QED2 different from those from classical consid-
erations of string fragmentation. First, the bosons produced
occur initially in a spatial region more extended than the width
of the initial fermion current. They are governed more by
the boson mass produced and the uncertainty principle than
by the spatial width of the initial current. Second, particles
produced of different momenta emerge at the initial moment
of string fragmentation. These peculiarities does not violate
causality because the dynamics of string fragmentation in
QED2 is not just a two-body problem involving only the
fragmenting valence fermion and antifermion. It involves a
many-body problem of particles, antiparticles, and gauge fields
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interacting self-consistently with particles in the Dirac sea
over an extended region of space and time, giving rise to
the excitations of the vacuum, which manifest themselves as
quanta of the massive boson field [14,20,24].

VII. INTERFERENCE IN THE FRAGMENTATION OF
MANY IDENTICAL STRINGS

The process of string fragmentation is a quantum phe-
nomenon. We therefore expect effects of quantum interference
when many identical strings fragment. As a well-defined
interference phenomenon, it possesses its own intrinsic the-
oretical interest. Furthermore, the presence or absence of
the characteristics of interference may be used to provide
useful information on the fragmenting strings concerning their
properties of being identical or nonidentical when they occur
in close vicinity to each other.

I consider the occurrence of n identical strings at longi-
tudinal locations χi centered around the longitudinal origin
in the center-of-mass frame. For simplicity, I shall consider
the fragmentation to be occurring at the same time and
that the strings are identical in their characteristics. In this
case, the fragmentation can be idealized as n interacting
fermion-antifermion pairs. In each pair, the fermion and the
antifermion pull apart in opposite directions. The timelike
fermion current j 0(x, 0) = 0 is initially zero at all spatial
points and the initial spacelike current j 1(x, 0) pulls each
fermion-antifermion pair apart.

In representing the sum of the fermion currents in a
many-string system, we introduce the concept of the sense
ζ of a fragmenting string. Consider the fragmentation of
a string starting with a fermion and an antifermion at a
spatial point. The sense of a string specifies the direction
of motion of the fermion, with the antifermion traveling in
the opposite direction. I choose the convention that the sense
ζ is equal to 1 when the fermion travels to the positive
longitudinal direction and ζ is −1 when the fermion travels to
the negative longitudinal direction. The sense of motion clearly
is immaterial for a single string. However, they are important
in the fragmentation of a many-string system, as we shall see.

The total current j
µ
tot(x, t) from the n fermion-antifermion

pairs can be described as

j 0
tot(x, t) = eν

2σ

n∑
i=1

ζi

[
1

cosh2
(

x−χi+t

σ

) − 1

cosh2
(

x−χi−t

σ

)
]

,

(87)

and

j 1
tot(x, t) = eν

2σ

n∑
i=1

ζi

[
1

cosh2
(

x−χi+t

σ

) + 1

cosh2
(

x−χi−t

σ

)
]

,

(88)

where the width parameter σ will need to be self-consistently
determined in terms of the total energy

√
s of the n-string

system because the strings will interfere with each other in
generating the particle rapidity spectrum.

The Fourier transform of the initial current can be obtained
easily and they are related to j̃ µ(p1) of Eqs. (78) and

(79) by

j̃
µ
tot(p

1) =
n∑

i=1

ζie
−ip1χi ˜jµ(p1). (89)

Similarly, the total Fourier component for Eq. (55) is

ctot(p
1) =

n∑
i=1

ζie
−ip1χi c(p1), (90)

where c(p1) is given by Eq. (55). As a consequence, Eq. (64)
for the momentum distribution of produced particles is
modified to be

dNtot

dp1
= ctot(p1)c∗

tot(p
1)

2p0

=
⎡
⎣n+

n∑
i>j

2ζiζj cos{p1(χi −χj )}
⎤
⎦ c(p1)c∗(p1)

2p0
.

(91)

The rapidity distribution for the fragmentation of n strings is

dNtot

dy
=

⎡
⎣n +

n∑
i>j

2ζiζj cos{(m sinh y)(χi − χj )}
⎤
⎦

× c(p1)c∗(p1)

2
. (92)

For the Fourier coefficient given by Eqs. (80), we obtain

dNtot

dy
=

⎡
⎣n +

n∑
i>j

2ζiζj cos{(m sinh y )(χi − χj )}
⎤
⎦ ν2ξ 2

sinh2 ξ
,

(93)

where ξ = ν2π2m sinh y/3
√

s is given by Eq. (83). This
equation can also be written as

dNtot

dy
=

⎡
⎣n+

n∑
i>j

2ζiζj cos{(m sinh y) (χi −χj )}
⎤
⎦ dNsingle

dy
,

(94)

where dNsingle/dy = ν2ξ 2/sinh2 ξ . The total energy of the n-
string system is given by
√

s =
∫

dy m ζiζj cosh y

×
⎡
⎣n +

n∑
i>j

2ζiζj cos{(m sinh y)(χi − χj )}
⎤
⎦ ν2ξ 2

sinh2 ξ
,

(95)

which provides a relation between
√

s and σ .
The Wigner function for the fragmentation of n strings is

now modified to be
ftot(x, k)

= 1

4πk0

∫
dqeiq{x−[p0(q)−p0 ′

(q)]t} p
0p0′ + (k0)2 − q2/4

2p0p0′

×
n∑

i,j=1

ζiζj e
−i(k+q/2)χi+i(k−q/2)χj c

(
k + q

2

)
c∗

(
k − q

2

)
.

(96)
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We can simplify the above expression by noting that

eiqxe−i(k+q/2)χi+i(k−q/2)χj = eiq(x−χ̄ij )−ik(χi−χj ), (97)

where χ̄ij is the average of the initial longitudinal positions of
strings i and j ,

χ̄ij = (χi + χj )/2. (98)

Therefore, we get

n∑
i,j=1

ζiζj e
iqxe−i(k+q/2)χi+i(k−q/2)χj

=
n∑
i

eiq(x−χi ) +
n∑

i>j

ζiζj e
iq(x−χ̄ij )2ζiζj cos{k(χi − χj )}.

(99)

We can thus write the total Wigner function of the produced
particles in the fragmentation of n strings as

ftot(x, k) =
n∑

i=1

fsingle(x − χi, k) +
n∑

i>j

2ζiζj

× cos{k(χi − χj )}fsingle(x − χ̄ij , k). (100)

The corresponding Wigner function ftot(x, y) can then be ob-
tained as ftot(x, y) = k0ftot(x, k) evaluated at k = m sinh(y).

We note from these results that there are important
interference effects between identical strings. The interference
appears in the form of a cosine function ζiζj cos{k(χi − χj )}
that depends on the momentum of the produced particle, the
initial spatial separation between the strings, and the senses of
the strings. The dependence on the string separation is similar
to the interference in the emission of particles from different
sources in intensity interferometry [87].

In the case when the strings are far apart such that |χi − χj |
is large, the cross terms in the Wigner function with i �= j in
Eq. (100) oscillate rapidly about zero (for nonzero modes).
The cross terms will provide only small average contributions
and the direct terms dominate. In that case when strings are far
apart, ftot(x, k) ≈ ∑n

i fsingle(x − χi, k) for |k| �= 0, which is
the sum of independent Wigner functions for separated strings.

At the other extreme, all strings are located at the same
spatial point. Among these n strings, there are n+ strings with
the ζ = 1 sense and n− = n − n+ strings with the opposite
sense, ζ = −1. Then, when all the strings occur at the same
point, we have

dNtot/dy = (n+ − n−)2dNsingle/dy, (101)

and

ftot(x, k or y) = (n+ − n−)2fsingle(x, k or y). (102)

If all the strings are aligned in the same direction
then dNtot/dy = n2dNsingle/dy. However, if n+ = n−, then
dNsingle/dy = 0 and ftot(x, y) = 0. In general, the greater the
difference |n+ − n−|, the larger is dNtot/dy and ftot(x, y).
The strength of the Wigner function of one string of one
sense is canceled by the Wigner function of the string of the
opposite sense. This cancellation of the string strength cannot
be complete if the number of strings is odd.
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FIG. 3. (Color online) The Wigner function f (x, y) for two
strings with the same sense, ζ1ζ2 = 1. The strings are initially located
at x = −0.1 and x = 0.1 fm, indicated by two arrows, with a
separation of �x = 0.2 fm. Panel (a) is for t = 0 and panel (b) is
for t = 0.4 fm/c.

VIII. WIGNER FUNCTION IN THE FRAGMENTATION OF
IDENTICAL STRINGS

As an example, it is instructive to evaluate the Wigner
function for a few cases to see its dependence on the separation
between the strings and their relative senses of direction. I show
the time variation of the Wigner function for two strings, each
of which, if separated, has the same characteristics as those in
Fig. 2. I examine first the case of two identical strings with
the same sense so that ζ1ζ2 = 1. In Fig. 3, the origins of these
two strings are initially located at χ1 = −0.1 and χ2 = 0.1 fm
with a separation �x = 0.2 fm. In Fig. 4, they are located
at χ1 = −0.04 and χ2 = 0.04 fm with a separation �x =
0.08 fm. The locations of the origins of the strings are indicated
by two thick arrows in Figs. 3 and 4.

Note the following features from the dynamics of the
Wigner function from Figs. 3 and 4.

(i) Similar to the case of a single string, all bosons of
different momenta in different regions of the rapidity
plateau are present at t = 0. This depiction is in contrast
to the momentum-space-time ordering of the classical
depiction of particle production.

(ii) The magnitude and the width of Wigner function of the
zero mode with y = 0 are quite large when ζ1ζ2 = 1.
The magnitude of the peak is about three times that
shown in Fig. 2. For this case of two strings, there are
three contributions, corresponding to two contributions
centered at the origins of the strings and an additional
contribution at x = 0, as given by Eq. (100). For the
y = 0 zero mode, all these three pieces merge together
to form a broad peak at x = 0 that is independent of
time.
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FIG. 4. (Color online) Wigner function f (x, y) as a function of
x for different values of y for two strings located at x = −0.04 and
x = 0.04 fm, indicated by two arrows, with a separation of �x =
0.08 fm. Panel (a) is for t = 0 and panel (b) is for t = 0.4 fm/c.

(iii) For the low-rapidity case with y = 1, the different
contributions to the Wigner function merge into a single
peak for separations of �x = 0.2 and 0.08 fm.

(iv) For higher rapidities with y � 2, the different contribu-
tions to the Wigner function merge into a single peak
for the case of � = 0.08 fm, but split into two peaks
for �x = 0.2 fm. This shows that the Wigner functions
for many strings tend to merge together into a single
structure when the separation between strings is small.

(v) As a function of time, the peaks of the Wigner function
move in the positive x direction for positive values of
y. They move to the negative x direction for negative
values of y. The low-momentum Wigner functions with
y = 1 remain to be merged as they propagate. For
the case of y � 2 and �x = 0.2 fm, there appear two
propagating peaks corresponding to the propagation of
the particles produced from the two different strings.
For the case y � 2 and �x = 0.08 fm, the Wigner
functions from the two strings remain merged during
their propagation.

It is instructive to evaluate next the Wigner function for
the case of two identical strings with the opposite sense
so that ζ1ζ2 = −1. I consider again two strings, each of
which, if separated, has the same characteristics as those in
Fig. 2. In Fig. 5, these two strings are initially located at
χ1 = −0.1 and χ2 = 0.1 fm with a separation �x = 0.2 fm.
In Fig. 6, they are located at χ1 = −0.04 and χ2 = 0.04 fm,
with a separation �x = 0.08 fm. The positions of the origins
of the strings are indicated by the two thick arrows in
Figs. 5 and 6.

The results in Figs. 5 and 6 show that in the fragmentation of
two strings with opposite senses, the magnitude of the Wigner
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FIG. 5. (Color online) The Wigner function f (x, y) as a function
of x for different values of y for two strings with opposite senses,
ζ1ζ2 = −1. The strings are initially located at x = −0.1 and x =
0.1 fm, indicated by two arrows, with a separation of �x = 0.2 fm.
Panel (a) is for t = 0 and panel (b) is for t = 0.4 fm/c.

function is much reduced from the fragmentation of two
strings with the same sense. The zero-mode Wigner function is
negative at x = 0, in contrast to the positive definite property
of the Wigner function for a single string or for two strings with
the same sense. There are oscillations of the Wigner function
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FIG. 6. (Color online) The Wigner function f (x, y) as a function
of x for different values of y for two strings with opposite senses,
ζ1ζ2 = −1. The strings are initially located at x = −0.04 and
x = 0.04 fm, indicated by two arrows, with a separation of �x =
0.08 fm. Panel (a) is for t = 0 and panel (b) is for t = 0.4 fm/c.
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for different momenta at t = 0. For t > 0, the dominant peaks
of the Wigner function propagate according to their momenta.

As the separation between the strings becomes smaller,
the Wigner functions of opposite sense tend to cancel and
the magnitude of the Wigner function decreases, as shown in
Fig. 6. As I remarked earlier in this article, the Wigner function
is reduced to zero in the limit when the two identical strings
with opposite senses coincide.

IX. DYNAMICS OF THE WIGNER FUNCTION IN THE
FRAGMENTATION OF INDEPENDENT STRINGS

The last two sections deal with the fragmentation of
identical strings for which interference effects are present.
In a nucleus-nucleus collision, the number of nucleon-nucleon
collisions is large in a local neighborhood. We expect that
each nucleon-nucleon collision produces at least two strings
spanned between the quark of one nucleon and the diquark
of the other nucleon. The types of strings that are formed
are, however, very large in number because each string will
be characterized by the color and flavor of the quark and
the diquark at its two ends and by the color gauge field
component a of Aνa the string can excite. As a consequence,
the probability of neighboring strings being identical is of order
1/[N2

c Nf (q)Nf (qq)(N2
c − 1)], which is quite small. The pro-

duction process in string fragmentation in a nucleus-nucleus
collision is likely to involve the fragmentation of independent
nonidentical strings. It is appropriate to examine the space-time
dynamics of particles produced in the fragmentation of many
independent strings.

In a nucleus-nucleus collision in the center-of-mass system,
the average longitudinal separation between neighboring
strings is d/γ , where d ∼ 1.9 fm is the average nucleon-
nucleon separation for a nucleus at rest and γ = √

sNN/mN

is the Lorentz contraction factor. However, the width of the
Wigner function for the zero mode with y = 0 is of order
h̄/mπT , as indicated by Eq. (86). Whether the Wigner function
will be separated or will overlap depends on whether d/γ is
greater or less than h̄/mπT :{

If d/γ >∼ h̄/mπT , strings are separated.

If d/γ <∼ h̄/mπT , strings overlap.
(103)

As the pion transverse mass mπT is of order 0.5 GeV, the
Wigner functions will be separated from each other if the
collision energy per nucleon in the center-of-mass system is√

sNN <∼ 5 GeV and will overlap if
√

sNN >∼ 5 GeV.
For each string, particles of different rapidities in different

regions of the rapidity plateau are produced at the moment
of string fragmentation. They propagate toward opposite
longitudinal directions according to their rapidities. We can
depict the dynamics of the density of Wigner functions as
those of one of the rectangular regions in Fig. 7.

How the partons evolve after production in a heavy-ion
collision at high energies is a complex problem that will require
extensive future investigations. Our experience with the phase
space dynamics of nucleons in nucleus-nucleus collisions as
investigated in Refs. [88,89] may furnish an approximate guide
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k
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k

x

k(c) 

FIG. 7. (Color online) Schematic space-time evolution of the
Wigner function f (x, y) of particles produced from many indepen-
dent strings. Panel (a) is for t = 0 and panels (b) and (c) are the
schematic configurations at subsequent times.

for speculating on the behavior of partons in high-energy
nuclear collisions.

We can discuss first the case of
√

sNN <∼ 5 GeV in the
fragmentation of independent and separated strings as shown
in Fig. 7. Produced particles in these separated strings will
stream from one point to another as time proceeds. Their
streaming will lead to three important effects. First, they will
replenish those particles that have just streamed away from
the point of production, as is depicted in Figs. 7(b) and 7(c).
Second, as a result of their streaming, they will encounter at
the same longitudinal point produced particles streaming from
neighboring points in the opposite direction. Such encounters
will lead to collisions. The discussion of the collisions of the
produced particles necessitates the inclusion of the transverse
degrees of freedom. It is necessary to restore the transverse
momentum distribution of the particles produced by using
information on the transverse eigenfunctions of the quarks
and antiquarks. These collisions of produced particles will
convert longitudinal momenta to transverse momenta, leading
to medium particles with smaller longitudinal momenta but
greater transverse momenta in the approach to equilibrium.
Third, the produced particles will likely be subject to strong
residual interactions after production. The more closely
packed the strings at higher collision energies, the stronger
the interaction. Fourth, because of their mutual interaction
and the nature of color confinement, those produced particles
reaching the boundary region will form there a surface against
which produced particles arriving later will impact. Some of
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these particles will continue to propagate forward as a result
of the collision with the longitudinal boundary and will stretch
the surface to a greater longitudinal extension. However, some
of the collision-produced particles will be reflected from the
surface and stream in the backward direction, replenishing
some of the partons that have streamed backward, similar to
the description in Fig. 1of Ref. [89], in the approach to
equilibrium.

I consider next heavy-ion collisions at very high energies.
For a collision energy of 100 GeV per nucleon at RHIC,
the average longitudinal separation between strings is of
order 0.019 fm, which is much smaller than the width of
the Wigner function, h̄/mπT . The nucleus-nucleus collision
leads to a large overlap of the fragmenting strings. Because
of the strong overlap of the strings, the quanta produced
will propagate to the longitudinal boundary together at nearly
the same speed and nearly in unison. Because of the strong
overlap and the Lorentz contraction, the initial density of
partons is great and the interaction is strong after they are
produced. The produced particles will propagate according
to their longitudinal rapidities. Partons with large rapidities
will reach the boundary first, forming a surface region. The
interacting partons near the surface will collide with the
confining and moving surface. As a result of the collision with
the boundary, some of these partons will continue forward, and
they will stretch the surface boundary to a greater longitudinal
extension to keep it a continuously moving boundary. Because
of the confining interactions at the moving boundary, some
of the other partons will come to the classical turning
point at the moving boundary. They will then be reflected
from the surface and will flow in the backward direction.
The reflection of confining partons leads to two important
effects. First, the reflected partons will replenish some of the
partons that have streamed backward, as depicted in Fig. 1of
Ref. [89]. Second, the reflected partons will encounter partons
streaming in the opposite direction. Such encounters will
lead to collisions that will convert longitudinal momentum
to transverse momentum, leading to medium particles with
a smaller average longitudinal momentum. The collisions
may relax the rapidity distribution from an initial rapidity
plateau [31] to a Gaussian rapidity distribution at the end of the
nucleus-nucleus collision [90–92]. Whether such a scenario
indeed occurs will require more analyses.

X. DISCUSSION AND CONCLUSIONS

I investigated the space-time behavior of particles produced
in the fragmentation of a string in QED2. I obtained a relation
between the rapidity distribution and the Fourier transforms of
the initial fermion current. I found that the rapidity plateau
at high energies arises as a consequence of a localized
initial fermion current. The Wigner functions of the produced
particles show that particles with momenta in different regions
of the rapidity plateau are present at the moment of string
fragmentation, with the width of their spatial distributions
decreasing with an increasing center-of-mass energy. The
Wigner function exhibits the effects of interference in the
fragmentation of many identical strings.

Because QED2 mimics many features of QCD4, it is useful
to examine the circumstances in which a QCD4 systems can
be approximated by QED2. I showed first how QCD4 with
transverse confinement can be approximately compactified
as QCD2 with a transverse quark mass m

T
obtained by

solving a set of coupled transverse eigenvalue equations.
Furthermore, in the limit of the strong coupling and the large
number of flavors Nf , QCD2 admits Schwinger QED2-type
solutions. It is for these reasons that QED2 can mimic
many important features of QCD4, including the properties
of the proper high-energy rapidity plateau behavior, quark
confinement, charge screening, and chiral symmetry breaking.
In the absence of rigorous nonperturbative QCD4 solutions, it
is therefore reasonable to study the particle production process
phenomenologically using Schwinger’s QED2 model, with the
boson quanta of QED2 considered as analogous to the boson
quanta in QCD.

There are, however, important differences that must be
kept in mind in the discussion of the dynamics subsequent
to the fragmentation of strings. Free bosons are the quanta
of QED2 and strongly interacting gluons and quarks and
relatively weakly interacting hadrons are quanta of QCD4
at different temperatures of the QCD system. In a nucleus-
nucleus collision at high energy, the particles produced
after the fragmentation the strings will be subject to strong
interactions with the dense medium of produced particles in
their vicinity after production. These interactions are important
because the strings overlap strongly owing to the Lorentz
contraction. The large number of colors and flavors make
it likely that the overlapping strings are of different types
and do not interfere. As a consequence, the density of the
produced particles increases accumulatively as the density
of strings increases. It is necessary to include these strong
interactions between the produced particles to describe better
the subsequent dynamics. It also is necessary to restore the
transverse degrees of freedom for a better description by using
information on the transverse eigenfunctions of the quarks
and antiquarks and their transverse momentum distributions.
Our formulation of the approximate compactification between
transversely confined QCD4 into QCD2 facilitates such a
restoration.

The main feature inferred from the present analysis is that
in a string fragmentation, boson field quanta with momenta
in different regions of the rapidity plateau are present in the
initial Wigner function at the moment of string fragmentation.
This peculiar behavior arises from the quantum effects of
the vacuum structure. Particles in the vacuum of the Dirac
sea participate in the interaction as the valence fermions,
antifermions, and gauge fields change with space and time.
The nonperturbative self-consistent response of particles in
the Dirac sea leads to the production of boson quanta with
momenta in different regions of the rapidity plateau at the
moment of string fragmentation, in contrast to the classical
depiction of string fragmentation where there is a momentum-
space-time ordering of produced particles.

Our analysis of the dynamics of the Wigner function places
it in the class of initial-state-interaction description of QCD.
Our result that partons in different regions of rapidities over
the rapidity plateau are produced at the moment of collision is
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in line with many other well-justified initial-state-interaction
models, such as the parton model [61], the Drell-Yan process
[62], the multiperipheral model [63], and the dipole approach
of photon-induced strong interactions [64]. These are models
in which the constituent particles or produced particles are
present at or before the collision time of contact at t = 0.

With regard to the momentum kick model, which motivated
the present analysis, the results in this article may resolve
one of the puzzles concerning the possible occurrence of
particles with large longitudinal momenta in the early stage of
the nucleus-nucleus collisions. Partons of different rapidities
are present in the initial parton momentum distribution at
fragmentation. The jet produced in one of the nucleon-nucleon
collisions can find partons of large rapidities in the early
environment. There can be collisions between the jet and these
high-rapidity partons, which show up as ridge particles in co-

incidence with the jet. Just as the presence of antiquark partons
from the quark-antiquark sea is revealed by the occurrence of
the Drell-Yan process in the initial-state-interaction depiction,
so it is here that the presence of the rapidity plateau in the early
parton momentum distribution is revealed by the occurrence
of high-rapidity-associated particles in coincidence with the
near-side jet in the PHOBOS experiments.
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