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Probing quark gluon plasma properties by heavy flavors
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The Fokker-Planck (FP) equation has been solved to study the interaction of nonequilibrated heavy quarks with
the quark gluon plasma expected to be formed in heavy ion collisions at Relativistic Heavy Ion Collider energies.
Solutions of the FP equation have been convoluted with the relevant fragmentation functions to obtain the D

and B meson spectra. Results are compared with experimental data measured by the STAR Collaboration. It is
found that the present experimental data cannot distinguish pT spectra obtained from the equilibrium versus the
nonequilibrium charm distributions. Data at lower pT may play a crucial role in making the distinction between
the two. The nuclear suppression factor RAA for nonphotonic single-electron spectra resulting from semileptonic
decays of hadrons containing heavy flavors has been evaluated using the present formalism. It is observed that
the experimental data on the nuclear suppression factor of nonphotonic electrons can be reproduced within this
formalism by enhancing the perturbative QCD cross sections by a factor of 2, provided that the expansion of the
bulk matter is governed by the velocity of sound cs ∼ 1/

√
4. The ideal-gas equation of state fails to reproduce

the data even with enhancement of the perturbative QCD cross sections by a factor of 2.
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I. INTRODUCTION

Nuclear collisions at Relativistic Heavy Ion Collider
(RHIC) and Large Hadron Collider (LHC) energies are aimed
at creating a phase of matter where the properties are governed
by quarks and gluons [1]. This phase of matter, composed of
mainly light quarks and gluons, is called quark gluon plasma
(QGP). Study of the bulk properties of QGP is a field of
great contemporary interest and the heavy flavors, namely,
charm and bottom quarks, play a crucial role in such studies.
Because they are produced in the early stage of collisions,
they are not part of the bulk properties of the system and their
thermalization time scale is longer than that of light quarks
and gluons and, hence, can retain the interaction history more
effectively.

The successes of the relativistic hydrodynamical model
[2,3] in describing the host of experimental results from the
RHIC [4] indicate that thermalization may have taken place
in the system of quarks and gluons formed after nuclear
collisions. The strong final-state interaction of high-energy
partons with the QGP, that is, the observed jet quenching [5,6]
and the large elliptic flow (v2) [7,8], in Au + Au collisions
at RHIC energy indicate the possibility of fast equilibration.
On the one hand, experimental data indicate an early thermal-
ization time, ∼0.6 fm/c [9]; on the other hand, perturbative
QCD (pQCD)-based calculations give a thermalization time of
∼2.5 fm/c [10] (see also Ref. [11]). The gap between these two
time scales suggests that nonperturbative effects play a crucial
role in achieving thermalization. It has also been pointed out
that the instabilities [12–15] may drive the system toward faster
equilibrium. Two pertinent issues regarding equilibration are
addressed here: (i) Do the heavy quarks achieve equilibrium?
and (ii) If they do, can the equilibrium be maintained during
expansion of the system? The second issue is addressed first.
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We make the rather strong assumption that the heavy
quarks produced initially are in thermal equilibrium and
check whether they can maintain equilibrium during the entire
evolution processes by comparing their scattering rates with
the expansion rate of the matter. This issue is addressed
with different equations of state (EOS), which affect the
expansion rate. If the heavy quarks are unable to maintain
equilibrium, then analysis of the transverse momentum of
mesons carrying heavy flavors cannot be done using the
thermal phase space distribution. The analysis will require
nonequilibrium statistical mechanical treatment. We solve the
Fokker-Planck (FP) equation [16–23] to address this issue, as
discussed later.

The pQCD calculations indicate that the heavy quark
thermalization time τ

Q
i is longer [19] than that of the

light quark and gluon thermalization scale τi . Gluons may
thermalize before up and down quarks [18,24]; in the present
work we assume that the QGP is formed at time τi . Therefore,
the interaction of the nonequilibrated heavy quark (Q) with
the equilibrated QGP for the time interval τi < τ < τ

Q
i can be

treated within the ambit of the FP equation; that is, the heavy
quark can be thought of as executing Brownian motion in the
heat bath of QGP during the said interval of time. The solution
of the FP equation can be used to study pT spectra of heavy
mesons in the spirit of the blast-wave method.

In the next section we address the issues of thermalization
in a rapidly expanding system. The results indicate that
heavy quarks cannot maintain equilibrium at RHIC and LHC
energies during the entire evolutionary history of the QGP.
This demands treatment of the problem within the framework
of nonequilibrium statistical mechanics, which is discussed in
Sec. III. Section IV is devoted to a summary and conclusions.

II. THERMALIZATION IN AN EXPANDING SYSTEM

We consider a thermally equilibrated partonic system of
quarks, antiquarks, and gluons produced in relativistic heavy
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ion collisions. We wish to study whether the system can
maintain thermal equilibrium when it evolves in space and
time. Relativistic hydrodynamics (with boost invariance along
the longitudinal direction and cylindrical symmetry) have been
used to describe the space-time evolution. For this purpose, the
scattering time scale (τscatt) of the partons is compared with
the expansion time scale (τexp). For maintenance of thermal
equilibrium the following criterion should be satisfied:

τexp � ατscatt, (1)

where α ∼ O(1) is a constant. The criterion given in Eq. (2) is
the reverse of the one used to study the freeze-out of various
species of particles during the evolution of the early universe
[25] (a similar condition is used in Ref. [26] for heavy ion
collisions also).

The τscatt is determined for each parton by the expression

τ i
scatt = 1∑

σij vijnj

, (2)

where σij is the total cross section for particles i and j , vij is
the relative velocity between particle i and particle j , and nj

is the density of particle type j .
To calculate the scattering time we use the processes gg →

gg, gg → qq, q(q)g → q(q)g, qq → qq, and qq → qq for
light flavors and gluons [27]. Here q stands for light quarks
and g denotes gluons. For evaluating τscatt for heavy quarks
(Q) the pQCD processes are taken from Ref. [28]. The infrared
divergence appearing in the case of massless particle exchange
in the t channel has been shielded by the Debye mass.

The expansion time scale can be defined as

τ−1
exp = 1

ε(τ, r)

dε(τ, r)

dτ
, (3)

where ε(τ, r) is the energy density, and τ and r are the
proper time and the radial coordinate, respectively. ε(τ, r) is
calculated by solving the hydrodynamical equation:

∂µT µν = 0, (4)

with the assumption of boost invariance along the longitudinal
direction [29] and cylindrical symmetry of the system [30]. In
Eq. (4), T µν = (ε + P )uµuν − gµνP is the energy momentum
tensor, P is the pressure, uµ denotes the four-velocity, and gµν

is the metric tensor. We consider a net baryon-free QGP here;
therefore the baryonic chemical potential (µB) is zero.

Expansion rates for RHIC and LHC energies were cal-
culated using the initial conditions Ti = 400 MeV and τi =
0.2 fm for RHIC, which gives dN/dy ∼ 1100 [4], and Ti =
700 MeV and τi = 0.08 fm for LHC, giving dN/dy = 2100
[31]. The initial radial velocity was taken as zero for both
cases. Two sets (Sets I and II) of EOS were used to study the
sensitivity of the results to the EOS.

In Set I, in a first-order phase transition scenario, we use the
bag model EOS for the QGP phase and consider all resonances
with mass �2.5 GeV for the hadronic phase [32]. In Set II the
EOS is taken from lattice QCD calculations performed by the
MILC Collaboration [33].

In Fig. 1 the scattering time scale is contrasted with the
expansion time scale for the two types of EOS just mentioned.
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FIG. 1. Expansion time vs scattering time (calculated with the
pQCD process) at RHIC energy. Here the expansion time scale was
calculated at r = 1 fm.

For the sake of comparison the expansion rate for the extreme
case of free streaming is also displayed. Scattering rates
are evaluated with pQCD cross sections. The condition for
equilibration in Eq. (1) indicates that the gluons remain close
to equilibrium; however, the charm and bottom (not shown in
the figure) quarks remain out of equilibrium during the entire
evolution history.

However, as mentioned in Sec. I, analysis of the exper-
imental data within the ambit of relativistic hydrodynamics
suggests that the matter formed in Au + Au collisions at
the RHIC achieve thermalization. One possible cause of this
thermalization is that the partons interact strongly after their
formation in heavy ion collisions. It is argued in Ref. [34] that
the onset of thermalization in systems formed in heavy ion
collisions at relativistic energies cannot be achieved without
nonperturbative effects. It has also been shown, in Ref. [35],
that a large enhancement of the pQCD cross section is required
for reproduction of experimental data on elliptic flow at RHIC
energies. Therefore, the pQCD cross sections used to derive the
results shown in Fig. 1 should include nonperturbative effects.
To implement this we enhanced the pQCD cross sections by a
factor of 2. The resulting scattering time is compared with the
expansion time in Fig. 2. It is observed that gluons are kept
in equilibrium throughout the evolution, and light quarks are
closer to equilibrium compared to the heavy flavors.
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FIG. 2. Same as Fig. 1, with the pQCD cross section enhanced
by a factor of 2.
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FIG. 3. Same as Fig. 1, for LHC energy.

In Figs. 3 and 4 the results for LHC are displayed for the
two time scales mentioned previously for pQCD and enhanced
cross sections. Expansion becomes faster at LHC than at
RHIC energies because of the higher internal pressure. As
a consequence, it is interesting to note that the thermalization
scenario at LHC energy does not differ drastically from that at
RHIC energy.

III. NONEQUILIBRIUM PROCESS

It is argued in Ref. [19] that the relaxation time for heavy
quarks is longer than that for light partons by a factor of
M/T , where M is the mass of the heavy flavor and T is
the temperature. In the present work we have also seen that
heavy flavors do not maintain equilibration throughout the
evolutionary scenario, but gluons are close to equilibrium.
Therefore, we treat this problem as an interaction between
equilibrium and nonequilibrium degrees of freedom, and the
FP equation provides an appropriate framework for such
studies.

The Boltzmann transport equation describing a nonequilib-
rium statistical system reads

(
∂

∂t
+ p

E

∂

∂x
+ F

∂

∂p

)
f (x, p, t) =

(
∂f

∂t

)
col

. (5)

0.2 0.3 0.4 0.5 0.6 0.7
T(GeV)

0

0.5

1

1.5

2
Expansion (EOS−I)
Expansion (EOS−II)
Scattering (gluon)
Scattering (light quark)
Scattering (charm)

LHC
σ=2σPQCD

FIG. 4. Same as Fig. 2, for LHC energy.

The assumption of uniformity in the plasma and absence of
any external force leads to

∂f

∂t
=

(
∂f

∂t

)
col

. (6)

The collision term on the right-hand side of Eq. (6) can be
approximated as (see Refs. [17] and [36] for details)(

∂f

∂t

)
col

= ∂

∂pi

{
Ai(p)f + ∂

∂pi

[Bij (p)f ]

}
, (7)

where we have defined the kernels

Ai =
∫

d3pω(p, k)ki,

(8)
Bij =

∫
d3pω(p, k)kikj ,

and the function ω(p, k) is given by

ω(p, k) = gj

∫
d3q

(2π )3
fj (q)vijσ

j

p,q→p−k,q+k, (9)

where fj is the phase space distribution for particle j , vij is the
relative velocity between the two collision partners, σ denotes
the cross section, and gj is the statistical degeneracy. The
coefficients in the first two terms of the expansion in Eq. (7) are
comparable in magnitude because the averaging of ki involves
greater cancellation than the averaging of the quadratic term
kikj . The higher power of ki values is smaller [37].

With these approximations the Boltzmann equation reduces
to a nonlinear integro-differential equation known as the
Landau kinetic equation:

∂f

∂t
= ∂

∂pi

{
Ai(p)f + ∂

∂pi

[Bij (p)f ]

}
. (10)

The nonlinearity is caused by the appearance of f in Ai

and Bij through w(p, k). It arises from the simple fact
that we are studying a collision process that involves two
particles; it should, therefore, depend on the states of the
two participating particles in the collision process and, hence,
on the product of the two. Considerable simplicity may be
achieved by replacing the distribution functions of the collision
partners of the test particle by their equilibrium Fermi-Dirac
or Bose-Einstein distributions (depending on the statistical
nature) in the expressions of Ai and Bij . Then Eq. (10) reduces
to a linear partial differential equation—usually referred to
as the FP equation [38]—describing the motion of a particle
that is out of thermal equilibrium with the particles in a
thermal bath. The quantities Ai and Bij are related to the usual
drag and diffusion coefficients and we denote them γi and
Dij , respectively (i.e., these quantities can be obtained from
the expressions for Ai and Bij by replacing the distribution
functions with their thermal counterparts):

∂f

∂t
= ∂

∂pi

{
γi(p)f + ∂

∂pi

[Dij (p)f ]

}
. (11)

We evaluate the value of γi and Dij for the reactions gQ → gQ

and qQ → qQ for both zero and nonzero quark chemical
potentials (µ = µB/3). In Fig. 5 we depict the variation of the
drag coefficients as a function of the transverse momentum of
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FIG. 5. Variation of drag coefficient with pT for T = 200 MeV.

the charm and bottom quarks at a temperature T = 200 MeV.
The momentum dependence is weak. For nonzero quark
chemical potential the value of the drag increases; however,
the nature of the variations remains the same. In Fig. 6 the
temperature variation of the drag coefficient is plotted for both
zero and nonzero quark chemical potentials. Qualitatively, the
inverse of the drag coefficient gives the magnitude of the
relaxation time. Therefore, the present results indicate that
a system with a fixed temperature achieves equilibrium faster
for nonzero µ. In Fig. 7 the diffusion coefficients are plotted as
a function of pT for T = 200 MeV. The diffusion coefficient
for nonzero µ is higher compared to the case of vanishing
µ. The same quantity is displayed in Fig. 8 as a function of
temperature. In the present work we confine µ = 0. Recently
the heavy quark momentum diffusion coefficient has been
computed [39] at next to leading order within the the ambit
of hard thermal loop approximations. For T ∼ 400 MeV our
momentum-averaged pQCD value of the diffusion coefficient
is comparable to the value obtained in Ref. [39] in the leading
order approximation for the same set of inputs (e.g., strong
coupling constant and same number of flavors).

The inverse of the drag coefficient gives an estimate of the
thermalization time scale. Results obtained in the present work
indicate that heavy quarks are unlikely to attain thermalization
at RHIC and LHC energies [40].

The total amount of energy dissipated by a parton depends
on the path length it traverses through the plasma. Each
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FIG. 6. Variation of drag coefficient with temperature.
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FIG. 7. Variation of diffusion coefficient with pT for T =
200 MeV.

parton traverses a different path length, which depends on the
geometry of the system and on the point where it is produced.
The probability that a parton is created at a point (r, φ) in
the plasma depends on the number of binary collisions at that
point, which can be taken as [21]

P (r, φ) = 2

πR2

(
1 − r2

R2

)
θ (R − r), (12)

where R is the nuclear radius. A parton created at (r, φ) in the
transverse plane propagates a distance L =

√
R2 − r2sin2φ −

rcosφ in the medium. In the present work we adopt the
following averaging procedure for transport coefficients. For
the drag coefficient (γ ),

� =
∫

rdrdφP (r, φ)
∫ L/v

dτγ (τ ), (13)

where v is the velocity of the propagating partons. The
quantity � appears in the solution of the FP equation (see
Ref. [20] for details). Similar averaging has been done for the
expression involving diffusion coefficients to take into account
the geometry of the system.

Using the drag and diffusion coefficients as inputs we solve
the FP equation with the following parametrization of the
initial momentum distribution of the charm quarks generated
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FIG. 8. Variation of diffusion coefficient with temperature.
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in p-p collisions at
√

s = 200 GeV:

d2Nc

dp2
T

= C
(pT + A)2

[1 + (pT /B)]α
, (14)

where A = 0.5 GeV, B = 6.6 GeV, α = 21, and C =
0.845 GeV−4. We do not elaborate here on the procedure
for solving the FP equation, as this is discussed in detail in
Ref. [20]. The corresponding initial distributions for bottom
quarks can be obtained from the results obtained in Ref. [41]
for p-p collisions at

√
s = 200 GeV. Obtaining the solution

of the FP equation for heavy (charm and bottom) quarks, we
convolute it with the fragmentation functions of the heavy
quarks to obtain the pT distribution of the D and B mesons.
The following three sets of fragmentation functions were used
to check the sensitivity of the results.

In Set I [42]

f (z) ∝ 1

z1+rQbm2
Q

(1 − z)aexp

(
−bm2

T

z

)
, (15)

where mQ is the mass of the charm quark, rQ = 1, a = 5, b =
1, and m2

T = m2
Q + p2

T . It has been explicitly checked that
RAA is not very sensitive to the values of a and b.

In Set II [43]

f (z) ∝ zα(1 − z), (16)

where α = −1 for the charm quark and 9 for the bottom quark.
In Set III [44]

f (z) ∝ 1

z
(
z − 1

z
− εc

1−z

)2 , (17)

where for the charm quark εc = 0.05 and for the bottom quark
εb = (mc/mb)2εc.

Recently, the pT spectrum of D mesons has been measured
by the STAR Collaboration [45] in Au + Au collisions at√

sNN = 200 GeV. The pT spectrum of hadrons can be written
as [46]

dN

d2pT dy
= g

(2π )3

∫
τrdφdη[mT cosh(η − y)dr

−pT cosφdτ ]f (uµpµ), (18)

where η is the space-time rapidity, pµ is the four-momentum,
uµ = γ (1, β) is the hydrodynamic four-velocity, uµpµ is the
energy of the hadrons in the comoving frame of the plasma,
and f (uµpµ) is the momentum space distribution. In the spirit
of the blast-wave method we can write Eq. (18) as [47]

dN

d2pT dy
= g

(2π )3

∫
τrdφdη

mT cosh(η − y)f (uµpµ)dr. (19)

Taking the surface velocity profile as

β(r) = βs

( r

R

)n

, (20)

and choosing n = 1, once can evaluate pT spectrum of D

mesons.
Before comparing the data with the nonequilibrium mo-

mentum distribution, we analyze the data within the ambit of
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FIG. 9. Invariant momentum distribution of the D meson as a
function of pT .

the blast-wave method [47] assuming an equilibrium distribu-
tion for the D meson. The values of the blast-wave parameters,
that is, the radial flow velocity at the surface βs and the
freeze-out temperature TF , are 0.6 and 0.170 GeV, respectively.
The data are reproduced well (Fig. 9). The value of TF is close
to Tc, which indicates that the D mesons (even if the charm is in
equilibrium in the partonic phase) cannot maintain equilibrium
in the hadronic phase. This is reasonable because of the low
interaction cross sections of the D mesons with other hadrons.
Next we replace the equilibrium distribution in Eq. (19) with
the solution of the FP equation appropriately boosted by the
radial velocity. The results are displayed in Fig. 9. The data are
reproduced well for all three sets of fragmentation functions
mentioned before. The value of the freeze-out temperature
is 170 MeV and the flow velocity at the surface is 0.45,
0.35, and 0.4 for the Set I, Set II, and Set III fragmentation
functions, respectively. The value of βs is lower here than
in the equilibrium case for all fragmentation functions. It is
interesting to note that in a low-pT (�0.5-GeV) domain the
results for the equilibrium distribution differ substantially from
those for the nonequilibrium distribution for all three sets
of fragmentation functions. Therefore, measurements of the
heavy meson spectra in a low-pT domain will be very useful
to distinguish between the equilibrium and the nonequilibrium
scenarios. The two scenarios also give different kinds of
variation at high pT . The pT -integrated quantity, that is, the
D-meson multiplicity, may also be useful to understand the
difference between the equilibrium and the nonequilibrium
scenarios.

IV. NONPHOTONIC SINGLE ELECTRON
FROM HEAVY FLAVORS

The STAR [48] and PHENIX [49] Collaborations have
recently measured nonphotonic single-electron inclusive pT

spectra for both Au + Au and p + p collisions at
√

sNN =
200 GeV. The quantity

RAA(pT ) =
(

dNe

d2pT dy

)Au+Au

Ncoll

(
dNe

d2pT dy

)p+p
, (21)
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called the nuclear suppression factor, will be unity in the
absence of any medium. However, the experimental data
from both collaborations [48,49] show substantial suppression
(RAA < 1) for pT � 2 GeV, indicating the interaction of the
plasma particles with the charm and bottom quarks from
which electrons are originated through the process c(b)
(hadronization) −→ D(B) (decay) −→ e + X. The loss of
energy of high-pT heavy quarks propagating through the
medium created in Au + Au collisions causes a depletion of
high-pT electrons.

To evaluate RAA theoretically, the solution of the FP equa-
tion for the charm and bottom quarks should be convoluted
by the fragmentation functions to obtain the pT distribution
of the D and B mesons, which subsequently decay through
the processes D → Xeν and B → Xeν. Similar formalism
has been used in Ref. [50] to study the evolution of light
quark momentum distributions. The resulting electron spectra
from the decays of D and B mesons can be obtained as
follows [51–53]:

dNe

pT dpT

=
∫

dqT

dND

qT dqT

F (pT , qT ), (22)

where

F (pT , qT ) = ω

∫
d(pT . qT )

2pT (pT . qT )
g[(pT . qT )/M], (23)

where M is the mass of the heavy mesons (D or B), ω = 96
(1 − 8m2 + 8m6 − m8 − 12m4 lnm2)−1 M−6 (m = mX/M),
and g(Ee) is given by

g(Ee) = E2
e

(
M2 − M2

X − 2MEe

)2

(M − 2Ee)
, (24)

related to the rest frame spectrum for the decay D(B) → Xeν

by the following relation [51]:

1

�

d�

dEe

= ωg(Ee). (25)

We evaluate the electron spectra from the decays of
heavy mesons originating from the fragmentation of heavy
quarks propagating through the QGP medium formed in
heavy ion collisions. Similarly the electron spectrum from
p-p collisions can be obtained from the charm and bottom
quark distributions, which goes as initial conditions to the
solution of the FP equation. The ratio of these two quantities
gives the nuclear suppression RAA. For a static system the
temperature dependence of the drag and diffusion coefficients
of heavy quarks enters via the thermal distributions of light
quarks and gluons through which it is propagating. However,
in the present scenario the variation of temperature with time
is governed by the the EOS or velocity of sound of the
thermalized system undergoing hydrodynamic expansion. In
such a situation quantities like � [Eq. (13)] and hence RAA

become sensitive to the velocity of sound in the medium.
The results for RAA are displayed in Fig. 10. Theoretical

results are obtained for the fragmentation function of Set I
[42]. The velocity of sound for the QGP phase is taken as
cs = 1/

√
4, corresponding to the EOS P = ε/4. The results

fail to describe the data in this case. Next we generate RAA

by changing the value of cs to 1/
√

5 and keeping all other
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FIG. 10. Nuclear suppression factor RAA as a function of pT .

parameters fixed. The resulting spectrum describes the data
reasonably well. A lower value of cs makes the expansion of
the plasma slower, enabling the propagating heavy quarks to
spend more time interacting in the medium and hence lose
more energy before exiting from the plasma, which results
in less particle production at high pT . Further lowering of cs

gives further suppression.
However, as mentioned earlier nonperturbative effects are

important for the interaction of heavy quarks with the plasma.
Therefore, we enhance the cross section by a factor of 2 and
find that the experimental results can also be explained by
taking the EOS P = ε/4 (Fig. 11) and keeping other quantities,
such as fragmentation functions and so on, unchanged. The
ideal-gas EOS P = ε/3 cannot reproduce the data even if the
cross section is enhanced by a factor of 2. With cs = 1/4
and an enhanced cross section (by a factor of 2) the data
can also be described for fragmentation functions of Sets II
and III (Fig. 12). Several mechanisms, such as inclusions of
nonperturbative contributions from the quasihadronic bound
state [54], three-body scattering effects [55], and employment
of running coupling constants and a realistic Debye mass
[56], have been proposed to improve the description of the
experimental data. It is demonstrated here that the EOS of
the medium and nonperturbative effects play a crucial role in
determining the nuclear suppression factor.
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FIG. 11. Same as Fig. 10, with enhancement of the cross section
by a factor of 2.
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FIG. 12. Same as Fig. 11, for fragmentation functions of Sets II
and III.

V. SUMMARY AND CONCLUSIONS

The transverse momentum spectra of D and B mesons have
been studied within the ambit of the FP equation where the
charm and bottom quarks are executing Brownian motion in
the heat bath of light quarks and gluons. We have evaluated the
drag and diffusion coefficients for both zero and nonzero quark
chemical potentials. Results for nonzero baryonic chemical
potentials will be very useful for studying physics in low-
energy RHIC runs [57]. Results have been compared with
experimental data measured by the STAR Collaboration. It is
found that the present experimental data cannot distinguish the
pT spectra obtained from equilibrium versus nonequilibrium
charm distributions. Data at lower pT may play a crucial
role in making the distinction between the two. Because the
results for equilibrium and nonequilibrium scenarios differ,
the pT -integrated quantity, that is, the D-meson multiplicity,
may also be very useful for putting constraints on the model.
The nuclear suppression factors for the measured nonphotonic
single-electron spectra resulting from semileptonic decays of
hadrons containing heavy flavors have been evaluated using the
present formalism. The experimental data on nuclear suppres-
sion factors of nonphotonic electrons can be reproduced within
this formalism if the expansion of the bulk matter is governed
by the EOS P = ε/4 and the partonic cross sections are taken
as 2 × σpQCD. Three kinds of fragmentation functions for the

charm and bottom quarks hadronizing to D and B mesons,
respectively, have been used, and it is found that cs ∼ 1/

√
4

can describe the data reasonably well. The data cannot be
reproduced with cs ∼ 1/

√
3, even after enhancing the cross

section by a factor of 2. The loss of energy by heavy quarks
owing to the radiative process may be suppressed because of
dead-cone effects. In the present work the radiative loss is
neglected. The FP equation needs to be modified to include
the radiative loss [58–62] (see Ref. [63] for a review); work in
this direction is in progress [57].

The calculations may be improved by making the space-
time evolutionary picture more rigorous as follows. In the
absence of any external force the evolution of the heavy-quark
phase-space distribution is governed by the equation(

∂

∂t
+ vp · ∇r

)
f (p, r, t) = C[f (p, r, t)]. (26)

As mentioned before, the FP equation can be obtained from
this equation by linearizing the collision term C[f (p, r, t)].
To take into account the energy loss of the heavy quarks in
the thermal bath, the ideal hydrodynamic equation needs to be
modified as

∂µT µν = J ν, (27)

containing the source term J ν corresponding to the energy
momentum deposited in the thermal system along the trajec-
tory of the heavy quark, which may be taken as J ν ∼ dpν/dτ

[64] (where pν is the four-momentum vector). Equation (27)
should be solved for T (r, t) with the appropriate EOS,
which can be used to obtain the surface of hadronization by
setting T (rc, tc) = Tc. Subsequently, the solution of Eq. (26),
f (rc, tc), for the heavy quark on this surface should be
convoluted with the fragmentation function to obtain the B

and D distributions.
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