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Spin susceptibility of degenerate quark matter
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The expression for spin susceptibility χ of degenerate quark matter is derived with corrections up toO(g4 ln g2).
It is shown that, at low density, χ−1 changes sign and turns negative, indicating a ferromagnetic phase transition.
To this order, we also calculate sound velocity c1 and incompressibility K with arbitrary spin polarization.
The estimated values of c1 and K show that the equation of state of the polarized matter is stiffer than that of
unpolarized matter. Finally, we determine the finite temperature corrections to the exchange energy and derive
corresponding results for the spin susceptibility.
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I. INTRODUCTION

One of the active areas of high-energy physics research
is the exploration of the so-called quantum chromodynamics
(QCD) phase diagram. In particular, with the advent of
ultrarelativistic heavy ion beams at the Relativistic Heavy Ion
Collider (RHIC) and CERN, and with the upcoming facilities
at GSI where compressed baryonic matter is expected to be
produced, such studies assume special importance. In addition
to the laboratory experiments, various astrophysical objects,
such as neutron stars and quark stars, provide natural sites
where many of the theoretical conjectures about the various
phases of quark matter can be tested. The latter, in the present
context, is more relevant here, as we study the possibility of a
para-ferro phase transition in a dense quark system interacting
via one-gluon exchange.

The original idea of a para-ferro phase transition in quark
matter was proposed recently in Ref. [1] where the possibility
of a Bloch-like phase transition [2] was studied; it was shown
that spin-polarized quark matter might exist at low density
[3]. The underlying mechanism of such a phase transition is
analogous to what was originally proposed for the degenerate
electron gas [2]. There, for the Coulomb interaction, it was
shown that the exchange correction to energy is attractive,
which at low density wins over the kinetic energy, thus giving
rise to a ferromagnetic state [2]. In Ref. [1], a variational
calculation was performed to show that it is indeed possible to
have spin-polarized quark matter at low density of a strange
quark system, whereas for the light quark matter this never
happens [1]. Similar differences between both light and strange
quark matter, albeit in a different context, were observed
earlier [4]. However, in Ref. [3] it was shown that both the light
and heavy flavor systems can exhibit such phase transitions,
although the critical density for the strange matter is higher
than that for the light quark systems. Such investigations were
also performed in Refs. [5–8] and also in Refs. [9,10], where
the calculation was extended to include thermal effects. A
Bloch-like phase transition for the strange quark was also
reconfirmed in Ref. [11].
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One shortcoming of all these works, including Ref. [11], is
that the calculations are restricted to the Hartree-Fock level
and the terms beyond the exchange diagrams, commonly
known as the correlation energy [12–16], are ignored. Without
such corrections, however, the calculations are known to
remain incomplete since the higher order terms are plagued
with infrared divergences that arise out of the exchange
of massless gluons. This indicates the failure of the naive
perturbation series. We know that this problem can be cured by
reorganizing the perturbation theory where a particular class
of diagrams, that is, the bubbles, are resummed in order to
obtain a finite result. Originally, as is well known, this was
done by Gell-Mann and Brueckner [17] while calculating
the ground-state energy of a degenerate electron gas. The
contribution of the bubbles involve terms of O(g4 ln g2),
indicating the nonperturbative nature of the correction
[18–21].

In the present work, we calculate the spin susceptibility (χ )
of a dense quark system with corrections due to correlations,
that is, containing terms up to O(g4 ln g2). This requires
knowledge of the ground-state energy (GSE) of spin-polarized
matter with the inclusion of bubble diagrams. The GSE of
the polarized quark matter was calculated only recently in
Ref. [17], which serves as the starting point of the present
article. This work is very similar to that of Brueckner and
Swada [22] and that of Refs. [23,24] and is applied to the
case of QCD matter. Unlike degenerate electron gas, however,
we have both the electric and magnetic interactions; the cal-
culation is performed relativistically, while the nonrelativistic
results appear as a limit.

The spin susceptibility χ , for quark matter up to O(g2),
was already calculated in Ref. [1], which we only briefly
discuss. Subsequently, the non-Fermi-liquid corrections to
χ were also studied in Refs. [9,10]. These studies provided
further motivation for undertaking the present endeavor to
include correlation corrections, without which, as mentioned
already, the perturbative evaluation of χ remains incomplete.
In addition, we also calculate the incompressibility and sound
velocity for spin-polarized quark matter with correlation
corrections that involve the evaluation of a single-particle
energy at the Fermi surface. These quantities are of special
interest for applications to astrophysics. Moreover, we also
evaluate the exchange energy density at nonzero temperature
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and determine the corresponding corrections to the spin
susceptibility.

The plan of the article is as follows. In Sec. II we
calculate spin susceptibility with correlation corrections for
degenerate quark matter. Analytic expressions are presented
both in ultrarelativistic (UR) and nonrelativistic (NR) limits.
In Sec. III, we evaluate exchange energy density and spin
susceptibility at nonzero temperature. In Sec. IV we summa-
rize and conclude. Detailed expressions of the intermediate
expressions from which χ is derived are relegated to the
Appendix.

II. SPIN SUSCEPTIBILITY

The spin susceptibility of quark matter is determined by the
change in energy of the system as its spins are polarized [22].
We introduce a polarization parameter ξ = (n+

q − n−
q )/nq with

the condition 0 � ξ � 1, where n+
q and n−

q correspond to
the densities of spin-up and spin-down quarks, respectively,
and nq = n+

q + n−
q denotes total quark density. The Fermi

momenta in the spin-polarized quark matter are then p+
f =

pf (1 + ξ )1/3 and p−
f = pf (1 − ξ )1/3, where pf = (π2nq)1/3,

is the Fermi momentum of the unpolarized matter (ξ = 0). In
the small-ξ limit, the GSE behaves as [1]

E(ξ ) = E(ξ = 0) + 1
2βsξ

2 + O(ξ 4). (1)

Here, βs = ∂2E
∂ξ 2 |ξ=0 is defined as the spin stiffness constant

analogous with Refs. [16,21]. The spin susceptibility χ is pro-
portional to the inverse of the spin stiffness; mathematically,
χ = 2β−1

s [26]. Note that in Eq. (1), the first term corresponds
to unpolarized matter energy.

Now, the leading contributions to the GSE are given by
three terms, that is, kinetic, exchange, and correlation energy
densities [16]:

E = Ekin + Eex + Ecorr. (2)

The total kinetic energy density for spin-up and spin-down
quarks becomes [1,11]

Ekin = 3

16π2

⎧⎨
⎩pf (1 + ξ )1/3

×
√

p2
f (1 + ξ )2/3 + m2

q

[
2p2

f (1 + ξ )2/3 + m2
q

]

−m4
q ln

⎛
⎝pf (1 + ξ )1/3 +

√
p2

f (1 + ξ )2/3 + m2
q

mq

⎞
⎠

+ [ξ → −ξ ]

⎫⎬
⎭ , (3)

where mq is the quark mass.
The exchange energy density Eex was calculated in

Ref. [11] within a Fermi liquid theory approach. One can

also directly evaluate the two loop diagrams [1] to obtain

Enf
ex = 9

2

∑
s=±

∫ ∫
d3p

(2π )3

d3p′

(2π )3
θ
(
ps

f − |p|)θ(ps
f − |p′|)f nf

pp′ ,

(4)

Ef
ex = 9

∫ ∫
d3p

(2π )3

d3p′

(2π )3
θ (p+

f − |p|)θ (p−
f − |p′|)f f

pp′ , (5)

where f nf
pp′ and f f

pp′ stand for nonflip (s = s ′) and flip (s = −s ′)
forward scattering amplitudes given in Refs. [1,11,16]. Here,
Eex = Enf

ex + Ef
ex can be estimated numerically. However, an

analytical evaluation of these integrals is possible in the UR
and NR limits, as reported in Refs. [1,11,16].

The next higher order correction to the GSE beyond the
exchange term is the correlation energy Ecorr [12–15]. A
detailed calculation of the correlation energy for spin-polarized
matter was derived in Ref. [16], which we quote here:

Ecorr � 1

(2π )3

1

2

∫ π/2

0
sin2 θEdθE

{
�2

L

[
ln

(
�L

ε2
f

)
− 1

2

]

+ 2�2
T

[
ln

(
�T

ε2
f

)
− 1

2

]}
, (6)

with θE = tan−1(|k|/k0). The relevant �L and �T are deter-
mined to be [16]

�L = g2

4π2

∑
s=±

ps
f εs

f

sin2 θE

[
1 − cot θE

vs
f

tan−1
(
vs

f tan θE

)]
, (7)

�T = g2

8π2

∑
s=±

ps
f

2 cot θE

×
[
−cot θE

vs
f

+
(

1 + cot2 θE

vs
f

2

)
tan−1 (vs

f tan θE

)]
. (8)

The spin susceptibility is given by Ref. [1] as

χ−1 = 1

2

∂2E(ξ )

∂ξ 2

∣∣∣
ξ=0

. (9)

We have χ−1 ≡ χ−1
kin + χ−1

ex + χ−1
corr. The kinetic and exchange

contributions, evaluated in Ref. [1], are given by

χ−1
kin = p5

f

6π2εf

, (10)

χ−1
ex = −g2p4

f

18π4

{
2 − 6p2

f

ε2
f

− 3pf

ε3
f

[
pf εf − m2

q ln

×
(

pf + εf

mq

)]
+ 2p2

f

ε2
f

[
1 + 2mq

3(pf + mq)

]}
. (11)

To determine the correlation corrections to spin susceptibil-
ity we expand the terms in curly braces from Eq. (6) in powers
of the polarization parameter ξ , which gives

�2
L

[
ln

(
�L

ε2
f

)
− 1

2

]
+ 2�2

T

[
ln

(
�T

ε2
f

)
− 1

2

]

= (A0L + B0T ) + ξ 2(A1L + B1T ) + O(ξ 4). (12)
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Here, A0L and B0T correspond to unpolarized matter terms
and the detailed expressions of A1L and B1T are given in the
Appendix. χ−1

corr is

χ−1
corr = 1

2

∂2Ecorr(ξ )

∂ξ 2

∣∣∣
ξ=0

� 1

(2π )3

1

2

∫ π/2

0
sin2 θEdθE(A1L + B1T ). (13)

From this expression, and with the help of the expressions
presented in the Appendix, χ−1

corr can be estimated numerically.
The results for the two limiting cases, however, can be obtained
analytically, as we present in the following two sections.

A. UR limit

In the UR limit, the kinetic, exchange, and correlation
energies are [16]

Eur
kin = 3p4

f

8π2
[(1 + ξ )4/3 + (1 − ξ )4/3],

Eur
ex = g2

32π4
p4

f [(1 + ξ )4/3 + (1 − ξ )4/3 + 2(1 − ξ 2)2/3],

Eur
corr = g4 ln g2

2048π6
p4

f [(1 + ξ )4/3 + (1 − ξ )4/3 + 2(1 − ξ 2)2/3].

(14)

With the help of Eq. (1) each energy contribution to the
susceptibility is

χ−1
kin = p4

f

6π2
,

χ−1
ex = −g2p4

f

36π4
, (15)

χ−1
corr = − g4p4

f

2304π6
(ln rs − 0.286),

with rs = g2( 3π
4 )1/3. From Eq. (15), the sum of all the

contributions to the susceptibility can be written as [16]

χur = χP

[
1 − g2

6π2
− g4

384π4
(ln rs − 0.286)

]−1

, (16)

where χP is the noninteracting susceptibility [23,24].

B. NR limit

Now, we use the NR limit to calculate spin susceptibility
in order to compare our results with those of a dense electron
gas [22–24,26] interacting via the static Coulomb potential. In
this limit, kinetic and exchange energy densities are [1,11,16]

Enr
kin = 3p5

f

20π2mq

[(1 + ξ )5/3 + (1 − ξ )5/3],

(17)

Enr
ex = − g2

8π4
p4

f [(1 + ξ )4/3 + (1 − ξ )4/3].

The contribution to the susceptibility from kinetic and ex-
change energy densities yields

χ−1
kin = p5

f

6π2mq

,

(18)

χ−1
ex = −g2p4

f

18π4
.

We calculate the contribution to the spin susceptibility beyond
the exchange correction. For this we must first evaluate the
correlation energy in this limit.

The dominant contribution to the correlation energy is
found to be

Enr
corr = − λ2p5

f

π4mq

∫ kc

λ1/2

dk′

k′

∫ ∞

0
x dx

∑
s=±

f (s)

×
[

1 − xs

2
ln

(
xs + 1

xs − 1

)]∑
s ′=±

θ (1 − xs ′
), (19)

where λ = (g2mq)/(8πpf ), f (s = ±) = (1 ± ξ )1/3, x =
xsf (s), xs = (k0mq)/(ps

f k), and k′ = k/pf . For s = s ′ we
obtain

Enr,s=s ′
corr � g4 ln g2

(2π )6

1

3
mqp

3
f (1 − ln 2). (20)

Note that, here, the correlation energy is independent of spin
polarization ξ . For the spin parallel interactions, ξ -dependent
terms contribute to an opposite sign and therefore cancel each
other out. For s = −s ′, the integral on x takes the form

I =
∫ ∞

0
x dx

{(
1 + 1

3
ξ

)[
1 − 1

2
x

(
1 − 1

3
ξ

)

× ln

∣∣∣∣∣x
(
1 − 1

3ξ
)+ 1

x
(
1 − 1

3ξ
)− 1

∣∣∣∣∣
]

θ

[
1 − x

(
1 + 1

3
ξ

)]

+ (ξ → − ξ )

}
. (21)

Expanding the natural logarithm in terms of ξ and retaining
up to O(ξ 2), we have

I � 2

3

[
(1 − ln 2) − 1

6
ξ 2

]
. (22)

Using Eqs. (19), (21), and (22) we have

Enr,s=−s ′
corr � g4 ln g2

128π6

1

3
mqp

3
f

[
(1 − ln 2) − 1

6
ξ 2

]
. (23)

It should be mentioned that similar expressions for a
degenerate electron gas interacting via a static Coulomb
potential can be found in Ref. [26]. From Eqs. (20) and (23)
it is clear that spin antiparallel states are attractive, in contrast
to the parallel states obtained by the Pauli exclusion principle.
In this limit the correlation contribution to the susceptibility is
found to be

χ−1
corr = −g4 ln g2

2304π6
mqp

3
f . (24)
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FIG. 1. Density dependence of inverse spin susceptibility.

The total susceptibility is given by

χnr = χP

[
1 − g2

3π2

mq

pf

− g4 ln g2

384π4

m2
q

p2
f

]−1

. (25)

In Fig. 1 we plot inverse spin susceptibility, which is valid
for all kinematic regimes. It shows that χ−1 changes its sign
at the density ∼0.12 fm−3 without a correlation correction
and when we include the correlation effect its sign changes at
∼0.1 fm−3. This is equivalent to what happens to the GSE
as a function of ξ . Needless to say, this change of sign
corresponds to the para-ferro phase transition in a dense quark
system. The parameter set used here is the same as those of
Refs. [1,4,11,16].

C. Incompressibility and sound velocity

Once we have the expressions for the total energy density,
the incompressibility (K) and sound velocity (c1) can be
determined. The incompressibility K is defined by the second
derivative of the total energy density with respect to the number
density nq , which is given by Ref. [11] as

K = 9nq

∂2E

∂n2
q

. (26)

Since there are two Fermi surfaces corresponding to spin-up
(+) and spin-down (−) states, such that E ≡ E(n+

q , n−
q ), we

have [11]

∂E

∂nq

= ∂E

∂n+
q

∂n+
q

∂nq

+ ∂E

∂n−
q

∂n−
q

∂nq
(27)

= 1

2
[(1 + ξ )µ+ + (1 − ξ )µ−].

The single-particle energy at the Fermi surface or the chemical
potential of spin-up quark turns out to be

µ+,ur = µ+
kin + µ+

ex + µ+
corr

= p+
f + g2

12π2

(
p+

f + p+2
f

p−
f

)
+ g4 ln g2

768π4

(
p+

f + p+2
f

p−
f

)
.

(28)

Similarly, µ−,ur can be obtained by replacing p±
f with

p∓
f in Eq. (28). In Ref. [11], the chemical potential was

determined within the Fermi liquid theory approach up to
O(g2). However, here we calculate µ± with a different
approach up to O(g4 ln g2).

Using Eqs. (27) and (28), the incompressibility becomes

Kur = 3

2
pf

{
[(1 + ξ )4/3 + (1 − ξ )4/3]

+ g2

12π2
[(1 + ξ )4/3 + (1 − ξ )4/3 + 2(1 − ξ 2)2/3]

+ g4 ln g2

768π4
[(1 + ξ )4/3 + (1 − ξ )4/3 + 2(1 − ξ 2)2/3]

}
.

(29)

Another interesting quantity to calculate is the first sound
velocity, which is given by the first derivative of pressure with
respect to energy density. Mathematically [11],

c2
1 =

⎡
⎣ (1 + ξ )n+

q
∂µ+

∂n+
q

+ (1 − ξ )n−
q

∂µ−

∂n−
q

(1 + ξ )µ+ + (1 − ξ )µ−

⎤
⎦ . (30)

From Eq. (28), we have

∂µ+

∂n+
q

= 2π2

3p2
f (1 + ξ )2/3

{
1 + g2

12π2

[
(1 + ξ )2/3 − (1 − ξ )2/3

(1 + ξ )2/3

]

+ g4 ln g2

768π4

[
(1 + ξ )2/3 − (1 − ξ )2/3

(1 + ξ )2/3

]}
. (31)

The second and last terms in the curly braces correspond
to the exchange and correlation contributions, respectively.
Similarly, ∂µ−/∂n−

q can be obtained by replacing ξ with −ξ .
Using n±

q , µ±, and ∂µ±/∂n±
q we calculate the sound velocity

in terms of ξ . Numerically, for unpolarized matter, c1 = 0.46
while for complete polarized matter c1 = 0.54, which is below
the causal value of 1/

√
3 = 0.57 at the high-density limit.

In Fig. 2 we plot the density dependencies of the incom-
pressibility with a correlation correction. This shows that, for a
higher value of the order of parameter ξ , the incompressibility
becomes higher for the same value of the density. Thus,
numerical values for incompressibility and sound velocity
show that the equation of state for polarized quark matter
is stiffer than for unpolarized matter [11].
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FIG. 2. Incompressibility K in the spin-polarized quark matter.
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III. SUSCEPTIBILITY AT NONZERO TEMPERATURE

In this section we calculate the exchange energy density
Eex at low temperature (T 	 εf ), for which we replace
θ (p±

f − |p|) of Eqs. (4) and (5) with a proper Fermi distribution
function. In the UR limit, the angular averaged interaction
parameter is given by [11]

f ur
pp′ = g2

9pp′

∫
d
1

4π

∫
d
2

4π
[1 + (p̂ · ŝ)(p̂′ · ŝ ′)]. (32)

The spin nonflip contribution to the exchange energy density
is

Enf
ex = 9

2

∑
s=±

∫∫
d3p

(2π )3

d3p′

(2π )3
f nf

pp′n
s
p(T )ns

p′ (T )

� g2

32π4
p4

f [(1 + ξ )4/3 + (1 − ξ )4/3]

+ g2

48π2
T 2p2

f [(1 + ξ )2/3 + (1 − ξ )2/3]. (33)

Here ns
p(p′)(T ) is the Fermi distribution function.

Similarly, Ef
ex can be evaluated. The total Eur

ex at low
temperature is found to be

Eur
ex � g2

32π4
p4

f [(1 + ξ )4/3 + (1 − ξ )4/3 + 2(1 − ξ 2)2/3]

+ g2

24π2
T 2p2

f [(1 + ξ )2/3 + (1 − ξ )2/3]. (34)

The kinetic energy density can be written as

Eur
kin � 3p4

f

8π2
[(1 + ξ )4/3 + (1 − ξ )4/3]

+ 3T 2p2
f

4
[(1 + ξ )2/3 + (1 − ξ )2/3]. (35)

From Eq. (1) each energy contribution to the susceptibility is

χ−1
kin = p4

f

6π2

(
1 − π2T 2

p2
f

)
,

(36)

χ−1
ex = −g2p4

f

36π4

(
1 + π2T 2

3p2
f

)
.

Note that the T -independent terms of these expressions are
identical to those in Eqs. (14) and (15). Thus, the susceptibility
at nonzero temperature is given by

χur = χP

[
1 − g2

6π2

(
1 + 4π2T 2

3p2
f

)]−1

. (37)

In the NR limit, the interaction parameter takes the
following form [1,11]:

f nr
pp′ = −2g2

9

(
1 + s · s ′

|p − p′|2
)

. (38)

For the spin antiparallel interaction s = −s ′, then f nr
pp′ = 0.

Thus, the contribution due to the scattering of quarks with
unlike spin states vanishes and the dominant contribution to

energy density comes from the parallel spin states (s = s ′). By
performing the angular integration of Eq. (4), the exchange
energy density up to term O(T 2) becomes

Enr
ex = − g2

4π4

∑
s=±

∫
pdpns

p(T )
∫

p′dp′ns
p′ (T ) ln

∣∣∣∣p + p′

p − p′

∣∣∣∣
� − g2

8π4
p4

f [(1 + ξ )4/3 + (1 − ξ )4/3]

− g2

8π2
T 2mqpf [(1 + ξ )1/3 + (1 − ξ )1/3]. (39)

The kinetic energy density is found to be

Enr
kin � 3p5

f

20π2mq

[(1 + ξ )5/3 + (1 − ξ )5/3]

+ T 2p2
f

2
[(1 + ξ )2/3 + (1 − ξ )2/3]. (40)

A separate contribution from kinetic and exchange energies to
susceptibility becomes

χ−1
kin = p5

f

6π2mq

(
1 − 2π2mqT

2

3p3
f

)
,

(41)

χ−1
ex = −g2p4

f

18π4

(
1 − π2mqT

2

2p3
f

)
.

Thus, at low temperature the susceptibility turns out to be

χnr = χP

[
1 − g2mq

3π2pf

(
1 + π2mqT

2

6p3
f

)]−1

. (42)

IV. SUMMARY AND CONCLUSION

In this work we derive the spin susceptibility for degenerate
quark matter with corrections due to correlation contributions.
Analytic expressions for susceptibility are also derived in
both the UR and NR limits. It is observed that at low density
susceptibility changes sign and becomes negative, thus sug-
gesting the possibility of a ferromagnetic phase transition. In
addition, we also derive single-particle energy, sound velocity,
and incompressibility up to O(g4 ln g2). As far as the equation
of state is concerned, in the present model, we find that the
equation of state for polarized matter is stiffer than that of un-
polarized matter. We also determine the exchange energy and
susceptibility at nonzero temperature of spin-polarized quark
matter.
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APPENDIX

To calculate the correlation contribution to the spin suscep-
tibility we have, from Eq. (12),

A1L = − g4p2
f sec4 θE csc6 θE

1152π4ε3
f

(
m2

q + p2
f sec2 θE

)2

× ln

{
g2 csc2 θE

2π2εf

[pf − εf cot θE tan−1(vf tan θE)]

}

× {64ε5
f cos2 θE tan−1(vf tan θE)

(
p2

f + m2
q cos2 θE

)2

− 2pf ε2
f sin 2θE tan−1(vf tan θE)

[
12m6

q + 51m4
qp

2
f

+m4
q

(
4m2

q + 5p2
f

)
cos 4θE + 68m2

qp
4
f

+ 4m2
q

(
4m4

q + 10m2
qp

2
f + 7p4

f

)
cos 2θE + 32p6

f

]
+ 4p2

f εf sin2 θE

[
6m6

q + 29m4
qp

2
f

+m4
q

(
2m2

q + 3p2
f

)
cos 4θE + 36m2

qp
4
f

+ 4m2
q

(
2m4

q + 4m2
qp

2
f + 3p4

f

)
cos 2θE + 16p6

f

]}
,

(A1)

B1T = g4p2
f cot2 θE csc4 θE

1152π4ε3
f

(
m2

q cos2 θE + p2
f

)
× ln

{
g2 cot θE csc2 θE

8π2ε2
f

[
2 tan−1(vf tan θE)

× (m2
q cos2 θE + p2

f

)− pf εf sin 2θE

]}

× {−32ε3
f tan−1(vf tan θE)

(
m2

q cos2 θE + p2
f

)2

− 8p2
f εf

[
m4

q + p4
f + m2

qp
2
f (1 + cos2 θE)

]
sin2 2θE

+ 2pf tan−1(vf tan θE) sin 2θE

× [8m6
q + 31m4

qp
2
f + m4

qp
2
f cos 4θE + 36m2

qp
4
f

+ 4m2
q

(
2m4

q + 4m2
qp

2
f + 3p4

f

)
cos 2θE + 16p6

f

]}
,

(A2)

with vf = pf /εf .
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